首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 7 毫秒
1.
《Chronobiology international》2013,30(8):1016-1023
Artificial nighttime illumination has recently become commonplace throughout the world; however, in common with other animals, humans have not evolved in the ecological context of chronic light at night. With prevailing evidence linking the circadian, endocrine, immune, and metabolic systems, understanding these relationships is important to understanding the etiology and progression of several diseases. To eliminate the covariate of sleep disruption in light at night studies, researchers often use nocturnal animals. However, the assumption that light at night does not affect sleep in nocturnal animals remains unspecified. To test the effects of light at night on sleep, we maintained Swiss-Webster mice in standard light/dark (LD) or dim light at night (DLAN) conditions for 8–10 wks and then measured electroencephalogram (EEG) and electromyogram (EMG) biopotentials via wireless telemetry over the course of two consecutive days to determine differences in sleep timing and homeostasis. Results show no statistical differences in total percent time, number of episodes, maximum or average episode durations in wake, slow-wave sleep (SWS), or rapid eye movement (REM) sleep. No differences were evident in SWS delta power, an index of sleep drive, between groups. Mice kept in DLAN conditions showed a relative increase in REM sleep during the first few hours after the dark/light transition. Both groups displayed normal 24-h circadian rhythms as measured by voluntary running wheel activity. Groups did not differ in body mass, but a marked negative correlation of body mass with percent time spent awake and a positive correlation of body mass with time spent in SWS was evident. Elevated body mass was also associated with shorter maximum wake episode durations, indicating heavier animals had more trouble remaining in the wake vigilance state for extended periods of time. Body mass did not correlate with activity levels, nor did activity levels correlate with time spent in different sleep states. These data indicate that heavier animals tend to sleep more, potentially contributing to further weight gain. We conclude that chronic DLAN exposure does not significantly affect sleep timing or homeostasis in mice, supporting the use of dim light with nocturnal rodents in chronobiology research to eliminate the possible covariate of sleep disruption.  相似文献   

2.
3.
The increasing use of electric lights has modified the natural light environment dramatically, posing novel challenges to both humans and wildlife. Indeed, several biomedical studies have linked artificial light at night to the disruption of circadian rhythms, with important consequences for human health, such as the increasing occurrence of metabolic syndromes, cancer and reduced immunity. In wild animals, light pollution is associated with changes in circadian behaviour, reproduction and predator–prey interactions, but we know little about the underlying physiological mechanisms and whether wild species suffer the same health problems as humans. In order to fill this gap, we advocate the need for integrating ecological studies in the field, with chronobiological approaches to identify and characterize pathways that may link temporal disruption caused by light at night and potential health and fitness consequences.  相似文献   

4.
Chronic circadian misalignment between the internal and environmental rhythms, which is typically related to night-shift work and clock-gene variants, is associated with disruption of suprachiasmatic nucleus function and increased risk of insomnia. Under controlled laboratory conditions, light at night (LAN) suppresses melatonin secretion, delays the internal biological rhythm, and reduces sleepiness. Therefore, LAN exposure may cause circadian misalignment and insomnia, though it remains unclear in real-life situations whether LAN exposure is associated with insomnia. To evaluate an association between LAN exposure and sleep quality in home settings, we conducted a cross-sectional community-based study in 857 elderly individuals (mean age, 72.2 years). We evaluated bedroom light intensity using a light meter and subjectively and objectively measured sleep quality using the Pittsburgh Sleep Quality Index and an actigraph, respectively, along with urinary 6-sulfatoxymelatonin excretion. Compared with the lowest quartile group of LAN intensity, the highest quartile group revealed a significantly higher odds ratio (OR) for subjective insomnia in a multivariate model adjusted for age, gender, body mass index, daytime physical activity, urinary 6-sulfatoxymelatonin excretion, bedtime, rising time, and day length (adjusted OR, 1.61, 95% confidence interval, 1.05–2.45, p?=?0.029). In addition, higher OR for subjective insomnia was significantly associated with the increase in quartiles of LAN intensity (ptrend?=?0.043). Consistently, we observed significant association trends between the increase in quartiles of LAN intensity and poorer actigraphic sleep quality, including decreased sleep efficiency, prolonged sleep-onset latency, increased wake-after-sleep onset, shortened total sleep time, and delayed sleep-mid time in multivariate models adjusted for the covariates mentioned above (all ptrend?<?0.001). In conclusion, we demonstrated that LAN exposure in home settings is significantly associated with both subjectively and objectively measured sleep quality in a community-based elderly population.  相似文献   

