首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the 21st century, the incidence and mortality of cancer, one of the most challenging diseases in the world, have rapidly increased. The purpose of this study was to develop 2-(2-[18F]fluoroethoxy)ethyl 4-methylbenzenesulfonate ([18F]FEM) as a positron emission tomography (PET) agent for tumor imaging. In this study, [18F]FEM was synthesized with a good radiochemical yield (45.4 ± 5.8%), high specific radioactivity (over 25 GBq/μmol), and commendable radiochemical purity (over 99%). The octanol/water partition coefficient of [18F]FEM was 1.44 ± 0.04. The probe demonstrated good stability in vitro (phosphate-buffered saline (PBS) and mouse serum (MS)), and binding specificity to five different tumor cell lines (A549, PC-3, HCC827, U87, and MDA-MB-231). PET imaging of tumor-bearing mice showed that [18F]FEM specifically accumulated at the tumor site of the five different tumor cell lines. The average tumor-to-muscle (T/M) ratio was over 2, and the maximum T/M values reached about 3.5. The biodistribution and dynamic PET imaging showed that most probes were metabolized by the liver, whereas a small part was metabolized by the kidney. Moreover, dynamic brain images and quantitative data showed [18F]FEM can quickly cross the blood brain barrier (BBB) and quickly fade out, thereby suggesting it may be a promising candidate probe for the imaging of brain tumors. The presented results demonstrated that [18F]FEM is a promising probe for tumor PET imaging.  相似文献   

2.
The noninvasive imaging of cell death, including apoptosis and necrosis, is an important tool for the assessment of degenerative diseases and in the monitoring of tumor treatments. Duramycin is a peptide of 19-amino acids. It binds specifically to phosphatidylethanolamine a novel molecular target for cell death. N-(2-18F-Fluoropropionyl)duramycin ([18F]FPDuramycin) was prepared as a novel positron emission tomography (PET) tracer from the reaction of duramycin with 4-nitrophenyl 2-[18F]fluoropropionate ([18F]NFP). Compared with control cells (viable tumor cells), the in vitro binding of [18F]FPDuramycin with apoptotic cells induced by anti-Fas antibody resulted in a doubling increase, while the binding of [18F]FPDuramycin with necrotic cells induced by three freeze and thaw cycles resulted in a threefold increase. Biodistribution study in mice exhibited its rapid blood and renal clearance and predominant accumulation in liver and spleen over 120 min postinjection. Small-animal PET/CT imaging with [18F]FPDuramycin proved to be a successful way to visualize in vivo therapeutic-induced tumor cell death. In summary, [18F]FPDuramycin seems to be a potential PET probe candidate for noninvasive visualization of in vivo cell death sites induced by chemotherapy in tumors.  相似文献   

3.
N-[18F]fluoroacetylcrizotinib, a fluorine-18 labeled derivative of the first FDA approved tyrosine kinase inhibitor (TKI) for the treatment of Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC), crizotinib, was successfully synthesized for use in positron emission tomography (PET). Sequential in vitro biological evaluation of fluoracetylcrizotinib and in vivo biodistribution studies of [18F]fluoroacetylcrizotinib demonstrated that the biological activity of the parent compound remained unchanged, with potent ALK kinase inhibition and effective tumor growth inhibition. These results show that [18F]fluoroacetylcrizotinib has the potential to be a promising PET ligand for use in NSCLC imaging. The utility of PET in this context provides a non-invasive, quantifiable method to inform on the pharmacokinetics of an ALK-inhibitor such as crizotinib prior to a clinical trial, as well as during a trial in the event of acquired drug resistance.  相似文献   

