首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

After uropathogenic Escherichia coli (UPEC), Enterococcus faecalis is the second most common pathogen causing urinary tract infections. Monoglucosyl-diacylglycerol (MGlcDAG) and diglucosyl-diacylglycerol (DGlcDAG) are the main glycolipids of the E. faecalis cell membrane. Examination of two mutants in genes bgsB and bgsA (both glycosyltransferases) showed that these genes are involved in cell membrane glycolipid biosynthesis, and that their inactivation leads to loss of glycolipids DGlcDAG (bgsA) or both MGlcDAG and DGlcDAG (bgsB). Here we investigate the function of bgsB and bgsA regarding their role in the pathogenesis in a mouse model of urinary tract infection and in bacterial adhesion to T24 bladder epithelial cells.

Results

In a mouse model of urinary tract infection, we showed that E. faecalis 12030ΔbgsB and E. faecalis 12030ΔbgsA mutants, colonize uroepithelial surfaces more efficiently than wild-type bacteria. We also demonstrated that these mutants showed a more than three-fold increased binding to human bladder carcinoma cells line T24 compared to the wild-type strain. Bacterial binding could be specifically inhibited by purified glycolipids. Lipoteichoic acid (LTA), wall-teichoic acid (WTA), and glycosaminoglycans (GAGs) were not significantly involved in binding of E. faecalis to the bladder epithelial cell line.

Conclusions

Our data show that the deletion of bgsB and bgsA and the absence of the major glycolipid diglucosyl-diacylglycerol increases colonization and binding to uroepithelial cells. We hypothesize that secreted diglucosyl-diacylglycerol blocks host binding sites, thereby preventing bacterial adhesion. Further experiments will be needed to clarify the exact mechanism underlying the adhesion through glycolipids and their cognate receptors.  相似文献   

2.
3.
Biofilm production is thought to be an important step in many enterococcal infections. In several Gram-positive bacteria, membrane glycolipids have been implicated in biofilm formation. We constructed a non-polar deletion mutant of a putative glucosyltransferase designated biofilm-associated glycolipid synthesis A ( bgsA ) in Enterococcus faecalis 12030. Analysis of major extracted glycolipids by nuclear magnetic resonance spectroscopy revealed that the cell membrane of 12030Δ bgsA was devoid of diglucosyl–diacylglycerol (DGlcDAG), while monoglucosyl–diacylglycerol was overrepresented. The cell walls of 12030Δ bgsA contained longer lipoteichoic acid molecules and were less hydrophobic than wild-type bacteria. Inactivation of bgsA in E. faecalis 12030 and E. faecalis V583 led to an almost complete arrest of biofilm formation on plastic surfaces. Overexpression of bgsA , on the other hand, resulted in increased biofilm production. While initial adherence was not affected, bgsA -deficient bacteria did not accumulate in the growing biofilm. Also, adherence of E. faecalis Δ bgsA to Caco-2 cells was impaired. In a mouse bacteraemia model, E. faecalis 12030Δ bgsA was cleared more rapidly from the bloodstream than the wild-type strain. In summary, BgsA is a glycosyltransferase synthetizing DGlcDAG, a glycolipid and lipoteichoic acid precursor involved in biofilm accumulation, adherence to host cells, and virulence in vivo .  相似文献   

4.
5.

Background

To compare the effectiveness of liposomal tobramycin or polymyxin B against Pseudomonas aeruginosa in the Cystic Fibrosis (CF) sputum and its inhibition by common polyanionic components such as DNA, F-actin, lipopolysaccharides (LPS), and lipoteichoic acid (LTA).

Methodology

Liposomal formulations were prepared from a mixture of 1,2-Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC) or 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine (DPPC) and Cholesterol (Chol), respectively. Stability of the formulations in different biological milieus and antibacterial activities compared to conventional forms in the presence of the aforementioned inhibitory factors or CF sputum were evaluated.

Results

The formulations were stable in all conditions tested with no significant differences compared to the controls. Inhibition of antibiotic formulations by DNA/F-actin and LPS/LTA was concentration dependent. DNA/F-actin (125 to 1000 mg/L) and LPS/LTA (1 to 1000 mg/L) inhibited conventional tobramycin bioactivity, whereas, liposome-entrapped tobramycin was inhibited at higher concentrations - DNA/F-actin (500 to 1000 mg/L) and LPS/LTA (100 to 1000 mg/L). Neither polymyxin B formulation was inactivated by DNA/F-actin, but LPS/LTA (1 to 1000 mg/L) inhibited the drug in conventional form completely and higher concentrations of the inhibitors (100 to 1000 mg/L) was required to inhibit the liposome-entrapped polymyxin B. Co-incubation with inhibitory factors (1000 mg/L) increased conventional (16-fold) and liposomal (4-fold) tobramycin minimum bactericidal concentrations (MBCs), while both polymyxin B formulations were inhibited 64-fold.

