首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dengue fever is one of the most severe viral diseases transmitted by Aedes mosquitoes, with traditional approaches of disease control proving insufficient to prevent significant disease burden. Release of Wolbachia-transinfected mosquitoes offers a promising alternative control methodologies; Wolbachia-transinfected female Aedes aegypti demonstrate reduced dengue virus transmission, whilst Wolbachia-transinfected males cause zygotic lethality when crossed with uninfected females, providing a method for suppressing mosquito populations. Although highly promising, the delicate nature of population control strategies and differences between local species populations means that controlled releases of Wolbachia-transinfected mosquitoes cannot be performed without extensive testing on specific local Ae. aegypti populations. In order to investigate the potential for using Wolbachia to suppress local Ae. aegypti populations in Taiwan, we performed lab-based and semi-field fitness trials. We first transinfected the Wolbachia strain wAlbB into a local Ae. aegypti population (wAlbB-Tw) and found no significant changes in lifespan, fecundity and fertility when compared to controls. In the laboratory, we found that as the proportion of released male mosquitoes carrying Wolbachia was increased, population suppression could reach up to 100%. Equivalent experiments in semi-field experiments found suppression rates of up to 70%. The release of different ratios of wAlbB-Tw males in the semi-field system provided an estimate of the optimal size of male releases. Our results indicate that wAlbB-Tw has significant potential for use in vector control strategies aimed at Ae. aegypti population suppression in Taiwan. Open field release trials are now necessary to confirm that wAlbB-Tw mediated suppression is feasible in natural environments.  相似文献   

2.
3.
Most insects harbour a variety of maternally inherited endosymbionts, the most widespread being Wolbachia pipientis that commonly induce cytoplasmic incompatibility (CI) and reduced hatching success in crosses between infected males and uninfected females. High temperature and increasing male age are known to reduce the level of CI in a variety of insects. In Drosophila simulans, infected males have been shown to mate at a higher rate than uninfected males. By examining the impact of mating rate independent of age, this study investigates whether a high mating rate confers an advantage to infected males through restoring their compatibility with uninfected females over and above the effect of age. The impact of Wolbachia infection, male mating rate and age on the number of sperm transferred to females during copulation and how it relates to CI expression was also assessed. As predicted, we found that reproductive compatibility was restored faster in males that mate at higher rate than that of low mating and virgin males, and that the effect of mating history was over and above the effect of male age. Nonvirgin infected males transferred fewer sperm than uninfected males during copulation, and mating at a high rate resulted in the transfer of fewer sperm per mating irrespective of infection status. These results indicate that the advantage to infected males of mating at a high rate is through restoration of reproductive compatibility with uninfected females, whereas uninfected males appear to trade off the number of sperm transferred per mating with female encounter rate and success in sperm competition. This study highlights the importance Wolbachia may play in sexual selection by affecting male reproductive strategies.  相似文献   

4.

Background

The bacterial endosymbiont Wolbachia blocks the transmission of dengue virus by its vector mosquito Aedes aegypti, and is currently being evaluated for control of dengue outbreaks. Wolbachia induces cytoplasmic incompatibility (CI) that results in the developmental failure of offspring in the cross between Wolbachia-infected males and uninfected females. This increases the relative success of infected females in the population, thereby enhancing the spread of the beneficial bacterium. However, Wolbachia spread via CI will only be feasible if infected males are sufficiently competitive in obtaining a mate under field conditions. We tested the effect of Wolbachia on the competitiveness of A. aegypti males under semi-field conditions.

Methodology/Principal Findings

In a series of experiments we exposed uninfected females to Wolbachia-infected and uninfected males simultaneously. We scored the competitiveness of infected males according to the proportion of females producing non-viable eggs due to incompatibility. We found that infected males were equally successful to uninfected males in securing a mate within experimental tents and semi-field cages. This was true for males infected by the benign wMel Wolbachia strain, but also for males infected by the virulent wMelPop (popcorn) strain. By manipulating male size we found that larger males had a higher success than smaller underfed males in the semi-field cages, regardless of their infection status.

