首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several 7-aminoamido-pterins were synthesized to evaluate the electronic and biochemical subtleties observed in the ‘linker space’ when N-{N-(pterin-7-yl)carbonylglycyl}-l-phenylalanine 1 was bound to the active site of RTA. The gylcine–phenylalanine dipeptide analogs included both amides and thioamides. Decarboxy gly-phe analog 2 showed a 6.4-fold decrease in potency (IC50 = 128 μM), yet the analogous thioamide 7 recovered the lost activity and performed similarly to the parent inhibitor (IC50 = 29 μM). Thiourea 12 exhibited an IC50 nearly six times lower than the oxo analog 13. All inhibitors showed the pterin head-group firmly bound in their X-ray structures yet the pendants were not fully resolved suggesting that all pendants are not firmly bound in the RTA linker space. Calculated log P values do not correlate to the increase in bioactivity suggesting other factors dominate.  相似文献   

2.
Urease is an important enzyme which breaks urea into ammonia and carbon dioxide during metabolic processes. However, an elevated activity of urease causes various complications of clinical importance. The inhibition of urease activity with small molecules as inhibitors is an effective strategy for therapeutic intervention. Herein, we have synthesized a series of 19 benzofurane linked N-phenyl semithiocarbazones (3a3s). All the compounds were screened for enzyme inhibitor activity against Jack bean urease. The synthesized N-phenyl thiosemicarbazones had varying activity levels with IC50 values between 0.077 ± 0.001 and 24.04 ± 0.14 μM compared to standard inhibitor, thiourea (IC50 = 21 ± 0.11 μM). The activities of these compounds may be due to their close resemblance of thiourea. A docking study with Jack bean urease (PDB ID: 4H9M) revealed possible binding modes of N-phenyl thiosemicarbazones.  相似文献   

3.
Two series of novel N-benzyl-N-(X-2-hydroxybenzyl)-N′-phenylureas and thioureas (1a18a; 1b18b) as potential EGFR and HER-2 kinase inhibitors have been discovered. These compounds displayed good EGFR and HER-2 inhibitory activity and the SARs are also been studied. Especially compound 7b demonstrated significant EGFR and HER-2 inhibitory activity (IC50 = 0.08 μM for EGFR and IC50 = 0.35 μM for HER-2). Docking simulation was performed to position compound 7b into the EGFR active site to determine the probable binding conformation and antiproliferative assay results indicating that these series of urea and thioureas own high antiproliferative activity against MCF-7. Above all, thiourea 7b would be a potential anticancer agent deserves further research.  相似文献   

4.
Urease enzyme is a virulence factor that helps in colonization and maintenance of highly pathogenic bacteria in human. Hence, the inhibition of urease enzymes is well-established to be a promising approach for preventing deleterious effects of ureolytic bacterial infections. In this work, novel thiobarbiturate derivatives were synthesized and evaluated for their urease inhibitory activity. All tested compounds effectively inhibited the activity of urease enzyme. Compounds 1, 2a, 2b, 4 and 9 displayed remarkable anti-urease activity (IC50 = 8.21–16.95 μM) superior to that of thiourea reference standard (IC50 = 20.04 μM). Moreover, compounds 3a, 3g, 5 and 8 were equipotent to thiourea. Among the tested compounds, morpholine derivative 4 (IC50 = 8.21 µM) was the most potent one, showing 2.5 folds the activity of thiourea. In addition, the antibacterial activity of the synthesized compounds was estimated against both standard strains and clinical isolates of urease producing bacteria. Compound 4 explored the highest potency exceeding that of cephalexin reference drug. Moreover, biodistribution study using radiolabeling approach revealed a remarked uptake of 99mTc-compound 4 into infection induced in mice. Furthermore, a molecular docking analysis revealed proper orientation of title compounds into the urease active site rationalizing their potent anti-urease activity.  相似文献   

5.
A series of N-(2-morpholinoethyl)nicotinamide (113) and N-(3-morpholinopropyl)nicotinamide derivatives (1426) have been designed, synthesized and evaluated in vitro for their monoamine oxidase (MAO) A and B inhibitory activity and selectivity. Most of these synthesized compounds proved to be potent, and selective inhibitors of MAO-A rather than of MAO-B. 5-Chloro-6-hydroxy-N-(2-morpholinoethyl)nicotinamide (13) displayed the highest MAO-A inhibitory potency (IC50 = 0.045 μM) and a good selectivity. 2-Bromo-N-(2-morpholinoethyl)nicotinamide (3) was the most potent MAO-B inhibitor with the IC50 value of 0.32 μM, but it was not selective. Molecular dockings of compound 13 were performed in order to give structural insights regarding the MAO-A selectivity.  相似文献   

