首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
木质素的生物合成及其调控研究进展   总被引:12,自引:1,他引:12  
木质素是植物体中仅次于纤维素的一种重要大分子有机物质,具有重要生物学功能,其3种主要单体的生物合成途径已经基本清楚。从木质素生物合成及基因工程在调控木质素生物合成中的作用等方面的研究进展进行了综述,并提出了存在的问题及对策。  相似文献   

2.
Mistletoe lignin was a typical angiosperm one based on the spectral (UV, IR, 13C-NMR) and functional group analyses, and on degradation products (nitrobenzene oxidation and acidolysis), the analytical results of which were compared with those of the host lignin. l-Phenylalanine-[U-14C] was efficiently incorporated into mistletoe lignin. Phenylalanine ammonia-lyase and cinnamate-4-hydroxylase were detected by incubation of the tissue slices under illumination. It was also found that O-methyltransferase activity of the crude homogenate catalysed the methylation of 5-hydroxyferulic but not the methylation of caffeic acid. However, the latter methylation activity could be recovered by purification. These results indicate that mistletoe lignin is synthesized independently from that of its host.  相似文献   

3.
p-Hydroxycinnamate:CoA ligases were extracted from the xylems of angiosperms and gymnosperms, and the substrate specificities toward ferulate and sinapate were examined. Most of angiosperm and gymnosperm CoA ligases examined were active with ferulate but not with sinapate; however, the enzymes of Erythrina crista-galli, Robinia pseudoacacia and bamboo showed considerable activity with sinapate. The other enzymes, although inactive with sinapate, showed no inhibitory effect on the Erythrina CoA ligase reaction with sinapate. The Kms for sinapate and ferulate of the Erythrina enzyme were 1.0 and 2.1 μM, respectively, and p-hydroxycinnamate was the best substrate among cinnamates examined. The MW of the CoA ligase was 40 000 and the pH optimum was between 7.2 and 7.6. The possible roles of p-hydroxycinnamate:CoA ligase in lignin biosynthesis are discussed.  相似文献   

4.
Increased global interest in a bio‐based economy has reinvigorated the research on the cell wall structure and composition in plants. In particular, the study of plant lignification has become a central focus, with respect to its intractability and negative impact on the utilization of the cell wall biomass for producing biofuels and bio‐based chemicals. Striking progress has been achieved in the last few years both on our fundamental understanding of lignin biosynthesis, deposition and assembly, and on the interplay of lignin synthesis with the plant growth and development. With the knowledge gleaned from basic studies, researchers are now able to invent and develop elegant biotechnological strategies to sophisticatedly manipulate the quantity and structure of lignin and thus to create economically viable bioenergy feedstocks. These concerted efforts open an avenue for the commercial production of cost‐competitive biofuel to meet our energy needs.  相似文献   

5.
6.
7.
Efficiency of lignin biosynthesis: a quantitative analysis   总被引:8,自引:0,他引:8  
Amthor JS 《Annals of botany》2003,91(6):673-695
Lignin is derived mainly from three alcohol monomers: p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. Biochemical reactions probably responsible for synthesizing these three monomers from sucrose, and then polymerizing the monomers into lignin, were analysed to estimate the amount of sucrose required to produce a unit of lignin. Included in the calculations were amounts of respiration required to provide NADPH (from NADP(+)) and ATP (from ADP) for lignin biosynthesis. Two pathways in the middle stage of monomer biosynthesis were considered: one via tyrosine (found in monocots) and the other via phenylalanine (found in all plants). If lignin biosynthesis proceeds with high efficiency via tyrosine, 76.9, 70.4 and 64.3 % of the carbon in sucrose can be retained in the fraction of lignin derived from p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol, respectively. The corresponding carbon retention values for lignin biosynthesis via phenylalanine are less, at 73.2, 65.7 and 60.7 %, respectively. Energy (i.e. heat of combustion) retention during lignin biosynthesis via tyrosine could be as high as 81.6, 74.5 and 67.8 % for lignin derived from p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol, respectively, with the corresponding potential energy retention values for lignin biosynthesis via phenylalanine being less, at 77.7, 69.5 and 63.9 %, respectively. Whether maximum efficiency occurs in situ is unclear, but these values are targets that can be considered in: (1) plant breeding programmes aimed at maximizing carbon or energy retention from photosynthate; (2) analyses of (minimum) metabolic costs of responding to environmental change or pest attack involving increased lignin biosynthesis; (3) understanding costs of lignification in older tissues; and (4) interpreting carbon balance measurements of organs and plants with large lignin concentrations.  相似文献   