Conclusions/Significance

The results indicate that Wolbachia infection does not reduce the competitiveness of A. aegypti males. Moreover, the body size effect suggests a potential advantage for lab-reared Wolbachia-males during a field release episode, due to their better nutrition and larger size. This may promote Wolbachia spread via CI in wild mosquito populations and underscores its potential use for disease control.  相似文献   

5.
Wolbachia is the most widespread endosymbiotic bacterium of insects and other arthropods that can rapidly invade host populations. Deliberate releases of Wolbachia into natural populations of the dengue fever mosquito, Aedes aegypti, are used as a novel biocontrol strategy for dengue suppression. Invasion of Wolbachia through the host population relies on factors such as high fidelity of the endosymbiont transmission and limited immigration of uninfected individuals, but these factors can be difficult to measure. One way of acquiring relevant information is to consider mitochondrial DNA (mtDNA) variation alongside Wolbachia in field-caught mosquitoes. Here we used diagnostic mtDNA markers to differentiate infection-associated mtDNA haplotypes from those of the uninfected mosquitoes at release sites. Unique haplotypes associated with Wolbachia were found at locations outside Australia. We also performed mathematical and qualitative analyses including modelling the expected dynamics of the Wolbachia and mtDNA variants during and after a release. Our analyses identified key features in haplotype frequency patterns to infer the presence of imperfect maternal transmission of Wolbachia, presence of immigration and possibly incomplete cytoplasmic incompatibility. We demonstrate that ongoing screening of the mtDNA variants should provide information on maternal leakage and immigration, particularly in releases outside Australia. As we demonstrate in a case study, our models to track the Wolbachia dynamics can be successfully applied to temporal studies in natural populations or Wolbachia release programs, as long as there is co-occurring mtDNA variation that differentiates infected and uninfected populations.  相似文献   

6.
A variety of genetic elements encode traits beneficial to their own transmission. Despite their ‘selfish’ behaviour, most of these elements are often found at relatively low frequencies in host populations. This is the case of intracytoplasmic Wolbachia bacteria hosted by the isopod Armadillidium vulgare that distort the host sex ratio towards females by feminizing the genetic males they infect. Here we tested the hypothesis that sexual selection against Wolbachia‐infected females could maintain a polymorphism of the infection in populations. The infected neo‐females (feminized males) have lower mating rates and received less sperm relative to uninfected females. Males exhibited an active choice: they interacted more with uninfected females and made more mating attempts. A female behavioural difference was also observed in response to male mating attempts: infected neo‐females more often exhibited behaviours that stop the mating sequence. The difference in mating rate was significant only when males could choose between the two female types. This process could maintain a polymorphism of the infection in populations. Genetic females experimentally infected with Wolbachia are not exposed to the same sexual selection pressure, so the infection alone cannot explain these differences.  相似文献   

7.

Background

Lymphatic filariasis (LF) is a globally significant disease, with 1.3 billion persons in 83 countries at risk. A coordinated effort of administering annual macrofilaricidal prophylactics to the entire at-risk population has succeeded in impacting and eliminating LF transmission in multiple regions. However, some areas in the South Pacific are predicted to persist as transmission sites, due in part to the biology of the mosquito vector, which has led to a call for additional tools to augment drug treatments. Autocidal strategies against mosquitoes are resurging in the effort against invasive mosquitoes and vector borne disease, with examples that include field trials of genetically modified mosquitoes and Wolbachia population replacement. However, critical questions must be addressed in anticipation of full field trials, including assessments of field competitiveness of transfected males and the risk of unintended population replacement.