4.
Amino acid transport is an attractive target for oncologic imaging. Despite a high demand of cancer cells for cationic amino acids, their potential as PET probes remains unexplored. Arginine, in particular, is involved in a number of biosynthetic pathways that significantly influence carcinogenesis and tumor biology. Cationic amino acids are transported by several cationic transport systems including, ATB0,+ (SLC6A14), which is upregulated in certain human cancers including cervical, colorectal and estrogen receptor-positive breast cancer. In this work, we report the synthesis and preliminary biological evaluation of a new cationic analog of the clinically used PET tumor imaging agent O-(2-[18F]fluroethyl)-l-tyrosine ([18F]FET), namely O-2((2-[18F]fluoroethyl)methylamino)ethyltyrosine ([18F]FEMAET). Reference compound and precursor were prepared by multi-step approaches. Radiosynthesis was achieved by no-carrier-added nucleophilic [18F]fluorination in 16–20 % decay-corrected yields with radiochemical purity >99 %. The new tracer showed good stability in vitro and in vivo. Cell uptake assays demonstrated that FEMAET and [18F]FEMAET accumulate in prostate cancer (PC-3) and small cell lung cancer cells (NCI-H69), with an energy-dependent mechanism. Small animal PET imaging with NCI-H69 xenograft-bearing mice revealed good tumor visualization comparable to [18F]FET and low brain uptake, indicating negligible transport across the blood–brain barrier. In conclusion, the non-natural cationic amino acid PET probe [18F]FEMAET accumulates in cancer cells in vitro and in vivo with possible involvement of ATB0,+.  相似文献   

5.

Background

Inhibition of the epidermal growth factor receptor (EGFR) has shown clinical success in patients with advanced non-small cell lung cancer (NSCLC). Somatic mutations of EGFR were found in lung adenocarcinoma that lead to exquisite dependency on EGFR signaling; thus patients with EGFR-mutant tumors are at high chance of response to EGFR inhibitors. However, imaging approaches affording early identification of tumor response in EGFR-dependent carcinomas have so far been lacking.

Methodology/Principal Findings

We performed a systematic comparison of 3′-Deoxy-3′-[18F]-fluoro-L-thymidine ([18F]FLT) and 2-[18F]-fluoro-2-deoxy-D-glucose ([18F]FDG) positron emission tomography (PET) for their potential to identify response to EGFR inhibitors in a model of EGFR-dependent lung cancer early after treatment initiation. While erlotinib-sensitive tumors exhibited a striking and reproducible decrease in [18F]FLT uptake after only two days of treatment, [18F]FDG PET based imaging revealed no consistent reduction in tumor glucose uptake. In sensitive tumors, a decrease in [18F]FLT PET but not [18F]FDG PET uptake correlated with cell cycle arrest and induction of apoptosis. The reduction in [18F]FLT PET signal at day 2 translated into dramatic tumor shrinkage four days later. Furthermore, the specificity of our results is confirmed by the complete lack of [18F]FLT PET response of tumors expressing the T790M erlotinib resistance mutation of EGFR.

Conclusions

[18F]FLT PET enables robust identification of erlotinib response in EGFR-dependent tumors at a very early stage. [18F]FLT PET imaging may represent an appropriate method for early prediction of response to EGFR TKI treatment in patients with NSCLC.  相似文献   

6.
The feasibility of 2-deoxy-2-[18F]fluoro-D-galactose ([18F]FdGal) for imaging galactose metabolism in tumors with positron emission tomography (PET), was investigated using two hepatomas, Yoshida sarcoma, or glioma in rats, and mouse mammary carcinoma. In hepatoma-bearing rats the highest uptake of [18F]FdGal was observed in the liver followed by the kidney and tumor. The tumor uptake increased with time, and the high uptake ratios of tumor to organ were observed except for the liver and kidney. Tumor uptake was also measured in all tumors. As main metabolites in all tumors, [18F]FdGal 1-phosphate and UDP-[18F]FdGal were found by HPLC. Two hepatomas showed a slightly higher uptake and a larger percentage of UDP derivative than the other three tumors. By autoradiography the brain tumor was visualized clearly. These results indicate that [18F]FdGal has potential as a tracer for imaging galactose metabolism in tumors with PET.  相似文献   

7.

Objectives

Intra-individual spatial overlap analysis of tumor volumes assessed by MRI, the amino acid PET tracer [18F]-FET and the nucleoside PET tracer [18F]-FLT in high-grade gliomas (HGG).