Conclusions

Liposome-entrapment reduced antibiotic inhibition up to 100-fold and the CFU of endogenous P. aeruginosa in sputum by 4-fold compared to the conventional antibiotic, suggesting their potential applications in CF lung infections.  相似文献   

6.
7.
8.
Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract.  相似文献   

9.
Lipoteichoic acids (LTA) are amphiphilic polymers that are important constituents of the cell wall of many Gram-positive bacteria. The chemical structures of LTA vary among organisms, albeit in the majority of Gram-positive bacteria the LTAs feature a common poly-1,3-(glycerolphosphate) backbone. Previously, the specificity of opsonic antibodies for this backbone present in some Gram-positive bacteria has been demonstrated, suggesting that this minimal structure may be sufficient for vaccine development. In the present work, we studied a well-defined synthetic LTA-fragment, which is able to inhibit opsonic killing of polyclonal rabbit sera raised against native LTA from Enterococcus faecalis 12030. This promising compound was conjugated with BSA and used to raise rabbit polyclonal antibodies. Subsequently, the opsonic activity of this serum was tested in an opsonophagocytic assay and specificity was confirmed by an opsonophagocytic inhibition assay. The conjugated LTA-fragment was able to induce specific opsonic antibodies that mediate killing of the clinical strains E. faecalis 12030, Enterococcus faecium E1162, and community-acquired Staphylococcus aureus strain MW2 (USA400). Prophylactic immunization with the teichoic acid conjugate and with the rabbit serum raised against this compound was evaluated in active and passive immunization studies in mice, and in an enterococcal endocarditis rat model. In all animal models, a statistically significant reduction of colony counts was observed indicating that the novel synthetic LTA-fragment conjugate is a promising vaccine candidate for active or passive immunotherapy against E. faecalis and other Gram-positive bacteria.  相似文献   

10.
11.

Background

Hydrophobicity is an important attribute of bacteria that contributes to adhesion and biofilm formation. Hydrophobicity of Streptococcus pyogenes is primarily due to lipoteichoic acid (LTA) on the streptococcal surface but the mechanism(s) whereby LTA is retained on the surface is poorly understood. In this study, we sought to determine whether members of the M protein family consisting of Emm (M protein), Mrp (M-related protein), Enn (an M-like protein), and the streptococcal protective antigen (Spa) are involved in anchoring LTA in a manner that contributes to hydrophobicity of the streptococci and its ability to form biofilms.

Methodology/Principal Findings

Isogenic mutants defective in expression of emm, mrp, enn, and/or spa genes of eight different serotypes and their parental strains were tested for differences in LTA bound to surface proteins, LTA released into the culture media, and membrane-bound LTA. The effect of these mutations on the ability of streptococci to form a hydrophobic surface and to generate biofilms was also investigated. A recombinant strain overexpressing Emm1 was also engineered and similarly tested. The serotypes tested ranged from those that express only a single M protein gene to those that express two or three members of the M protein family. Overexpression of Emm1 led to enhanced hydrophobicity and biofilm formation. Inactivation of emm in those serotypes expressing only a single emm gene reduced biofilm formation, and protein-bound LTA on the surface, but did not alter the levels of membrane-bound LTA. The results were more varied in those serotypes that express two to three members of the M protein family.

Conclusions/Significance

Our findings suggest that the formation of complexes with members of the M protein family is a common mechanism for anchoring LTA on the surface in a manner that contributes to hydrophobicity and to biofilm formation in S. pyogenes, but these activities in some serotypes are dependent on a trypsin-sensitive protein(s) that remains to be identified. The need for interactions between LTA and M proteins may impose functional constraints that limit variations in the sequence of the M proteins, major virulence factors of S. pyogenes.  相似文献   

12.

Background

The lipopeptide antibiotic, daptomycin (DAP) interacts with the bacterial cell membrane (CM). Development of DAP resistance during therapy in a clinical strain of Enterococcus faecalis was associated with mutations in genes encoding enzymes involved in cell envelope homeostasis and phospholipid metabolism. Here we characterized changes in CM phospholipid profiles associated with development of DAP resistance in clinical enterococcal strains.