Methodology/Principal Findings

We report the outcome of field experiments testing a strategy that employs Wolbachia as a biopesticide. The strategy is based upon Wolbachia-induced conditional sterility, known as cytoplasmic incompatibility, and the repeated release of incompatible males to suppress a population. A criticism of the Wolbachia biopesticide approach is that unintended female release or horizontal Wolbachia transmission can result in population replacement instead of suppression. We present the outcome of laboratory and field experiments assessing the competitiveness of transfected males and their ability to transmit Wolbachia via horizontal transmission.

Conclusions/Significance

The results demonstrate that Wolbachia-transfected Aedes polynesiensis males are competitive under field conditions during a thirty-week open release period, as indicated by mark, release, recapture and brood-hatch failure among females at the release site. Experiments demonstrate the males to be ‘dead end hosts’ for Wolbachia and that methods were adequate to prevent population replacement at the field site. The findings encourage the continued development and extension of a Wolbachia autocidal approach to additional medically important mosquito species.  相似文献   

8.
Parthenogenesis-inducing (PI) Wolbachia belong to a class of intracellular symbionts that distort the offspring sex ratio of their hosts toward a female bias. In many PI Wolbachia-infected species sex ratio distortion has reached its ultimate expression-fixation of infection and all-female populations. This is only possible with thelytokous PI symbionts as they provide an alternative form of reproduction and remove the requirement for males and sexual reproduction. Many populations fixed for PI Wolbachia infection have lost the ability to reproduce sexually, even when cured of the infection. We examine one such population in the species Trichogramma pretiosum. Through a series of backcrossing experiments with an uninfected Trichogramma pretiosum population we were able to show that the genetic basis for the loss of female sexual function could be explained by a dominant nuclear effect. Male sexual function had not been completely lost, though some deterioration of male sexual function was also evident when males from the infected population (created through antibiotic curing of infected females) were mated to uninfected females. We discuss the dynamics of sex ratio selection in PI Wolbachia-infected populations and the evolution of non-fertilizing mutations.  相似文献   

9.
Parthenogenesis-inducing (PI) Wolbachia bacteria are reproductive parasites that cause infected (W +) female haplodiploid parasitoids to produce daughters without fertilization by males. Theoretically, PI Wolbachia infection should spread to fixation within Trichogramma populations as males are no longer required to produce female offspring. Infections in some naturally occurring Trichogramma populations are, however, maintained at frequencies ranging from 4 to 26%. Here we describe discrete equation models to examine if the PI Wolbachia infection in Trichogramma populations can be maintained at relatively low frequencies by mating regularity. Model outcomes suggest the probability of W + females mating could stabilize Wolbachia infection frequency at low levels in Trichogramma populations. The primary mechanism maintaining low-level PI Wolbachia infection in Trichogramma populations is reducing the survivorship from egg to adult in infected relative to uninfected females. The model successfully demonstrates that the relatively low PI Wolbachia infection frequency in host populations can be maintained by fertilization, or male rescue, of infected eggs, which avoids potentially hazardous gamete duplication that occurs during Wolbachia-induced parthenogenesis.  相似文献   

10.
Wolbachia are maternally inherited endosymbiotic bacteria found within many insect species. Aedes mosquitoes experimentally infected with Wolbachia are being released into the field for Aedes‐borne disease control. These Wolbachia infections induce cytoplasmic incompatibility which is used to suppress populations through incompatible matings or replace populations through the reproductive advantage provided by this mechanism. However, the presence of naturally occurring Wolbachia in target populations could interfere with both population replacement and suppression programs depending on the compatibility patterns between strains. Aedes aegypti were thought to not harbor Wolbachia naturally but several recent studies have detected Wolbachia in natural populations of this mosquito. We therefore review the evidence for natural Wolbachia infections in A. aegypti to date and discuss limitations of these studies. We draw on research from other mosquito species to outline the potential implications of natural Wolbachia infections in A. aegypti for disease control. To validate previous reports, we obtained a laboratory population of A. aegypti from New Mexico, USA, that harbors a natural Wolbachia infection, and we conducted field surveys in Kuala Lumpur, Malaysia, where a natural Wolbachia infection has also been reported. However, we were unable to detect Wolbachia in both the laboratory and field populations. Because the presence of naturally occurring Wolbachia in A. aegypti could have profound implications for Wolbachia‐based disease control programs, it is important to continue to accurately assess the Wolbachia status of target Aedes populations.  相似文献   