Methods

MRI, [18F]-FET and [18F]-FLT PET data sets were retrospectively analyzed in 23 HGG patients. Morphologic tumor volumes on MRI (post-contrast T1 (cT1) and T2 images) were calculated using a semi-automatic image segmentation method. Metabolic tumor volumes for [18F]-FET and [18F]-FLT PETs were determined by image segmentation using a threshold-based volume of interest analysis. After co-registration with MRI the morphologic and metabolic tumor volumes were compared on an intra-individual basis in order to estimate spatial overlaps using the Spearman''s rank correlation coefficient and the Mann-Whitney U test.

Results

[18F]-FLT uptake was negative in tumors with no or only moderate contrast enhancement on MRI, detecting only 21 of 23 (91%) HGG. In addition, [18F]-FLT uptake was mainly restricted to cT1 tumor areas on MRI and [18F]-FLT volumes strongly correlated with cT1 volumes (r = 0.841, p<0.001). In contrast, [18F]-FET PET detected 22 of 23 (96%) HGG. [18F]-FET uptake beyond areas of cT1 was found in 61% of cases and [18F]-FET volumes showed only a moderate correlation with cT1 volumes (r = 0.573, p<0.001). Metabolic tumor volumes beyond cT1 tumor areas were significantly larger for [18F]-FET compared to [18F]-FLT tracer uptake (8.3 vs. 2.7 cm3, p<0.001).

Conclusion

In HGG [18F]-FET but not [18F]-FLT PET was able to detect metabolic active tumor tissue beyond contrast enhancing tumor on MRI. In contrast to [18F]-FET, blood-brain barrier breakdown seems to be a prerequisite for [18F]-FLT tracer uptake.  相似文献   

8.
Given the ever-present demand for improved PET radiotracer in oncology imaging, we have synthesized 2-(3,4-dimethoxyphenyl)-6-(2-[18F]fluoroethoxy)benzothiazole ([18F]FEDBT), a fluorine-18-containing fluoroethylated benzothiazole to explore its utility as a PET imaging tracer. [18F]FEDBT was prepared via kryptofix-mediated nucleophilic substitution of the tosyl group precursor. Fractionated ethanol-based solid-phase (SPE cartridge-based) purification afforded [18F]FEDBT in 60% radiochemical yield (EOB), with radiochemical purity in excess of 98% and the specific activity was 35 GBq/μmol. The radiotracer displayed clearly higher cellular uptake ratio in various breast cancer cell lines MCF7, MDA-MB-468 and MDA-MB-231. However, both biodistribution and microPET studies have showed an higher abdominal accumulation of [18F]FEDMBT and the tumor/muscle ratio of 1.8 was observed in the MDA-MB-231 xenograft tumors mice model. Further the lipophilic improvement is needed for the reducement of hepatobilliary accumulation and to promote the tumor uptake for PET imaging of breast cancer.  相似文献   

9.

Background and Objective

The overexpression of gelatinases, that is, matrix metalloproteinase MMP2 and MMP9, has been associated with tumor progression, invasion, and metastasis. To image MMP2 in tumors, we developed a novel ligand termed [18F]AlF-NOTA-C6, with consideration that: c(KAHWGFTLD)NH2 (herein, C6) is a selective gelatinase inhibitor; Cy5.5-C6 has been visualized in many in vivo tumor models; positron emission tomography (PET) has a higher detection sensitivity and a wider field of view than optical imaging; fluorine-18 (18F) is the optimal PET radioisotope, and the creation of a [18F]AlF-peptide complex is a simple procedure.

Methods

C6 was conjugated to the bifunctional chelator NOTA (1, 4, 7-triazacyclononanetriacetic acid) for radiolabeling [18F]AlF conjugation. The MMP2-binding characteristics and tumor-targeting efficacy of [18F]AlF-NOTA-C6 were tested in vitro and in vivo.

