首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The post-translational modifications of histones, including histone methylation and demethylation, control the expression switch of multiple genes. SET domain-containing lysine methyltransferase 7 (SET7) is the only methyltransferase, which can specifically monomethylate lysine-4 of histone H3 (H3K4me1) and play critical roles in various diseases, including breast cancer, hepatitis C virus (HCV), atherosclerotic vascular disease, diabetes, prostate cancer, hepatocellular carcinoma, and obesity. However, several known SET7 inhibitors exhibit weak activity or poor selectivity. Therefore, the development of novel SET7 inhibitors is highly desirable and of great clinical value. In this study, we identified 279 as a new hit compound by structure-based virtual screening and further AlphaLISA-based biochemical evaluation. Via chemical optimization, the synthesized compound DC21 was confirmed as a potent SET7 inhibitor with an IC50 value of 15.93 μM. The interaction between DC21 and SET7 was also validated through SPR experiment. Especially, DC21 retarded proliferation of MCF7 cells with an IC50 value of 25.84 μM in cellular level. In addition, DC21 has good selectivity for several other epigenetic targets, such as SUV39H1, G9a, NSD1, DOT1L and MOF. DC21 can serve as a lead compound to develop more potential SET7 inhibitors and as a chemical probe for SET7 biological function studies.  相似文献   

2.
A new series of sulfonate derivatives 1azk were synthesized and evaluated as inhibitors of nucleotide pyrophosphatases. Most of the compounds exhibited good to moderate inhibition towards NPP1, NPP2, and NPP3 isozymes. Compound 1m was a potent and selective inhibitor of NPP1 with an IC50 value of 0.387 ± 0.007 µM. However, the most potent inhibitor of NPP3 was found as 1x with an IC50 value of 0.214 ± 0.012 µM. In addition, compound 1e was the most active inhibitor of NPP2 with an IC50 value of 0.659 ± 0.007 µM. Docking studies of the most potent compounds were carried out, and the computational results supported the in vitro results.  相似文献   

3.
Recently, diverse kinase inhibitors were reported having interaction with BRD4. It provided a strategy for developing a new structural framework for the next-generation BRD4-selective inhibitors. Starting from PLK1 kinase inhibitor BI-2536, we designed 18 compounds by modifying dihydropteridine core. Compound 23 showed potent BRD4 inhibitory activities with IC50 of 79 nM and no inhibitory activities for PLK1. Cell antiproliferation assay was performed and potent inhibitory activity against MV4;11 with IC50 of 1.53 μM. Cell apoptosis and western blotting indicated compound 23 induced apoptosis by down-regulating c-Myc. These novel selective BRD4 inhibitors provided new lead compounds for further drug development.  相似文献   

4.
Cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphoshatase (Cy-FBP/SBPase) is an important target enzyme for finding inhibitors to solve harmful algal bloom (HAB). In this study, as potential inhibitors of Cy-FBP/SBPase, a series of novel chromone-connecting benzohydrazone compounds (Novel N′-((4-oxo-4H-chromen-3-yl)methylene)benzohydrazide) were designed and synthesized. Their inhibitory activities against Cy-FBP/SBPase were further examined in vitro. Some of these compounds, such as f6f8, f11, f12 and f16, exhibit higher inhibitory activities (IC50 = 11.2–16.1 μM), especially, the compound f7 was identified as the most potent inhibitor with IC50 value of 11.2 μM. The probable binding-mode of compound f7 was further analyzed carefully by molecular docking methods. These results indicate that compound f7 could be used as a lead compound for further optimization and might have potential to be developed as a new algicide.  相似文献   