5.
6.
Blue light plays an important role in circadian photoentrainment by stimulating the melanopsin-expressing photosensitive retinal ganglion cells. Age-related cataract causes progressive loss of blue light transmission, which may lead to changes in circadian rhythm and sleep quality. In theory, increased light transmission by cataract surgery may improve circadian misalignment and sleep quality, while the effect of cataract surgery on circadian rhythm is not well understood. In this study, we assessed 30 binocular age-related nuclear cataract patients (aged 72.5 ± 7.2, 16 female) who were eligible for cataract surgery. All the patients underwent phacoemulsification cataract extraction and neutral ultraviolet-only blocking intraocular lens (IOLs) implantation. Visual functions including best-corrected visual acuity (BCVA), color perception and dark adaptation were assessed. Salivary samples were collected at 1-hour interval from 19:00 to 23:00 48 hours before and after surgery. Salivary melatonin concentration was measured and dim light melatonin onset (DLMO) was calculated subsequently. Sleep quality and daytime alertness were assessed before and a month after surgery using Pittsburgh Sleep Quality Index (PSQI) and Epworth Sleepiness Scale (ESS). All the operated eyes demonstrated significant improvements in BCVA, color perception and dark adaptation after cataract surgery. Salivary melatonin concentration at 23:00 was significantly increased after surgery (P < 0.001). However, the average DLMO did not change significantly after surgery. In addition, PSQI and ESS scores were significantly decreased a month after surgery (P = 0.027, P < 0.001, respectively). In conclusion, cataract surgery promotes blue-light transmission; consequently, it may lead to the increase in nighttime melatonin concentration and improvement in sleep quality as well as daytime alertness.  相似文献   

7.
Despite the ubiquitous nature of sleep, its functions remain a mystery. In an attempt to address this, many researchers have studied behavioural and electrophysiological phenomena associated with sleep in a diversity of animals. The great majority of vertebrates and invertebrates display a phase of immobility that could be considered as a sort of sleep. Terrestrial mammals and birds, both homeotherms, show two sleep states with distinct behavioural and electrophysiological features. However, whether these features have evolved independently in each clade or were inherited from a common ancestor remains unknown. Unfortunately, amphibians and reptiles, key taxa in understanding the evolution of sleep given their position at the base of the tetrapod and amniote tree, respectively, remain poorly studied in the context of sleep. This review presents an overview of what is known about sleep in amphibians and reptiles and uses the existing data to provide a preliminary analysis of the evolution of behavioural and electrophysiological features of sleep in amphibians and reptiles. We also discuss the problems associated with analysing existing data, as well as the difficulty in inferring homologies of sleep stages based on limited data in the context of an essentially mammalian‐centric definition of sleep. Finally, we highlight the importance of developing comparative approaches to sleep research that may benefit from the great diversity of species with different ecologies and morphologies in order to understand the evolution and functions of sleep.  相似文献   

8.
Coral reefs represent the most diverse marine ecosystem on the planet, yet they are undergoing an unprecedented decline due to a combination of increasing global and local stressors. Despite the wealth of research investigating these stressors, Artificial Light Pollution at Night (ALAN) or “ecological light pollution” represents an emerging threat that has received little attention in the context of coral reefs, despite the potential of disrupting the chronobiology, physiology, behavior, and other biological processes of coral reef organisms. Scleractinian corals, the framework builders of coral reefs, depend on lunar illumination cues to synchronize their biological rhythms such as behavior, reproduction and physiology. While, light pollution (POL) may mask and lead de‐synchronization of these biological rhythms process. To reveal if ALAN impacts coral physiology, we have studied two coral species, Acropora eurystoma and Pocillopora damicornis, from the Gulf of Eilat/Aqaba, Red Sea, which is undergoing urban development that has led to severe POL at night. Our two experimental design data revealed that corals exposed to ALAN face an oxidative stress condition, show lower photosynthesis performances measured by electron transport rate (ETR), as well as changes in chlorophyll and algae density parameters. Testing different lights such as Blue LED and White LED spectrum showed more extreme impact in comparison to Yellow LEDs on coral physiology. The finding of this work sheds light on the emerging threat of POL and the impacts on the biology and ecology of Scleractinian corals, and will help to formulate specific management implementations to mitigate its potentially harmful impacts.  相似文献   