Results

The non-decay corrected yield of [18F]AlF-NOTA-C6 was 46.2–64.2%, and the radiochemical purity exceeded 95%. [18F]AlF-NOTA-C6 was favorably retained in SKOV3 and PC3 cells, determined by cell uptake. Using NOTA-C6 as a competitive ligand, the uptake of [18F]AlF-NOTA-C6 in SKOV3 cells decreased in a dose-dependent manner. In biodistribution and PET imaging studies, higher radioactivity concentrations were observed in tumors. Pre-injection of C6 caused a marked reduction in tumor tissue uptake. Immunohistochemistry showed MMP2 in tumor tissues.

Conclusions

[18F]AlF-NOTA-C6 was easy to synthesize and has substantial potential as an imaging agent that targets MMP2 in tumors.  相似文献   

10.
The potential of 4-borono-2-[18F]fluoro-d,l-phenylalanine ([18F]FBPA), a fluorinated derivative of a target compound for boron neutron capture therapy, for melanoma imaging by positron emission tomography (PET) was studied using animal models. A high uptake of [18F]FBPA was found in murine B16 melanoma or in Greene's melanoma No. 179, a melanotic cell line in hamsters, for the first 6 h after injection. Whole body autoradiography using [18F]FBPA gave a clear image of the B16 tumor. The acid-insoluble 18F in the B16 increased to 27% by 6h, and most of the free 18F was detected as [18F]FBPA in both B16 and plasma. In the hamster models, No. 179 showed a 1.7 times higher uptake than amelanotic Greene's melanoma No. 178 at 6 h post-injection, although both melanomas indicated similar metabolic activities when examined by a tracer uptake study using l-[14C]methionine, 2-deoxy-d-[14C]glucose and [3H]thymidine. [18F]FBPA may be a very promising PET tracer for melanoma imaging.  相似文献   

11.
A new [18F] labeled amino acid anti-1-amino-2-[18F]fluoro-cyclobutyl-1-carboxylic acid 9 (anti-2-[18F]FACBC) was synthesized in 30% decay-corrected yield with high radiochemical purity over 99%. The cyclic sulfamidate precursor was very stable and highly reactive towards nucleophilic radiofluorination. Cell uptake assays with rat 9L gliosarcoma cells showed that [18F]9 was transported into tumor cells via multiple amino acid transport systems, including L and A systems. Biodistribution study in rats with intracranial 9L gliosarcoma tumors demonstrated that [18F]9 had a rapid and prolonged accumulation in tumors with 26:1 tumor to brain ratio at 120 min post-injection. In this model, [18F]9 is a potential PET tracer for brain tumor imaging.  相似文献   

12.
This article reported the synthesis and bioevaluation of two [18F] labeled benzimidazole derivatives, 4-(5-(2-[18F] fluoro-4-nitrobenzamido)-1-methyl-1H-benzimidazol-2-yl) butanoic acid ([18F] FNBMBBA, [18F]a1) and 3-(2-fluoroethyl)-7-methyl-2-propyl-3H-benzimidazole-5-carboxylic acid ([18F] FEMPBBA, [18F]b1) for PET tumor imaging. The preparation [18F] FEMPBBA was completed in 1 h with overall radiochemical yield of 50–60% (without decay corrected). Biodistribution assay in S180 tumor bearing mice of both compounds were carried out, and the results are both meaningful. [18F] FEMPBBA which can be taken as a revision of [18F] FNBMBBA got an excellent result, and has significant advantages in some aspects compared with L-[18F] FET and [18F]-FDG in the same animal model, especially in tumor/brain uptake ratio. The tumor/brain uptake ratio of [18F] FEMPBBA gets to 4.81, 7.15, and 9.8 at 30 min, 60 min and 120 min, and is much higher than that of L-[18F] FET (2.54, 2.92 and 2.95) and [18F]-FDG (0.61, 1.02, 1.33) at the same time point. The tumor/muscle and tumor/blood uptake ratio of [18F] FEMPBBA is also higher than that of L-[18F] FET at 30 min and 60 min. This result indicates compound [18F] FEMPBBA is a promising radiotracer for PET tumor imaging.  相似文献   

13.