5.
Antibiotic resistance in bacteria has been an emerging public health problem, thus discovery of novel and effective antibiotics is urgent. A series of novel hybrids of N-aryl pyrrothine-base α-pyrone hybrids was designed, synthesized and evaluated as bacterial RNA polymerase (RNAP) inhibitors. Among them, compound 13c exhibited potent antibacterial activity against antibiotic-resistant S. aureus with the minimum inhibitory concentration (MIC) in the range of 1–4 μg/mL. Moreover, compound 13c exhibited strong inhibitory activity against E.coli RNAP with IC50 value of 16.06 μM, and cytotoxicity in HepG2 cells with IC50 value of 7.04 μM. The molecular docking study further suggested that compound 13c binds to the switch region of bacterial RNAP. In summary, compound 13c is a novel bacterial RNAP inhibitor, and a promising lead compound for further optimization.  相似文献   

6.
The discovery, synthesis and preliminary structure-activity relationship (SAR) of a novel class of inhibitors of Clostridium difficile (C. difficile) toxin B (TcdB) is described. A high throughput screening (HTS) campaign resulted in the identification of moderately active screening hits 15 the most potent of which was compound 1 (IC50?=?0.77?µM). In silico docking of an early analog offered suggestions for structural modification which resulted in the design and synthesis of highly potent analogs 13j(IC50?=?1?nM) and 13?l(IC50?=?7?nM) which were chosen as leads for further optimization.  相似文献   

7.
Several novel indirubin-based N-hydroxybenzamides, N-hydropropenamides and N-hydroxyheptanamides (4a-h, 7a-h, 10a-h) were designed using a fragment-based approach with structural features extracted from several previously reported HDAC inhibitors, such as SAHA (vorinostat), MGCD0103 (mocetinostat), nexturastat A and PXD-101 (belinostat). The biological results reveal that our compounds showed excellent cytotoxicity toward three common human cancer cell lines (SW620, PC-3 and NCI-H23) with IC50 values ranging from 0.09 to 0.007 µM. The cytotoxicity of the compounds was equipotent or even up to 10-times more potent than adriamycin and up to 205-times more potent than SAHA. Among the series of N-hydroxypropenamides, compounds 10a-d were the most potent HDAC inhibitors as well as cytotoxicity toward the cell lines tested. In addition, the strong inhibitory activites toward HDAC of our compounds were observed with IC50 values of below-micromolar range. Especially, compound 4a inhibited HDAC6 with an IC50 value of 29-fold lower than that against HDAC2 isoform. Representative compounds 4a and 7a were found to significantly arrest SW620 cells at G0/G1 phase. Compounds 7a and 10a were found to strongly induce apoptosis in SW620 cells. Docking studies revealed some important features affecting the selectivity against HDAC6 isoform. The results clearly demonstrate the potential of the indirubin-hydroxamic acid hybrids and these compounds should be very promising for further development.  相似文献   

8.
BRD9 is the subunit of mammalian SWI/SNF chromatin remodeling complex (BAF). SWI/SNF complex mutations were found in nearly 20% of human cancers. The biological role played by BRD9 bromodomain remains poorly understood, and it is therefore imperative to identify potent and highly selective inhibitors to effectively explore the biology of individual bromodomain proteins. In this paper, we synthesized a series of imidazo[1,5-a]pyrazin-8(7H)-one derivatives as potent BRD9 inhibitors and evaluated their BRD9 inhibitory activity in vitro and anti-proliferation effects against tumor cells. Gratifyingly, compound 27 and 29 exhibited robust potency of BRD9 inhibition with IC50 values of 35 and 103?nM respectively. Docking studies were performed to explain the structure-activity relationship. Furthermore, compound 27 potently inhibited cell proliferation in cell lines A549 and EOL-1 with an IC50 value of 6.12?μM and 1.76?μM respectively. The chemical probe, compound 27, was identified that should prove to be useful in further exploring BRD9 bromodomain biology in both in vitro and in vivo settings.  相似文献   