11.
12.
Female multiple mating has been extensively studied to understand how nonobvious benefits, generally thought to be of genetic nature, could overcome heavy costs such as an increased risk of infection during mating. However, the impact of infection itself on multiple mating has rarely been addressed. The interaction between the bacterium Wolbachia and its terrestrial crustacean host, Armadillidium vulgare, is a relevant model to investigate this question. In this association, Wolbachia is able to turn genetic males into functional females (i.e. feminization), thereby distorting the sex ratio and decreasing the number of available males at the population scale. Moreover, in A. vulgare, females have been shown to mate multiply under laboratory conditions and males prefer uninfected females over infected ones. Additionally, different Wolbachia strains are known to infect A. vulgare and these strains differ in their transmission rate and virulence. All these elements suggest a potential impact of different Wolbachia strains on multiple mating. To investigate this assumption, we collected gravid females in a wild A. vulgare population harbouring both uninfected females and females infected with one of two different Wolbachia strains (wVulM and wVulC) and performed paternity analyses on the obtained broods using microsatellite markers. We demonstrate that (i) multiple paternity is common in this wild population of A. vulgare, with a mean number of fathers of 4.48 ± 1.24 per brood and (ii) females infected with wVulC produced broods with a lower multiple paternity level compared with females infected with wVulM and uninfected ones. This work improves our knowledge of the impact of infections on reproductive strategies.  相似文献   

13.
Wolbachia pipientis Hertig (Rickettsiales: Rickettsiaceae) is a maternally inherited endosymbiont of a large number of insects and other arthropods that induces various effects on host reproductive biology. Among these, cytoplasmic incompatibility (CI) is a form of sterility induced in eggs produced by mating between infected males and females uninfected or infected by an incompatible Wolbachia strain. This phenomenon has been proposed as a potential way to produce functionally sterile males to be used in genetic control programmes. In this paper, we report on experiments carried out to evaluate the mating performances of males of an Aedes albopictus (Stegomyia albopicta) (Diptera: Culicidae) line (ARwP), harbouring a new Wolbachia infection [the wPip strain from Culex pipiens Linnaeus (Diptera: Culicidae)], in comparison with naturally infected males (SR line). ARwP males did not differ from SR males with regard to insemination capacity. Mating competitiveness did not differ significantly between lines in either laboratory or greenhouse conditions. Moreover, crosses with SR females were characterized by a 100% CI regardless of ARwP male age. All of these findings suggest that ARwP males may represent a very efficient tool for control programmes against Ae. albopictus based on the release of functionally sterile males.  相似文献   

14.
Novel strategies are required to control mosquitoes and the pathogens they transmit. One attractive approach involves maternally inherited endosymbiotic Wolbachia bacteria. After artificial infection with Wolbachia, many mosquitoes become refractory to infection and transmission of diverse pathogens. We evaluated the effects of Wolbachia (wAlbB strain) on infection, dissemination and transmission of West Nile virus (WNV) in the naturally uninfected mosquito Culex tarsalis, which is an important WNV vector in North America. After inoculation into adult female mosquitoes, Wolbachia reached high titers and disseminated widely to numerous tissues including the head, thoracic flight muscles, fat body and ovarian follicles. Contrary to other systems, Wolbachia did not inhibit WNV in this mosquito. Rather, WNV infection rate was significantly higher in Wolbachia-infected mosquitoes compared to controls. Quantitative PCR of selected innate immune genes indicated that REL1 (the activator of the antiviral Toll immune pathway) was down regulated in Wolbachia-infected relative to control mosquitoes. This is the first observation of Wolbachia-induced enhancement of a human pathogen in mosquitoes, suggesting that caution should be applied before releasing Wolbachia-infected insects as part of a vector-borne disease control program.  相似文献   