Background

Non-invasive imaging biomarkers of cellular proliferation hold great promise for quantifying response to personalized medicine in oncology. An emerging approach to assess tumor proliferation utilizes the positron emission tomography (PET) tracer 3’-deoxy-3’[18F]-fluorothymidine, [18F]-FLT. Though several studies have associated serial changes in [18F]-FLT-PET with elements of therapeutic response, the degree to which [18F]-FLT-PET quantitatively reflects proliferative index has been continuously debated for more that a decade. The goal of this study was to elucidate quantitative relationships between [18F]-FLT-PET and cellular metrics of proliferation in treatment naïve human cell line xenografts commonly employed in cancer research.

Methods and Findings

[18F]-FLT-PET was conducted in human cancer xenograft-bearing mice. Quantitative relationships between PET, thymidine kinase 1 (TK1) protein levels and immunostaining for proliferation markers (Ki67, TK1, PCNA) were evaluated using imaging-matched tumor specimens. Overall, we determined that [18F]-FLT-PET reflects TK1 protein levels, yet the cell cycle specificity of TK1 expression and the extent to which tumors utilize thymidine salvage for DNA synthesis decouple [18F]-FLT-PET data from standard estimates of proliferative index.

Conclusions

Our findings illustrate that [18F]-FLT-PET reflects tumor proliferation as a function of thymidine salvage pathway utilization. Unlike more general proliferation markers, such as Ki67, [18F]-FLT PET reflects proliferative indices to variable and potentially unreliable extents. [18F]-FLT-PET cannot discriminate moderately proliferative, thymidine salvage-driven tumors from those of high proliferative index that rely primarily upon de novo thymidine synthesis. Accordingly, the magnitude of [18F]-FLT uptake should not be considered a surrogate of proliferative index. These data rationalize the diversity of [18F]-FLT-PET correlative results previously reported and suggest future best-practices when [18F]-FLT-PET is employed in oncology.  相似文献   

14.
Current positron emission tomography (PET) imaging biomarkers for detection of infiltrating gliomas are limited. Translocator protein (TSPO) is a novel and promising biomarker for glioma PET imaging. To validate TSPO as a potential target for molecular imaging of glioma, TSPO expression was assayed in a tumor microarray containing 37 high-grade (III, IV) gliomas. TSPO staining was detected in all tumor specimens. Subsequently, PET imaging was performed with an aryloxyanilide-based TSPO ligand, [18F]PBR06, in primary orthotopic xenograft models of WHO grade III and IV gliomas. Selective uptake of [18F]PBR06 in engrafted tumor was measured. Furthermore, PET imaging with [18F]PBR06 demonstrated infiltrative glioma growth that was undetectable by traditional magnetic resonance imaging (MRI). Preliminary PET with [18F]PBR06 demonstrated a preferential tumor-to-normal background ratio in comparison to 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). These results suggest that TSPO PET imaging with such high-affinity radiotracers may represent a novel strategy to characterize distinct molecular features of glioma growth, as well as better define the extent of glioma infiltration for therapeutic purposes.  相似文献   

15.

Background

Early diagnosis of pancreatic carcinoma with highly sensitive diagnostic imaging methods could save lives of many thousands of patients, because early detection increases resectability and survival rates. Current non-invasive diagnostic imaging techniques have inadequate resolution and sensitivity for detection of small size (∼2–3 mm) early pancreatic carcinoma lesions. Therefore, we have assessed the efficacy of positron emission tomography and computer tomography (PET/CT) imaging with β-O-D-galactopyranosyl-(1,4′)-2′-deoxy-2′-[18F]fluoroethyl-D-glucopyranose ([18F]FEDL) for detection of less than 3 mm orthotopic xenografts of L3.6pl pancreatic carcinomas in mice. [18F]FEDL is a novel radioligand of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP), which is overexpressed in peritumoral pancreatic acinar cells.