9.
External zeitgebers synchronize the human circadian rhythm of sleep and wakefulness. Humans adapt their chronotype to the day-night cycle, the strongest external zeitgeber. The human circadian rhythm shifts to evening-type orientation when daylight is prolonged into the evening and night hours by artificial light sources. Data from a survey of 1507 German adolescents covering questions about chronotype and electronic screen media use combined with nocturnal satellite image data suggest a relationship between chronotype and artificial nocturnal light. Adolescents living in brightly illuminated urban districts had a stronger evening-type orientation than adolescents living in darker and more rural municipalities. This result persisted when controlling for time use of electronic screen media, intake of stimulants, type of school, age, puberty status, time of sunrise, sex, and population density. Time spent on electronic screen media use—a source of indoor light at night—is also correlated with eveningness, as well as intake of stimulants, age, and puberty status, and, to a lesser degree, type of school and time of sunrise. Adequate urban development design and parents limiting adolescents' electronic screen media use in the evening could help to adjust adolescents' zeitgeber to early school schedules when they provide appropriate lighting conditions for daytime and for nighttime. (Author correspondence: )  相似文献   

10.
Understanding the function of variation in sleep requires studies in the natural ecological conditions in which sleep evolved. Sleep has an impact on individual performance and hence may integrate the costs and benefits of investing in processes that are sensitive to sleep, such as immunity or coping with stress. Because dark and pale melanic animals differentially regulate energy homeostasis, immunity and stress hormone levels, the amount and/or organization of sleep may covary with melanin‐based colour. We show here that wild, cross‐fostered nestling barn owls (Tyto alba) born from mothers displaying more black spots had shorter non‐REM (rapid eye movement) sleep bouts, a shorter latency until the occurrence of REM sleep after a bout of wakefulness and more wakefulness bouts. In male nestlings, the same sleep traits also correlated with their own level of spotting. Because heavily spotted male nestlings and the offspring of heavily spotted biological mothers switched sleep–wakefulness states more frequently, we propose the hypothesis that they could be also behaviourally more vigilant. Accordingly, nestlings from mothers displaying many black spots looked more often towards the nest entrance where their parents bring food and towards their sibling against whom they compete. Owlets from heavily spotted mothers might invest more in vigilance, thereby possibly increasing associated costs due to sleep fragmentation. We conclude that different strategies of the regulation of brain activity have evolved and are correlated with melanin‐based coloration.  相似文献   

11.
Most night workers are unable to adjust their circadian rhythms to the atypical hours of sleep and wake. Between 10% and 30% of shiftworkers report symptoms of excessive sleepiness and/or insomnia consistent with a diagnosis of shift work disorder (SWD). Difficulties in attaining appropriate shifts in circadian phase, in response to night work, may explain why some individuals develop SWD. In the present study, it was hypothesized that disturbances of sleep and wakefulness in shiftworkers are related to the degree of mismatch between their endogenous circadian rhythms and the night-work schedule of sleep during the day and wake activities at night. Five asymptomatic night workers (ANWs) (3 females; [mean?±?SD] age: 39.2?±?12.5 yrs; mean yrs on shift?=?9.3) and five night workers meeting diagnostic criteria (International Classification of Sleep Disorders [ICSD]-2) for SWD (3 females; age: 35.6?±?8.6 yrs; mean years on shift?=?8.4) participated. All participants were admitted to the sleep center at 16:00?h, where they stayed in a dim light (<10 lux) private room for the study period of 25 consecutive hours. Saliva samples for melatonin assessment were collected at 30-min intervals. Circadian phase was determined from circadian rhythms of salivary melatonin onset (dim light melatonin onset, DLMO) calculated for each individual melatonin profile. Objective sleepiness was assessed using the multiple sleep latency test (MSLT; 13 trials, 2-h intervals starting at 17:00?h). A Mann-Whitney U test was used for evaluation of differences between groups. The DLMO in ANW group was 04:42?±?3.25?h, whereas in the SWD group it was 20:42?±?2.21?h (z = 2.4; p?<?.05). Sleep did not differ between groups, except the SWD group showed an earlier bedtime on off days from work relative to that in ANW group. The MSLT corresponding to night work time (01:00–09:00?h) was significantly shorter (3.6?±?.90?min: [M?±?SEM]) in the SWD group compared with that in ANW group (6.8?±?.93?min). DLMO was significantly correlated with insomnia severity (r = ?.68; p < .03), indicating that the workers with more severe insomnia symptoms had an earlier timing of DLMO. Finally, SWD subjects were exposed to more morning light (between 05:00 and 11:00?h) as than ANW ones (798 vs. 180 lux [M?±?SD], respectively z?=??1.7; p?<?.05). These data provide evidence of an internal physiological delay of the circadian pacemaker in asymptomatic night-shift workers. In contrast, individuals with SWD maintain a circadian phase position similar to day workers, leading to a mismatch/conflict between their endogenous rhythms and their sleep-wake schedule. (Author correspondence: )  相似文献   