6.
High-throughput screening led to the identification of isothiazolones 1 and 2 as inhibitors of histone acetyltransferase (HAT) with IC50s of 3 μM and 5 μM, respectively. Analogues of these hit compounds with variations of the N-phenyl group, and with variety of substituents at C-4, C-5 of the thiazolone ring, were prepared and assayed for inhibition of the HAT enzyme PCAF. Potency is modestly favoured when the N-aryl group is electron deficient (4-pyridyl derivative 10 has IC50 = 1.5 μM); alkyl substitution at C-4 has little effect, whilst similar substitution at C-5 causes a significant drop in potency. The ring–fused compound 38 has activity (IC50 = 6.1 μM) to encourage further exploration of this bicyclic structure. The foregoing SAR is consistent with an inhibitory mechanism involving cleavage of the S–N bond of the isothiazolone ring by a catalytically important thiol residue.  相似文献   

7.
We have discovered several tubulin-active compounds in our previous studies. In the establishment of a compound library of small molecule weight tubulin ligands, 14 new N-3-haloacylaminophenyl-N′-(alkyl/aryl) urea analogs were designed and synthesized. The structure–activity relationship (SAR) analysis revealed that (i) the order of anticancer potency for the 3-haloacylamino chain was following –CH2Br > –CHBrCH3; (ii) the N′-substituent moiety was not essential for the anticancer activity, and a proper alkyl substitution might enhance the anticancer activity. Among these analogs, the compounds 16j bearing bromoacetyl at the N′-end exhibited a potent activity against eight human tumor cell lines, including CEM (leukemia), Daudi (lymphoma), MCF-7 (breast cancer), Bel-7402 (hepatoma), DU-145 (prostate cancer), DND-1A (melanoma), LOVO (colon cancer) and MIA Paca (pancreatic cancer), with the IC50 values between 0.38 and 4.07 μM. Interestingly, compound 16j killed cancer cells with a mechanism independent of the tubulin-based mechanism, indicating a significant change of the action mode after the structure modification.  相似文献   

8.
Recently numerous non-fluoroquinolone-based bacterial type II topoisomerase inhibitors from both the GyrA and GyrB classes have been reported as antibacterial agents. Inhibitors of the GyrA class include aminopiperidine-based novel bacterial type II topoisomerase inhibitors (NBTIs). However, inhibition of the cardiac ion channel remains a serious liability for the aminopiperidine based NBTIs. In this paper we replaced central aminopiperidine linker with piperazine moiety and tested for its biological activity. We developed a series of twenty four compounds with a piperazine linker 1-(2-(piperazin-1-yl)ethyl)-1,5-naphthyridin-2(1H)-one, by following a multistep protocol. Among them compound 4-(2-(7-methoxy-2-oxo-1,5-naphthyridin-1(2H)-yl)ethyl)-N-(4-nitrophenyl)piperazine-1-carboxamide (11) was the most promising inhibitor with Mycobacterium tuberculosis (MTB) DNA gyrase enzyme supercoiling IC50 of 0.29 ± 0.22 μM, with a good MTB MIC of 3.45 μM. These kind of compounds retains good potency and showed reduced cardiotoxicity compared to aminopiperidines.  相似文献   

9.
A series of N,N-diethyl phenyl thioxo-tetrahydropyrimidine carboxamide have been synthesized and investigated for their β-glucuronidase inhibitory activities. All molecules exhibited excellent inhibition with IC50 values ranging from 0.35 to 42.05 µM and found to be even more potent than the standard d-saccharic acid. Structure-activity relationship analysis indicated that the meta-aryl-substituted derivatives significantly influenced β-glucuronidase inhibitory activities while the para-substitution counterpart outperforming moderate potency. The most potent compound in this series was 4g bearing thiophene motif with IC50 of 0.35 ± 0.09 µM. To verify the SAR, molecular docking and molecular dynamics studies were also performed.  相似文献   

10.
Four series of novel heterodimers comprised of donepezil and huperzine A (HupA) fragments were designed, synthesized, and evaluated in search of potent acetylcholinesterase (AChE) inhibitors as potential therapeutic treatment for Alzheimer’s disease. Heterodimers comprised of dimethoxyindanone (from donepezil), hupyridone (from HupA), and connected with a multimethylene linker, were identified as potent and selective inhibitors of AChE. Diastereomeric heterodimers (RS,S)-17b (with a tetramethylene linker) exhibited the highest potency of inhibition towards AChE with an IC50 value of 9 nM and no detectable inhibitory effect on butyrylcholinesterase at 1 mM.  相似文献   