Methodology/Principal Findings

Dynamic PET/CT imaging demonstrated rapid accumulation of [18F]FEDL in peritumoral pancreatic tissue (4.04±2.06%ID/g), bi-exponential blood clearance with half-lives of 1.65±0.50 min and 14.14±3.60 min, and rapid elimination from other organs and tissues, predominantly by renal clearance. Using model-independent graphical analysis of dynamic PET data, the average distribution volume ratio (DVR) for [18F]FEDL in peritumoral pancreatic tissue was estimated as 3.57±0.60 and 0.94±0.72 in sham-operated control pancreas. Comparative analysis of quantitative autoradiographic images and densitometry of immunohistochemically stained and co-registered adjacent tissue sections demonstrated a strong linear correlation between the magnitude of [18F]FEDL binding and HIP/PAP expression in corresponding regions (r = 0.88). The in situ analysis demonstrated that at least a 2–4 fold apparent lesion size amplification was achieved for submillimeter tumors and to nearly half a murine pancreas for tumors larger than 3 mm.

Conclusion/Significance

We have demonstrated the feasibility of detection of early pancreatic tumors by non-invasive imaging with [18F]FEDL PET/CT of tumor biomarker HIP/PAP over-expressed in peritumoral pancreatic tissue. Non-invasive non-invasive detection of early pancreatic carcinomas with [18F]FEDL PET/CT imaging should aid the guidance of biopsies and additional imaging procedures, facilitate the resectability and improve the overall prognosis.  相似文献   

16.
We studied the tumor uptake and metabolism of 4-borono-2-[18F]fluoro-d,l-phenylalanine ([18F]FBPA), an 18F-labeled target compound for boron neutron capture therapy. In mice bearing FM3A mammary carcinoma, the accumulation of [18F]FBPA in the FM3A for the first 2 h, and its decrease in all other tissues, resulted in high FM3A-to-tissue uptake ratios. In the FM3A, the tracer was stable for metabolic alteration, which was in contrast to the gradual increase of protein-bound radioactivity in plasma. Imaging of FM3A was demonstrated by whole body autoradiography. [18F]FBPA has potential for use as a PET tracer for tumor imaging with high contrast, even in the pancreas.  相似文献   

17.

Background

The precise definition of the post-operative resection status in high-grade gliomas (HGG) is crucial for further management. We aimed to assess the feasibility of assessment of the resection status with early post-operative positron emission tomography (PET) using [18F]O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET).

Methods

25 patients with the suspicion of primary HGG were enrolled. All patients underwent pre-operative [18F]FET-PET and magnetic resonance imaging (MRI). Intra-operatively, resection status was assessed using 5-aminolevulinic acid (5-ALA). Imaging was repeated within 72h after neurosurgery. Post-operative [18F]FET-PET was compared with MRI, intra-operative assessment and clinical follow-up.

Results

[18F]FET-PET, MRI and intra-operative assessment consistently revealed complete resection in 12/25 (48%) patients and incomplete resection in 6/25 cases (24%). In 7 patients, PET revealed discordant findings. One patient was re-resected. 3/7 experienced tumor recurrence, 3/7 died shortly after brain surgery.

Conclusion

Early assessment of the resection status in HGG with [18F]FET-PET seems to be feasible.  相似文献   