9.
Steroid sulfatase (STS) has recently emerged as a drug target for management of hormone-dependent malignancies. In the present study, a new series of twenty-one aryl amido-linked sulfamate derivatives 1a-u was designed and synthesized, based upon a cyclohexyl lead compound. All members were evaluated as STS inhibitors in a cell-free assay. Adamantyl derivatives 1h and 1p-r were the most active with more than 90% inhibition at 10 µM concentration and, for those with the greatest inhibitory activity, IC50 values were determined. These compounds exhibited STS inhibition within the range of ca 25–110 nM. Amongst them, compound 1q possessing a o-chlorobenzene sulfamate moiety exhibited the most potent STS inhibitory activity with an IC50 of 26 nM. Furthermore, to assure capability to pass through the cell lipid bilayer, compounds with low IC50 values were tested against STS activity in JEG-3 whole-cell assays. Consequently, 1h and 1q demonstrated IC50 values of ca 14 and 150 nM, respectively. Thus, compound 1h is 31 times more potent than the corresponding cyclohexyl lead (IC50 value = 421 nM in a JEG-3 whole-cell assay). Furthermore, the most potent STS inhibitors (1h and 1p-r) were evaluated for their antiproliferative activity against the estrogen-dependent breast cancer cell line T-47D. They showed promising activity with single digit micromolar IC50 values (ca 1–6 µM) and their potency against T-47D cells was comparable to that against STS enzyme. In conclusion, this new class of adamantyl-containing aryl sulfamate inhibitor has potential for further development against hormone-dependent tumours.  相似文献   

10.
EGFR has a key role in cell growth. Its mutation and overexpression share in epithelial malignancies and tumor growth. Quinazoline and quinoline derivatives are common anticancer intracellular inhibitors of EGFR kinase, and their optimization is an important issue for development of potent targeted anticancer agents. Based on these facts, different strategies were used for optimizing our reported quinoline-3-carboxamide compound III (EGFR IC50 = 5.283 µM and MCF-7 IC50 = 3.46 µM) through different molecular modeling techniques. The optimized compounds were synthesized and subjected to EGFR binding assay and accordingly some more potent inhibitors were obtained. The most potent quinoline-3-carboxamides were the furan derivative 5o; thiophene derivative 6b; and benzyloxy derivative 10 showing EGFR IC50 values 2.61, 0.49 and 1.73 μM, respectively. Furthermore, the anticancer activity of compounds eliciting potent EGFR inhibition (5o, 5p, 6b, 8a, 8b, and 10) was evaluated against MCF-7 cell line where they exhibited IC50 values 3.355, 3.647, 5.069, 3.617, 0.839 and 10.85 μM, respectively. Compound 6b was selected as lead structure for further optimization hoping to produce more potent EGFR inhibitors.  相似文献   

11.
Twenty three fused carbazole–imidazoles 6a–w were designed, synthesized, and screened as new α-glucosidase inhibitors. All the synthesized fused carbazole-imidazoles 6a-w were found to be more active than acarbose (IC50?=?750.0?±?1.5?µM) against yeast α-glucosidase with IC50 values in the range of 74.0?±?0.7–298.3?±?0.9?µM. Kinetic study of the most potent compound 6v demonstrated that this compound is a competitive inhibitor for α-glucosidase (Ki value?=?75?µM). Furthermore, the in silico studies of the most potent compounds 6v and 6o confirmed that these compounds interacted with the key residues in the active site of α-glucosidase.  相似文献   

12.
Novel purine-pyrazole hybrids combining thiazoles, thiazolidinones and rhodanines, were designed and tested as 15-LOX inhibitors, potential anticancer and antioxidant agents. All tested compounds were found to be potent 15-LOX inhibitors with IC50 ranging from 1.76 to 6.12 µM. The prepared compounds were evaluated in vitro against five cancer cell lines: A549 (lung), Caco-2 (colon), PC3 (prostate), MCF-7 (breast) and HepG-2 (liver). Compounds 7b and 8b displayed broad spectrum anticancer activity against the five tested cell lines (IC50 = 18.5–95.39 µM). While, compound 7h demonstrated moderate anticancer activity against lung A549 and colon Caco-2 cell lines. Antioxidant screening revealed that six compounds (5a, 5b, 6b, 7b, 7h and 8b) with IC50 ranging from 0.93 to 14.43 µg/ml were found to be more potent scavengers of 2,2- diphenyl-1-picrylhydrazyl (DPPH) than the reference ascorbic acid with IC50 value of 15.34 µg/ml. Compounds 7b, 7h and 8b, when evaluated for their antioxidant activity, where found to be potent DPPH scavengers. Moreover, compound 7b displayed twice the potency of ascorbic acid as NO scavenger. Docking study was performed to elucidate the possible binding mode of the most active compounds with the active site of 15-LOX enzyme. Collectively, the purine-pyrazole hybrids having thiazoline or thizolidinone moieties (7b, 7h and 8b) constitute a promising scaffold in designing more potent 15-LOX inhibitors with anticancer and antioxidant potential.  相似文献   