Methodology

Using two clinical strain-pairs of DAP-susceptible and DAP-resistant E. faecalis (S613 vs. R712) and E. faecium (S447 vs. R446) recovered before and after DAP therapy, we compared four distinct CM profiles: phospholipid content, fatty acid composition, membrane fluidity and capacity to be permeabilized and/or depolarized by DAP. Additionally, we characterized the cell envelope of the E. faecium strain-pair by transmission electron microscopy and determined the relative cell surface charge of both strain-pairs.

Principal Findings

Both E. faecalis and E. faecium mainly contained four major CM PLs: phosphatidylglycerol (PG), cardiolipin, lysyl-phosphatidylglycerol (L-PG) and glycerolphospho-diglycodiacylglycerol (GP-DGDAG). In addition, E. faecalis CMs (but not E. faecium) also contained: i) phosphatidic acid; and ii) two other unknown species of amino-containing PLs. Development of DAP resistance in both enterococcal species was associated with a significant decrease in CM fluidity and PG content, with a concomitant increase in GP-DGDAG. The strain-pairs did not differ in their outer CM translocation (flipping) of amino-containing PLs. Fatty acid content did not change in the E. faecalis strain-pair, whereas a significant decrease in unsaturated fatty acids was observed in the DAP-resistant E. faecium isolate R446 (vs S447). Resistance to DAP in E. faecium was associated with distinct structural alterations of the cell envelope and cell wall thickening, as well as a decreased ability of DAP to depolarize and permeabilize the CM.

Conclusion

Distinct alterations in PL content and fatty acid composition are associated with development of enterococcal DAP resistance.  相似文献   

13.

Background

Escherichia coli strains adhere to the normally sterile human uroepithelium using type 1 pili, that are long, hairy surface organelles exposing a mannose-binding FimH adhesin at the tip. A small percentage of adhered bacteria can successfully invade bladder cells, presumably via pathways mediated by the high-mannosylated uroplakin-Ia and α3β1 integrins found throughout the uroepithelium. Invaded bacteria replicate and mature into dense, biofilm-like inclusions in preparation of fluxing and of infection of neighbouring cells, being the major cause of the troublesome recurrent urinary tract infections.

Methodology/Principal Findings

We demonstrate that α-d-mannose based inhibitors of FimH not only block bacterial adhesion on uroepithelial cells but also antagonize invasion and biofilm formation. Heptyl α-d-mannose prevents binding of type 1-piliated E. coli to the human bladder cell line 5637 and reduces both adhesion and invasion of the UTI89 cystitis isolate instilled in mouse bladder via catheterization. Heptyl α-d-mannose also specifically inhibited biofilm formation at micromolar concentrations. The structural basis of the great inhibitory potential of alkyl and aryl α-d-mannosides was elucidated in the crystal structure of the FimH receptor-binding domain in complex with oligomannose-3. FimH interacts with Manα1,3Manβ1,4GlcNAcβ1,4GlcNAc in an extended binding site. The interactions along the α1,3 glycosidic bond and the first β1,4 linkage to the chitobiose unit are conserved with those of FimH with butyl α-d-mannose. The strong stacking of the central mannose with the aromatic ring of Tyr48 is congruent with the high affinity found for synthetic inhibitors in which this mannose is substituted for by an aromatic group.

Conclusions/Significance

The potential of ligand-based design of antagonists of urinary tract infections is ruled by the structural mimicry of natural epitopes and extends into blocking of bacterial invasion, intracellular growth and capacity to fluxing and of recurrence of the infection.  相似文献   

14.

Background

The mechanisms that maintain sterility in the urinary tract are incompletely understood. Recent studies have implicated the importance of antimicrobial peptides (AMP) in protecting the urinary tract from infection. Here, we characterize the expression and relevance of the AMP human alpha-defensin 5 (HD5) in the human kidney and urinary tract in normal and infected subjects.

Methodology/Principal Findings

Using RNA isolated from human kidney, ureter, and bladder tissue, we performed quantitative real-time PCR to show that DEFA5, the gene encoding HD5, is constitutively expressed throughout the urinary tract. With pyelonephritis, DEFA5 expression significantly increased in the kidney. Using immunoblot analysis, HD5 production also increased with pyelonephritis. Immunostaining localized HD5 to the urothelium of the bladder and ureter. In the kidney, HD5 was primarily produced in the distal nephron and collecting tubules. Using immunoblot and ELISA assays, HD5 was not routinely detected in non-infected human urine samples while mean urinary HD5 production increased with E.coli urinary tract infection.