18.
The asialoglycoprotein receptor (ASGPR) is abundantly expressed on the surface of hepatocytes where it recognizes and endocytoses glycoproteins with galactosyl and N-acetylgalactosamine groups. Given its hepatic distribution, the asialoglycoprotein receptor can be targeted by positron imaging agents to study liver function using PET imaging. In this study, the positron imaging agent [18F]FPGal was designed to specifically target hepatic asialoglycoprotein receptor and its effectiveness was assessed in in vitro and in vivo models. The radiosynthesis of [18F]FPGal required 50 min with total radiochemical yields of [18F]FPGal from [18F]fluoride as 10% (corrected radiochemical yield). The Kd of [18F]FPGal to ASGPR in HepG2 cells was 1.99 ± 0.05 mM. Uptake values of 0.55% were observed within 30 min of incubation with HepG2 cells, which could be blocked by 200 mM d(+)-galactose (<0.1%). In vivo biodistribution analysis showed that the liver accumulation of [18F]FPGal at 30 min was 4.47 ± 0.96% ID/g in normal mice compared to 1.33 ± 0.07% ID/g in hepatic fibrotic mice (P < 0.01). Reduced uptake in the hepatic fibrosis mouse models was confirmed through PET/CT images at 30 min. Compared to normal mice, the standard uptake value (SUV) in the hepatic fibrosis mice was significantly lower when assessed through dynamic data collection for 1 h. Therefore, [18F]FPGal is a feasible PET probe that provide insight into ASGPR related liver disease.  相似文献   

19.
Preclinical xenograft models have contributed to advancing our understanding of the molecular basis of prostate cancer and to the development of targeted therapy. However, traditional preclinical in vivo techniques using caliper measurements and survival analysis evaluate the macroscopic tumor behavior, whereas tissue sampling disrupts the microenvironment and cannot be used for longitudinal studies in the same animal. Herein, we present an in vivo study of [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) designed to evaluate the metabolism within the microenvironment of LAPC4-CR, a unique murine model of castration-resistant prostate cancer. Mice bearing LAPC4-CR subcutaneous tumors were administered [18F]-FDG via intravenous injection. After a 60-minute distribution phase, the mice were imaged on a PET/CT scanner with submillimeter resolution; and the fused PET/CT images were analyzed to evaluate tumor size, location, and metabolism across the cohort of mice. The xenograft tumors showed [18F]-FDG uptake that was independent of tumor size and was significantly greater than uptake in skeletal muscle and liver in mice (Wilcoxon signed-rank P values of .0002 and .0002, respectively). [18F]-FDG metabolism of the LAPC4-CR tumors was 2.1 ± 0.8 ID/cm3*wt, with tumor to muscle ratio of 7.4 ± 4.7 and tumor to liver background ratio of 6.7 ± 2.3. Noninvasive molecular imaging techniques such as PET/CT can be used to probe the microenvironment of tumors in vivo. This study showed that [18F]-FDG-PET/CT could be used to image and assess glucose metabolism of LAPC4-CR xenografts in vivo. Further work can investigate the use of PET/CT to quantify the metabolic response of LAPC4-CR to novel agents and combination therapies using soft tissue and possibly bone compartment xenograft models.  相似文献   

20.
BackgroundThe aim of the study was to compare the TNM classification with 2-[18F]FDG PE T biological parameters of primary tumor in patients with NSCLC.Materials and methodsRetrospective analysis was performed on a group of 79 newly diagnosed NSCLC patients. PET scans were acquired on Gemini TF PET/CT scanner 60–70 min after injection of 2-[18F]FDG with the mean activity of 364 ± 75 MBq, with the area being examined from the vertex to mid-thigh. The reconstructed PET images were evaluated using MIM 7.0 Software for SUVmax, MTV and TLG values.ResultsThe analysis of the cancer stage according to TNM 8th edition showed stage IA2 in 8 patients, stage IA3 — 6 patients, stage IB — 4 patients, IIA — 3 patients, 15 patients with stage IIB, stage IIIA — 17 patients, IIIB — 5, IIIC — 5, IVA in 7 patients and stage IVB in 9 patients. The lowest TLG values of primary tumor were observed in stage IA2 (11.31 ± 15.27) and the highest in stage IIIC (1003.20 ± 953.59). The lowest value of primary tumor in SUVmax and MTV were found in stage IA2 (6.8 ± 3.8 and 1.37 ± 0.42, respectively), while the highest SUVmax of primary tumor was found in stage IIA (13.4 ± 11.4) and MTV in stage IIIC (108.15 ± 127.24).ConclusionTNM stages are characterized by different primary tumor 2-[18F]FDG PET parameters, which might complement patient outcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号