13.
Indoleamine 2,3-dioxygenase plays a crucial role in immune tolerance and has emerged as an attractive target for cancer immunotherapy. In this study, the Passerini and Ugi multicomponent reactions have been employed to assemble a small library of imidazothiazoles that target IDO1. While the p-bromophenyl and the imidazothiazole moieties have been kept fixed, a full SAR study has been performed on the side-chain, leading to the discovery of nine compounds with sub-micromolar IC50 values in the enzyme-based assay. Compound 7d, displaying a α-acyloxyamide substructure, is the most potent compound, with an IC50 value of 0.20?µM, but a low activity in a cell-based assay. Compound 6o, containing a α-acylaminoamide moiety, shows an IC50 value of 0.81?µM in the IDO1-based assay, a full biocompatibility at 10?µM, together with a modest inhibitory activity in A375 cells. Molecular docking studies show that both 7d and 6o display a unique binding mode in the IDO1 active site, with the side-chain protruding in an additional pocket C, where a crucial hydrogen bond is formed with Lys238. Overall, this work describes an isocyanide based-multicomponent approach as a straightforward and versatile tool to rapidly access IDO1 inhibitors, providing a new direction for their future design and development.  相似文献   

14.
A series of rhodanine derivatives RB1–RB23 were synthesized through a two-round screening. Their Mycobacterial tuberculosis (Mtb) InhA inhibitory activity and Mtb growth blocking capability were evaluated. The most potent hit compound RB23 indicated comparable InhA inhibiton (IC50?=?2.55?μM) with the positive control Triclosan (IC50?=?6.14?μM) and Isoniazid (IC50?=?8.29?μM). Its improved growth-blocking effect on Mtb and low toxicity were attractive for further development. The docking simulation revealed the possible binding pattern of this series and picked the key interacted residues as Ser20, Phe149, Lys165 and Thr196. The 3D-QSAR model visualized the SAR discussion and hinted new information. Modifying the surroundings near rhodanine moiety might be promising attempts in later investigations.  相似文献   

15.
Both histone deacetylase (HDAC) and fibroblast growth factor receptor (FGFR) are important targets for cancer therapy. Although combining dual HDAC pharmacophore with tyrosine kinase inhibitors (TKIs) had achieved a successful progress, dual HDAC/FGFR1 inhibitors haven’t been reported yet. Herein, we designed a series of hybrids bearing 1H-indazol-3-amine and benzohydroxamic acids scaffold with scaffold hopping and molecular hybridization strategies. Among them, compound 7j showed the most potent inhibitory activity against HDAC6 with IC50 of 34?nM and exhibited the great inhibitory activities against a human breast cancer cell line MCF-7 with IC50 of 9?μM in vitro. Meanwhile, the compound also exhibited moderate FGFR1 inhibitory activities. This study provides new tool compounds for further exploration of dual HDAC/FGFR1 inhibition.  相似文献   