15.
Arboviral diseases transmitted by Aedes species mosquitoes pose an increasing public health challenge in tropical regions. Wolbachia-mediated population suppression (Wolbachia suppression) is a vector control method used to reduce Aedes mosquito populations by introducing male mosquitoes infected with Wolbachia, a naturally occurring endosymbiotic bacterium. When Wolbachia-infected male mosquitoes mate with female wild mosquitoes, the resulting eggs will not hatch. Public support is vital to the successful implementation and sustainability of vector control interventions. Communities Organized to Prevent Arboviruses (COPA) is a cohort study to determine the incidence of arboviral disease in Ponce, Puerto Rico and evaluate vector control methods. Focus groups were conducted with residents of COPA communities to gather their opinion on vector control methods; during 2018–2019, adult COPA participants were interviewed regarding their views on Wolbachia suppression; and a follow-up questionnaire was conducted among a subset of participants and non-participants residing in COPA communities. We analyzed factors associated with support for this method. Among 1,528 participants in the baseline survey, median age was 37 years and 63% were female. A total of 1,032 (68%) respondents supported Wolbachia suppression. Respondents with an income of $40,000 or more were 1.34 times as likely [95% CI: 1.03, 1.37] to support Wolbachia suppression than those who earned less than $40,000 annually. Respondents who reported repellant use were 1.19 times as likely to support Wolbachia suppression [95% CI: 1.03, 1.37]. A follow-up survey in 2020 showed that most COPA participants (86%) and non-participants living in COPA communities (84%) supported Wolbachia suppression during and after an educational campaign. The most frequent questions regarding this method were related to its impact on human and animal health, and the environment. Continuous community engagement and education efforts before and during the implementation of novel vector control interventions are necessary to increase and maintain community support.  相似文献   

16.
Rasgon JL 《PloS one》2012,7(3):e30381

Background

Wolbachia are maternally inherited endosymbionts that infect a diverse range of invertebrates, including insects, arachnids, crustaceans and filarial nematodes. Wolbachia are responsible for causing diverse reproductive alterations in their invertebrate hosts that maximize their transmission to the next generation. Evolutionary theory suggests that due to maternal inheritance, Wolbachia should evolve toward mutualism in infected females, but strict maternal inheritance means there is no corresponding force to select for Wolbachia strains that are mutualistic in males.

Methodology/Principal findings

Using cohort life-table analysis, we demonstrate that in the mosquito Culex pipiens (LIN strain), Wolbachia-infected females show no fitness costs due to infection. However, Wolbachia induces up to a 30% reduction in male lifespan.

Conclusions/significance

These results indicate that the Wolbachia infection of the Culex pipiens LIN strain is virulent in a sex-specific manner. Under laboratory situations where mosquitoes generally mate at young ages, Wolbachia strains that reduce male survival could evolve by drift because increased mortality in older males is not a significant selective force.  相似文献   

17.
Aedes aegypti L. (Diptera: Culicidae), being the primary vector of pathogenic arboviruses, is a target for the development of novel genetic approaches to complement current conventional vector control strategies such as the combined sterile insect and incompatible insect technique (SIT/IIT). A transinfected line of Ae. aegypti carrying the wAlbB Wolbachia strain (WB2) was introgressed into two genomic backgrounds, Brazil and Mexico, producing two new Ae. aegypti strains (WB2-BRA and WB2-MEX). These strains were evaluated with respect to several life-history traits such as fecundity, fertility, longevity, pupa size, pupation curve, and male mating competitiveness, as well as their response to irradiation. Our results show that the impact of Wolbachia infection depends on the genomic background and that the Brazilian one had no significant effect, whereas the Mexican one negatively affected fertility, longevity, and pupal size. Interestingly, Wolbachia-infected Ae. aegypti lines required a lower irradiation dose to achieve complete female sterility than the uninfected ones. The present findings are discussed given the potential use of Wolbachia-infected Ae. aegypti lines in combined SIT/IIT population suppression programs.  相似文献   