11.
Tyrosinase is a key enzyme during the production of melanins in plants and animals. A class of novel N-aryl-N′-substituted phenylthiourea derivatives (3a–i, 6ak) were designed, synthesized and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed some 4,5,6,7-tetrahydro-2-[[(phenylamino)thioxomethyl]amino]-benzo[b]thiophene-3-carboxylic acid derivatives (3a–i) exhibited moderate inhibitory potency on diphenolase activity of tyrosinase. When the scaffold of 4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid was replaced with 2-(1,3,4-thiadiazol-2-yl)thio acetic acid, the inhibitory activity of compounds (6ak) against tyrosinase was improved obviously; especially, the inhibitory activity of compound 6h (IC50 = 6.13 μM) is significantly higher than kojic acid (IC50 = 33.3 μM). Moreover, the analysis on inhibition mechanism revealed that compound 6h might plays the role as a noncompetitive inhibitor.  相似文献   

12.
A new series of 1H- and 2H-pyrazole derivatives (35 final compounds) has been designed and synthesized in this study. A selected group (13 compounds) was then tested over a panel of 60 cancer cell lines at a single dose concentration of 10 μM. At this concentration, six compounds have showed moderate to strong mean inhibitions, and were further tested at five-dose testing mode to determine their IC50 over the 60 cell lines. The IC50 values of the tested compounds indicated high potency (as for compound 10f) as well as high efficacy (as for compound 11e). Accordingly, compound 10f was then tested at a single dose concentration of 10 μM over a panel of 54 kinases to determine its kinase inhibitory profile. The compound has showed good selectivity towards FLT3 kinase, associated with a moderate potency, with an IC50 value of 1.74 μM.  相似文献   

13.
A novel class of indomethacin analogs were synthesized wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety (5-LOX pharmacophore) was attached at its C-4 or C-5 position via either a CO (14ab) or CH2 (19ab) linker to the indole N1-position. In this regard, replacement of the 4-chlorobenzoyl group present in indomethacin by N-difluoromethyl-1,2-dihydropyrid-2-one-4-(or 5-)carbonyl and N-difluoromethyl-1,2-dihydropyrid-2-one-4-yl(or 5-yl)methylene moieties furnished compounds showing no inhibitory activities against the COX-2/5-LOX enzymes (except for the weak but selective COX-2 inhibitor 19a, COX-2 IC50 = 31 μM), and moderate in vivo anti-inflammatory activities (except for the methylene compound 19a that was inactive). These structure–activity data indicate replacement of the 4-chlorobenzoyl group present in indomethacin by a N-difluoromethyl-1,2-dihydropyrid-2-one ring system connected by a CO or CH2 linker is not a suitable approach for the design of dual COX-2/5-LOX inhibitory analogs of indomethacin.  相似文献   

14.
The impact of various secondary and tertiary pharmacophores on in vitro potency of soluble epoxide hydrolase (sEH) inhibitors based on the unsymmetrical urea scaffold 1 is discussed. N,N′-Diaryl urea inhibitors of soluble epoxide hydrolase exhibit subtle variations in inhibitory potency depending on the secondary pharmacophore but tolerate considerable structural variation in the second linker/tertiary pharmacophore fragment.  相似文献   

15.
The present study includes design and synthesis of new molecular hybrids of 2-methylthiobenzimidazole linked to various anti-inflammatory pharmacophores through 2-aminothiazole linker, to investigate the effect of such molecular variation on cyclooxygenase (COX) and 15-lipoxygenase (15-LOX) enzymes inhibition as well as in vivo anti-inflammatory activity. The chemical structures of new hybrids were confirmed using different spectroscopic tools and elemental analyses. Benzimidazole-thiazole hybrids linked to acetyl moiety 13, phenyl thiosemicarbazone 14, 1,3-thiazolines 15a-c and 4-thiazolidinone 16 exhibited significant COX-2 inhibition (IC50 = 0.045–0.075 µM) with significant COX-2 selectivity indices (SI = 142–294). All hybrids revealed potent 15-LOX inhibitory activity (IC50 = 1.67–6.56 µM). Benzimidazole-thiazole hybrid 15b was the most potent dual COX-2 (IC50 = 0.045 µM, SI = 294) inhibitor approximate to celecoxib (COX-2; IC50 = 0.045 µM, SI = 327), with double inhibitory activity versus 15-LOX enzyme (IC50 = 1.67 µM) relative to quercetin (IC50 = 3.34 µM). Three hybrids (14, 15b & 16) were selected for in vivo screening using carrageenan-induced paw edema method. Benzimidazole-thiazole hybrid linked to 4-thiazolidinone 16 showed the maximum edema inhibition at both 3 h and 4 h intervals as well (~119% and 102% relative to indomethacin, respectively). The gastric ulcerogenic effect of benzimidazole-thiazole hybrid 16 was estimated compared with indomethacin showing superior gastrointestinal safety profile. In bases of molecular modeling; all new active hybrids were subjected to docking simulation into active sites of COX-2 and 15-LOX enzymes to study the binding mode of these novel potent dual COX-2/15-LOX inhibitors.  相似文献   