12.
13.
Change in day length is an important cue for reproductive activation in seasonally breeding animals to ensure that the timing of greatest maternal investment (e.g. lactation in mammals) coincides with favourable environmental conditions (e.g. peak productivity). However, artificial light at night has the potential to interfere with the perception of such natural cues. Following a 5-year study on two populations of wild marsupial mammals exposed to different night-time levels of anthropogenic light, we show that light pollution in urban environments masks seasonal changes in ambient light cues, suppressing melatonin levels and delaying births in the tammar wallaby. These results highlight a previously unappreciated relationship linking artificial light at night with induced changes in mammalian reproductive physiology, and the potential for larger-scale impacts at the population level.  相似文献   

14.
Exposure to artificial light at night (ALAN) has been reported to be associated with various pathological changes including sleep deprivation, circadian rhythm disruption, and melatonin suppression with increase in various cancers such as breast or prostate cancers. In this study, we sought to elucidate the association between ALAN and prostate cancer in 27 districts within Gwangju City and urban and rural areas from South Jeolla Province in South Korea. We analyzed the correlation between ALAN and the incidence of a range of cancers by Poisson regression analysis, after adjustment for confounding risk factors, such as smoking, drinking, obesity, stress, air pollution (particulate matter <10 μm in diameter), urbanization (proportion of urbanized area), and the cancer screening rate. Interestingly, the incidence of prostate cancer was significantly associated with ALAN (risk ratio = 1.02, p = 0.0369) and urbanization (risk ratio = 1.06, p = 0.0055). In particular, comparing the prostate cancer incidence at 25% and 75% level of ALAN, the risk ratio was 1.726 (12.6 over 7.3, respectively). No significant association was observed between ALAN and other cancers, including stomach, esophageal, liver, pancreatic, laryngeal, lung and tracheal, bladder, and brain and central nervous system cancers, as well as lymphoma and multiple myeloma. In conclusion, this study shows that a high incidence of prostate cancer may be independently associated with light pollution and urbanization, which represent significant factors in the rapid process of industrialization of South Korea.  相似文献   

15.
A 3‐year study (2014–2016) was conducted at Rocky Harbour near the west coast of Newfoundland, Canada, to record the abundance and phenology of adult spruce budworms captured at traps, using a factorial design (light traps and pheromone traps deployed contiguously or segregated spatially). Budworms were most abundant and occurred seasonally earlier in 2014 than in 2015 and 2016; these findings held generally true for males and females. The geographic setting of Newfoundland (large island isolated from the mainland by an oceanic barrier of >100 km across) provides an ideal location to discriminate local flight from long‐range immigrations; in our study, however, immigrations cannot be ruled out for any single day of trapping due to broad overlap in emergence patterns at Rocky Harbour relative to forest stands with known populations of budworms on the mainland. Based on moderate daily variation in adult abundance, however, major immigration events (defined as external deposition of budworms with large numerical amplitude) likely did not take place at Rocky Harbor between 2014 and 2016. Males were more abundant at light traps coupled with pheromone traps, whereas abundance of males at pheromone traps was similar with or without contiguous light traps. This outcome may be mediated by lower range of attraction for light traps (usually <100 m) and (generally assumed to be several hundreds of meters). Females were equally abundant at light traps with or without pheromone traps. As expected, males were captured earlier in the season at pheromone traps than at light traps, and females occurred later in the season due to protandry. The onset of flight observed at light traps or pheromone traps in 2015 and 2016 occurred 10–15 days later than simulated predictions; caution is thus warranted as to conclusions derived on computer modeling of adult emergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号