8.
Plant laccase (LAC) enzymes belong to the blue copper oxidase family and polymerize monolignols into lignin. Recent studies have established the involvement of microRNAs in this process; however, physiological functions and regulation of plant laccases remain poorly understood. Here, we show that a laccase gene, LAC4, regulated by a microRNA, miR397b, controls both lignin biosynthesis and seed yield in Arabidopsis. In transgenic plants, overexpression of miR397b (OXmiR397b) reduced lignin deposition. The secondary wall thickness of vessels and the fibres was reduced in the OXmiR397b line, and both syringyl and guaiacyl subunits are decreased, leading to weakening of vascular tissues. In contrast, overexpression of miR397b‐resistant laccase mRNA results in an opposite phenotype. Plants overexpressing miR397b develop more than two inflorescence shoots and have an increased silique number and silique length, resulting in higher seed numbers. In addition, enlarged seeds and more seeds are formed in these miR397b overexpression plants. The study suggests that miR397‐mediated development via regulating laccase genes might be a common mechanism in flowering plants and that the modulation of laccase by miR397 may be potential for engineering plant biomass production with less lignin.  相似文献   

9.
Experiments using 14C-phenylalanine have shown that ethylene treatment of swede root tissue promotes the utilization of phenylalanine as a precurso  相似文献   

10.
11.
12.
13.
Laccase, widely distributed in bacteria, fungi, and plants, catalyzes the oxidation of wide range of compounds. With regards to one of the important physiological functions, plant laccases are considered to catalyze lignin biosynthesis while fungal laccases are considered for lignin degradation. The present study was undertaken to explain this dual function of laccases using in-silico molecular docking and dynamics simulation approaches. Modeling and superimposition analyses of one each representative of plant and fungal laccases, namely, Populus trichocarpa and Trametes versicolor, respectively, revealed low level of similarity in the folding of two laccases at 3D levels. Docking analyses revealed significantly higher binding efficiency for lignin model compounds, in proportion to their size, for fungal laccase as compared to that of plant laccase. Residues interacting with the model compounds at the respective enzyme active sites were found to be in conformity with their role in lignin biosynthesis and degradation. Molecular dynamics simulation analyses for the stability of docked complexes of plant and fungal laccases with lignin model compounds revealed that tetrameric lignin model compound remains attached to the active site of fungal laccase throughout the simulation period, while it protrudes outwards from the active site of plant laccase. Stability of these complexes was further analyzed on the basis of binding energy which revealed significantly higher stability of fungal laccase with tetrameric compound than that of plant. The overall data suggested a situation favorable for the degradation of lignin polymer by fungal laccase while its synthesis by plant laccase.  相似文献   

14.
15.
Lignocellulosic feedstocks can be converted to biofuels, which can conceivably replace a large fraction of fossil fuels currently used for transformation. However, lignin, a prominent constituent of secondary cell walls, is an impediment to the conversion of cell walls to fuel: the recalcitrance problem. Biomass pretreatment for removing lignin is the most expensive step in the production of lignocellulosic biofuels. Even though we have learned a great deal about the biosynthesis of lignin, we do not fully understand its role in plant biology, which is needed for the rational design of engineered cell walls for lignocellulosic feedstocks. This review will recapitulate our knowledge of lignin biosynthesis and discuss how lignin has been modified and the consequences for the host plant.  相似文献   