Conclusions/Significance

DEFA5 is expressed throughout the urinary tract in non-infected subjects. Specifically, HD5 is expressed throughout the urothelium of the lower urinary tract and in the collecting tubules of the kidney. With infection, HD5 expression increases in the kidney and levels become detectable in the urine. To our knowledge, our findings represent the first to quantitate HD5 expression and production in the human kidney. Moreover, this is the first report to detect the presence of HD5 in infected urine samples. Our results suggest that HD5 may have an important role in maintaining urinary tract sterility.  相似文献   

15.
《BMC genomics》2015,16(1)

Background

Enterococcus faecalis is a multifaceted microorganism known to act as a beneficial intestinal commensal bacterium. It is also a dreaded nosocomial pathogen causing life-threatening infections in hospitalised patients. Isolates of a distinct MLST type ST40 represent the most frequent strain type of this species, distributed worldwide and originating from various sources (animal, human, environmental) and different conditions (colonisation/infection). Since enterococci are known to be highly recombinogenic we determined to analyse the microevolution and niche adaptation of this highly distributed clonal type.

Results

We compared a set of 42 ST40 isolates by assessing key molecular determinants, performing whole genome sequencing (WGS) and a number of phenotypic assays including resistance profiling, formation of biofilm and utilisation of carbon sources. We generated the first circular closed reference genome of an E. faecalis isolate D32 of animal origin and compared it with the genomes of other reference strains. D32 was used as a template for detailed WGS comparisons of high-quality draft genomes of 14 ST40 isolates. Genomic and phylogenetic analyses suggest a high level of similarity regarding the core genome, also demonstrated by similar carbon utilisation patterns. Distribution of known and putative virulence-associated genes did not differentiate between ST40 strains from a commensal and clinical background or an animal or human source. Further analyses of mobile genetic elements (MGE) revealed genomic diversity owed to: (1) a modularly structured pathogenicity island; (2) a site-specifically integrated and previously unknown genomic island of 138 kb in two strains putatively involved in exopolysaccharide synthesis; and (3) isolate-specific plasmid and phage patterns. Moreover, we used different cell-biological and animal experiments to compare the isolate D32 with a closely related ST40 endocarditis isolate whose draft genome sequence was also generated. D32 generally showed a greater capacity of adherence to human cell lines and an increased pathogenic potential in various animal models in combination with an even faster growth in vivo (not in vitro).

Conclusion

Molecular, genomic and phenotypic analysis of representative isolates of a major clone of E. faecalis MLST ST40 revealed new insights into the microbiology of a commensal bacterium which can turn into a conditional pathogen.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1367-x) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.

Background

Enterococcus faecalis is a significant cause of infective endocarditis, an infection of the heart endothelium leading to vegetation formation (microbes, fibrin, platelets, and host cells attached to underlying endothelial tissue). Our previous research determined that enterococcal aggregation substance (AS) is an important virulence factor in causation of endocarditis, although endocarditis may occur in the absence of AS production. Production of AS by E. faecalis causes the organism to form aggregates through AS binding to enterococcal binding substance. In this study, we assessed the ability of IgGs and IgG Fabs against AS to provide protection against AS+ E. faecalis endocarditis.

Methodology/Principal Findings

When challenged with AS+ E. faecalis, 10 rabbits actively immunized against AS+ E. faecalis developed more significant vegetations than 9 animals immunized against AS E. faecalis, and 9/10 succumbed compared to 2/9 (p<0.005), suggesting enhanced aggregation by IgG contributes significantly to disease. IgG antibodies against AS also enhanced enterococcal aggregation as tested in vitro. In contrast, Fab fragments of IgG from rabbits immunized against purified AS, when passively administered to rabbits (6/group) immediately before challenge with AS+ E. faecalis, reduced total vegetation (endocarditis lesion) microbial counts (7.9×106 versus 2.0×105, p = 0.02) and size (40 mg versus 10, p = 0.05). In vitro, the Fabs prevented enterococcal aggregation.

Conclusions/Significance

The data confirm the role of AS in infective endocarditis formation and suggest that use of Fabs against AS will provide partial protection from AS+ E. faecalis illness.  相似文献   

18.