18.
Wolbachia is an endocytoplasmic bacterium responsible for various reproductive modifications in arthropods. In several species, Wolbachia induces a phenomenon called cytoplasmic incompatibility (CI), whereby crosses between a Wolbachia-infected male and a healthy female are incompatible. In haplodiploid species reproducing with arrhenotokous parthenogenesis, CI crosses produce only parthenogenetic males, inducing a male-biased sex ratio in the population. Here, we used two modeling approaches to evaluate the respective influences of demographic and biological parameters on Wolbachia fixation probability and on the sex ratio peak occurring during a Wolbachia invasion, and compared these parameters to values reported in the literature. Results suggest that the impact of Wolbachia invasion on population dynamics remains relatively limited, especially for parasitoids with high rates of sib-mating. The consequences for introduction of the parasitoids for biological control are discussed.  相似文献   

19.
Wolbachia as an endosymbiont is widespread in insects and other arthropods and is best known for reproductive manipulations of the host. Recently, it has been shown that wMelpop and wMel strains of Wolbachia inhibit the replication of several RNA viruses, including dengue virus, and other vector-borne pathogens (e.g., Plasmodium and filarial nematodes) in mosquitoes, providing an alternative approach to limit the transmission of vector-borne pathogens. In this study, we tested the effect of Wolbachia on the replication of West Nile Virus (WNV). Surprisingly, accumulation of the genomic RNA of WNV for all three strains of WNV tested (New York 99, Kunjin, and New South Wales) was enhanced in Wolbachia-infected Aedes aegypti cells (Aag2). However, the amount of secreted virus was significantly reduced in the presence of Wolbachia. Intrathoracic injections showed that replication of WNV in A. aegypti mosquitoes infected with wMel strain of Wolbachia was not inhibited, whereas wMelPop strain of Wolbachia significantly reduced the replication of WNV in mosquitoes. Further, when wMelPop mosquitoes were orally fed with WNV, virus infection, transmission, and dissemination rates were very low in Wolbachia-free mosquitoes and were completely inhibited in the presence of Wolbachia. The results suggest that (i) despite the enhancement of viral genomic RNA replication in the Wolbachia-infected cell line the production of secreted virus was significantly inhibited, (ii) the antiviral effect in intrathoracically infected mosquitoes depends on the strain of Wolbachia, and (iii) replication of the virus in orally fed mosquitoes was completely inhibited in wMelPop strain of Wolbachia.  相似文献   

20.
In many arthropods, intracellular bacteria, such as those of the genus Wolbachia, may spread through host populations as a result of cytoplasmic incompatibility (CI). Here, there is sterility or reduced fertility in crosses between infected males and uninfected females. As the bacterium is maternally inherited, the reduced fertility of uninfected females increases the frequency of the infection. If the transmission fidelity of the bacterium is less than 100%, the bacterium cannot invade from a low frequency, but if its frequency exceeds a threshold, it increases to a high, stable, equilibrium frequency. We explore the expected evolutionary dynamics of mutant alleles that cause their male bearers to avoid mating with uninfected females. For alleles which create this avoidance behaviour conditional upon the male being infected, there is a wide zone of parameter space that allows the preference allele to drive Wolbachia from the population when it would otherwise stably persist. There is also a wide zone of parameter space that allows a joint stable equilibrium for the Wolbachia and a polymorphism for the preference allele. When the male's avoidance of uninfected females is unconditional, the preference allele's effect on Wolbachia frequency is reduced, but there is a narrow range of values for the transmission rate and CI fertility that allow an unconditional preference allele to drive Wolbachia from the population, in a process driven by positive linkage disequilibrium between Wolbachia and the preference allele. The possibility of the evolution of preference could hamper attempts to manipulate wild populations through Wolbachia introductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号