16.
17.
在农田生态系统中,施肥是维持和提高土壤有机碳(SOC)水平的重要管理措施。微生物代谢和植物组分存留共同控制着有机碳的截获过程。本研究利用肥料与肥力长期(30年)定位试验,以氨基糖和木质素分别作为微生物和植物残留组分标识物,探讨长期不同施肥处理对黑土农田中微生物和植物残体组分积累及有机碳库的影响。结果表明: 与未施肥处理相比,施用无机肥(单施氮肥或有机无机肥配施)可增加作物生物量和土壤氨基糖的积累,但对木质素和SOC含量无显著影响,说明无机肥施入刺激了微生物底物同化,加速了有机碳和木质素在耕层的周转。与无机肥相比,长期施用有机肥促进了SOC的累积(增幅38.3%),但是氨基糖在土壤有机碳中所占的比例并未发生显著变化,说明微生物残留物对SOC积累的贡献具有饱和性;而有机肥施入增加了木质素在SOC中的比例,即增加了植物残体对SOC长期积累的贡献。与单施有机肥相比,有机无机肥配施增加了微生物残留物对SOC的积累。因此,长期施肥可以调节微生物残留物和植物残留组分的不同积累过程,从而影响SOC的积累和稳定机制。  相似文献   

18.
In monocots, lignin content has a strong impact on the digestibility of the cell wall fraction. Engineering lignin biosynthesis requires a profound knowledge of the role of paralogues in the multigene families that constitute the monolignol biosynthesis pathway. We applied a bioinformatics approach for genome‐wide identification of candidate genes in Lolium perenne that are likely to be involved in the biosynthesis of monolignols. More specifically, we performed functional subtyping of phylogenetic clades in four multigene families: 4CL, COMT, CAD and CCR. Essential residues were considered for functional clade delineation within these families. This classification was complemented with previously published experimental evidence on gene expression, gene function and enzymatic activity in closely related crops and model species. This allowed us to assign functions to novel identified L. perenne genes, and to assess functional redundancy among paralogues. We found that two 4CL paralogues, two COMT paralogues, three CCR paralogues and one CAD gene are prime targets for genetic studies to engineer developmentally regulated lignin in this species. Based on the delineation of sequence conservation between paralogues and a first analysis of allelic diversity, we discuss possibilities to further study the roles of these paralogues in lignin biosynthesis, including expression analysis, reverse genetics and forward genetics, such as association mapping. We propose criteria to prioritise paralogues within multigene families and certain SNPs within these genes for developing genotyping assays or increasing power in association mapping studies. Although L. perenne was the target of the analyses presented here, this functional subtyping of phylogenetic clades represents a valuable tool for studies investigating monolignol biosynthesis genes in other monocot species.  相似文献   

19.
Summary There are now several examples showing that hybrid secondary metabolites can be produced as a result of interspecies cloning of antibiotic biosynthesis genes in streptomycetes. This paper reviews examples of hybrid secondary metabolite production, and examines the underlying biochemical and regulatory principles leading to the formation of hybrid anthraquinones by recombinant anthracycline-producing streptomycetes carrying actinorhodin biosynthesis genes. An anthraquinone, aloesaponarin II, was produced by cloning theactI, actIII, actIV, andactVII genes (pANT12) of actinorhodin biosynthesis pathway fromStreptomyces coelicolor in anthracycline producing streptomycetes.Streptomyces galilaeus strains 31 133 and 31 671, aclacinomycin and 2-hydroxyaklavinone producers, respectively, formed aloesaponarin II as their major polyketide product when transformed with pANT12. Subcloning experiments indicated that a 2.8-kbXhoI fragment containing only theactI andactVII loci was necessary for aloesaponarin II biosynthesis byS. galilaeus 31 133. WhenS. galilaeus 31 671 was transformed with theactI, actVII, andactIV genes, however, the recombinant strain produced two novel anthraquinones, desoxyerythrolaccin and 1-0-methyldesoxyerythrolaccin. WhenS. galilaeus 31671 was transformed with only the intactactIII gene (pANT45), aklavinone was formed exclusively. These experiments indicate a function for theactIII gene, which is the reduction of the keto group at C-9 from the carboxyl terminus of the assembled polyketide to the corresponding secondary alcohol. The effects of three regulatory loci,dauG, dnrR1, andasaA, on the production of natural and hybrid polyketides were also shown.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号