Background

Human cystic echinococcosis (CE) is caused by flatworm larvae of Echinococcus granulosus and is endemic in many parts of the world. In humans, CE cysts primarily affect the liver and pulmonary system, but can also affect the renal system. However, the clinical manifestations of renal CE can be subtle, so healthcare professionals often overlook renal CE in differential diagnosis. In this study, we examined the clinical and demographic characteristics of patients with urinary tract CE and analyzed the diagnosis and treatment procedures for this disease.

Methods

The records of 19 consecutive renal CE patients who were admitted to the First Affiliated Hospital of Xinjiang Medical University from January 1983 to April 2011 were retrospectively reviewed. In all cases, CE of the urinary tract was confirmed by pathological examination and visual inspection during surgery.

Results

Fifteen patients were males and 4 were females. The most common symptoms were non-specific lower back pain and percussion tenderness on the kidney region. All patients were followed up for 9–180 months after surgery. None of the patients experienced a recurrence of renal CE, but 4 patients experienced non-renal recurrence of hydatid disease.

Conclusions

Hydatid cysts from E. granulosus are structurally similar in the liver and urinary tract. Thus, the treatment regimen for liver CE developed by the World Health Organization/Informal Working Group on Echinococcosis (WHO/IWGE) could also be used for urinary tract CE. In our patients, the use of ultrasound, computed tomography, serology, and clinical characteristics provided a diagnostic accuracy of 66.7% to 92.3%.  相似文献   

19.

Objective

Historically, management of infants with fever without localizing signs (FWLS) has generated much controversy, with attempts to risk stratify based on several criteria. Advances in medical practice may have altered the epidemiology of serious bacterial infections (SBIs) in this population. We conducted this study to test the hypothesis that the rate of SBIs in this patient population has changed over time.

Patients and Methods

We performed a retrospective review of all infants meeting FWLS criteria at our institution from 1997–2006. We examined all clinical and outcome data and performed statistical analysis of SBI rates and ampicillin resistance rates.

Results

668 infants met criteria for FWLS. The overall rate of SBIs was 10.8%, with a significant increase from 2002–2006 (52/361, 14.4%) compared to 1997–2001 (20/307, 6.5%) (p = 0.001). This increase was driven by an increase in E. coli urinary tract infections (UTI), particularly in older infants (31–90 days).

Conclusions

We observed a significant increase in E. coli UTI among FWLS infants with high rates of ampicillin resistance. The reasons are likely to be multifactorial, but the results themselves emphasize the need to examine urine in all febrile infants <90days and consider local resistance patterns when choosing empiric antibiotics.  相似文献   

20.

Background:

N-Acyl homoserine lactone (AHL) is found to be the main component of quorum sensing (QS) in Gram-negative bacteria and plays an important role in biofilm formation. Little information is available regarding the role of AHL in biofilm formation in Escherichia coli (E. coli). The purpose of this investigation was to biochemically detect and characterize AHL activity in biofilm-forming uropathogenic E. coli (UPEC) isolated from urine samples of the patients with urinary tract infections (UTIs) in Kerman, Iran.

Methods:

Thirty-five UPEC isolates were obtained from urine samples of the patients with UTIs referred to the Afzalipoor hospital. The isolates were identified by biochemical tests. Biofilm analyses of all the isolates were performed using the microtiter plate method at OD 490nm. N-Acyl homoserine lactone was separated from cell mass supernatants by liquid-liquid extraction (LLE) and analyzed by a colorimetric method. N-Acyl homoserine lactone functional groups were identified by Fourier Transform-Infrared Spectroscopy (FT-IR).

Results:

The biofilm formation assay identified 10 (28.57%) isolates with strong, 16 (45.71%) with moderate, and 9 (25.71%) with weak biofilm activities. The UPEC isolates with strong and weak biofilm activities were subjected to AHL analyses. It was found that isolates with the highest AHL activities also exhibited strong adherence to microplate wells (P≤0.05). Two E. coli isolates with the highest AHL activities were selected for FT-IR spectroscopy. Peaks at 1764.33, 1377.99, and 1242.90 cm-1 correspond to the C=O bond of the lactone ring, and the N=H and C-O bonds of the acyl chain, respectively.

Conclusion:

We found that many UPEC isolates exhibited strong biofilm formation. The control of this property by AHL may contribute to the pathogenesis of the organism in UTI’s.Key Words: Biofilm, FT-IR, N-acylhomoserine lactone, Uropathogenic Escherichia coli  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号