16.
New series of thiazolo[4,5-d]pyridazin and imidazo[2′,1′:2,3]thiazolo[4,5-d]pyridazin analogues were designed, synthesized and evaluated for their in vitro DHFR inhibition and antitumor activity. Compounds 13 and 43 proved to be DHFR inhibitors with IC50 0.05 and 0.06 μM, respectively. 43 proved lethal to OVCAR-3 Ovarian cancer and MDA-MB-435 Melanoma at IC50 0.32 and 0.46 μM, respectively. The active compounds formed hydrogen bond at DHFR binding site between N1-nitrogen of the pyridazine ring with Glu30; the carbonyl group with Trp24, Arg70 or Lys64; π-cation interaction with Arg22 and π-π interaction with Phe31 residues. Ring annexation of the active 1,3-thiazole ring analogue 13 into the bicyclic thiazolo[4,5-d]pyridazine (18,19) or imidazo[2,1-b]thiazoles (2325) decreased the DHFR inhibition activity; while the formation of the tricyclic imidazo[2′,1′:2,3]-thiazolo[4,5-d]pyridazine (4354) increased potency. The obtained model could be useful for the development of new class of DHFR inhibitors.  相似文献   

17.
The identification and hit-to-lead exploration of a novel, potent and selective series of histamine H4 receptor inverse agonists is described. The initial hit, 3A (IC50 19 nM) was identified by means of a ligand-based virtual screening approach. Subsequent medicinal chemistry exploration yielded 18I which possessed increased potency (R-enantiomer IC50 1 nM) as well as enhanced microsomal stability.  相似文献   

18.
Antitumor agents that bind to tubulin and disrupt microtubule dynamics have attracted considerable attention in the last few years. To extend our knowledge of the thiazole ring as a suitable mimic for the cis-olefin present in combretastatin A-4, we fixed the 3,4,5-trimethoxyphenyl at the C4-position of the thiazole core. We found that the substituents at the C2- and C5-positions had a profound effect on antiproliferative activity. Comparing compounds with the same substituents at the C5-position of the thiazole ring, the moiety at the C2-position influenced antiproliferative activities, with the order of potency being NHCH3 > Me ? N(CH3)2. The N-methylamino substituent significantly improved antiproliferative activity on MCF-7 cells with respect to C2-amino counterparts. Increasing steric bulk at the C2-position from N-methylamino to N,N-dimethylamino caused a 1–2 log decrease in activity. The 2-N-methylamino thiazole derivatives 3b, 3d and 3e were the most active compounds as antiproliferative agents, with IC50 values from low micromolar to single digit nanomolar, and, in addition, they are also active on multidrug-resistant cell lines over-expressing P-glycoprotein. Antiproliferative activity was probably caused by the compounds binding to the colchicines site of tubulin polymerization and disrupting microtubule dynamics. Moreover, the most active compound 3e induced apoptosis through the activation of caspase-2, -3 and -8, but 3e did not cause mitochondrial depolarization.  相似文献   

19.
New therapies for treating coronaviruses are urgently needed. A series of 4-anilino-6-aminoquinazoline derivatives were synthesized and evaluated to show high anti-MERS-CoV activities. N4-(3-Chloro-4-fluorophenyl)-N6-(3-methoxybenzyl)quinazoline-4,6-diamine (1) has been identified in a random screen as a hit compound for inhibiting MERS-CoV infection. Throughout optimization process, compound 20 was found to exhibit high inhibitory effect (IC50 = 0.157 μM, SI = 25) with no cytotoxicity and moderate in vivo PK properties.  相似文献   

20.
A series of new cobalt(III) complexes were prepared. They are [CoL1(py)3]·NO3 (1), [CoL2(bipy)(N3)]·CH3OH (2), [CoL3(HL3)(N3)]·NO3 (3), and [CoL4(MeOH)(N3)] (4), where L1, L2, L3 and L4 are the deprotonated form of N′-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide, N′-(2-hydroxybenzylidene)-3-hydroxylbenzohydrazide, 2-[(2-dimethylaminoethylimino)methyl]-4-methylphenol, and N,N′-bis(5-methylsalicylidene)-o-phenylenediamine, respectively, py is pyridine, and bipy is 2,2′-bipyridine. The complexes were characterized by infrared and UV–Vis spectra, and single crystal X-ray diffraction. The Co atoms in the complexes are in octahedral coordination. Complexes 1 and 4 show effective urease inhibitory activities, with IC50 values of 4.27 and 0.35 μmol L−1, respectively. Complex 2 has medium activity against urease, with IC50 value of 68.7 μmol L−1. While complex 3 has no activity against urease. Molecular docking study of the complexes with Helicobacter pylori urease was performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号