16.
Multitarget inhibitors design has generated great interest in cancer treatment. Based on the synergistic effects of topoisomerase and histone deacetylase inhibitors, we designed and synthesized a new series of acridine hydroxamic acid derivatives as potential novel dual Topo and HDAC inhibitors. MTT assays indicated that all the hybrid compounds displayed good antiproliferative activities with IC50 values in low micromolar range, among which compound 8c displayed potent activity against U937 (IC50?=?0.90?μM). In addition, compound 8c also displayed the best HDAC inhibitory activity, which was several times more potent than HDAC inhibitor SAHA. Subsequent studies indicated that all the compounds displayed Topo II inhibition activity at 50?μM. Moreover, compound 8c could interact with DNA and induce U937 apoptosis. This study provides a suite of compounds for further exploration of dual Topo and HDAC inhibitors, and compound 8c can be a new dual Topo and HDAC inhibitory anticancer agent.  相似文献   

17.
A series of novel aryl-2H-pyrazole derivatives bearing 1,4-benzodioxan or 1,3-benzodioxole moiety were designed as potential telomerase inhibitors to enhance the ability of aryl-2H-pyrazole derivatives to inhibit telomerase, a target of anticancer. The telomerase inhibition tests showed that compound 16A displayed the most potent inhibitory activity with IC50 value of 0.9 μM for telomerase. The antiproliferative tests showed that compound 16A exhibited high activity against human gastric cancer cell SGC-7901 and human melanoma cell B16-F10 with IC50 values of 18.07 and 5.34 μM, respectively. Docking simulation showed that compound 16A could bind well with the telomerase active site and act as telomerase inhibitor. 3D-QSAR model was also built to provide more pharmacophore understanding that could be used to design new agents with more potent telomerase inhibitory activity.  相似文献   

18.
Selective inhibition of cyclooxygenase (COX)-2 enzyme is an important achievement when looking for potent anti-inflammatory agents, with fewer gastrointestinal side effects. In this work, a new series of cinnamic acid derivatives, namely hexylamides, have been designed, synthesized and evaluated in human blood for their inhibitory activity of COX-1 and COX-2 enzymes. From this, new structure-activity relationships were built, showing that phenolic hydroxyl groups are essential for both COX-1 and COX-2 inhibition. Furthermore, the presence of bulky hydrophobic di-tert-butyl groups in the phenyl ring strongly contributes for selective COX-2 inhibition. In addition, a correlation with the theoretical log P has been carried out, showing that lipophilicity is particularly important for COX-2 inhibition. Further, a plasma protein binding (PPB) prediction has been performed revealing that PPB seems to have no influence in the activity of the studied compounds. From the whole study, effective selective inhibitors of COX-2 were found, namely compound 9 (IC50 = 3.0 ± 0.3 μM), 10 (IC50 = 2.4 ± 0.6 μM) and 23 (IC50 = 1.09 ± 0.09 μM). Those can be considered starting point hit compounds for further optimization as potential non-steroidal anti-inflammatory drugs.  相似文献   

19.
Janus kinases (JAKs) regulate various inflammatory and immune responses and are targets for the treatment of inflammatory and immune diseases. Here we report the discovery and optimization of 1H-pyrazolo[3,4-d]pyrimidin-4-amino as covalent JAK3 inhibitors that exploit a unique cysteine (Cys909) residue in JAK3. Our optimization study gave compound 12a, which exhibited potent JAK3 inhibitory activity (IC50 of 6.2?nM) as well as excellent JAK kinase selectivity (>60-fold). In cellular assay, 12a exhibited potent immunomodulating effect on IL-2-stimulated T cell proliferation (IC50 of 9.4?μM). Further, compound 12a showed efficacy in delayed hypersensitivity assay. The data supports the further investigation of these compounds as novel JAKs inhibitors.  相似文献   

20.
We describe in this Letter a new synthetic method for pyrrolin-2-ones as potent plasminogen activator inhibitor-1 (PAI-1) inhibitors. Pyrrolin-2-one derivatives synthesized from N-2-oxoethylamides and aldehydes in aqueous NaOH by one-pot were evaluated for their PAI-1 inhibitory activity. Among these derivatives, compounds 16 and 18 were found to possess potent PAI-1 inhibitory activity (compound 16: IC50: 0.69 μM, compound 18: IC50: 0.65 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号