首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Microbacterium nematophilum causes a deleterious infection of the C. elegans hindgut initiated by adhesion to rectal and anal cuticle. C. elegans bus-2 mutants, which are resistant to M. nematophilum and also to the formation of surface biofilms by Yersinia sp., carry genetic lesions in a putative glycosyltransferase containing conserved domains of core-1 β1,3-galactosyltransferases. bus-2 is predicted to act in the synthesis of core-1 type O-glycans. This observation implies that the infection requires the presence of host core-1 O-glycoconjugates and is therefore carbohydrate-dependent. Chemical analysis reported here reveals that bus-2 is indeed deficient in core-1 O-glycans. These mutants also exhibit a new subclass of O-glycans whose structures were determined by high performance tandem mass spectrometry; these are highly fucosylated and have a novel core that contains internally linked GlcA. Lectin studies showed that core-1 glycans and this novel class of O-glycans are both expressed in the tissue that is infected in the wild type worms. In worms having the bus-2 genetic background, core-1 glycans are decreased, whereas the novel fucosyl O-glycans are increased in abundance in this region. Expression analysis using a red fluorescent protein marker showed that bus-2 is expressed in the posterior gut, cuticle seam cells, and spermatheca, the first two of which are likely to be involved in secreting the carbohydrate-rich surface coat of the cuticle. Therefore, in the bus-2 background of reduced core-1 O-glycans, the novel fucosyl glycans likely replace or mask remaining core-1 ligands, leading to the resistance phenotype. There are more than 35 Microbacterium species, some of which are pathogenic in man. This study is the first to analyze the biochemistry of adhesion to a host tissue by a Microbacterium species.  相似文献   

3.
During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates) is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy) could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile.  相似文献   

4.
5.
Penicillium marneffei, one of the most important thermal dimorphic fungi, is a severe threat to the life of immunocompromised patients. However, the pathogenic mechanisms of P. marneffei remain largely unknown. In this work, we developed a model host by using nematode Caenorhabditis elegans to investigate the virulence of P. marneffei. Using two P. marneffei clinical isolate strains 570 and 486, we revealed that in both liquid and solid media, the ingestion of live P. marneffei was lethal to C. elegans (P<0.001). Meanwhile, our results showed that the strain 570, which can produce red pigment, had stronger pathogenicity in C. elegans than the strain 486, which can’t produce red pigment (P<0.001). Microscopy showed the formation of red pigment and hyphae within C. elegans after incubation with P. marneffei for 4 h, which are supposed to be two contributors in nematodes killing. In addition, we used C. elegans as an in vivo model to evaluate different antifungal agents against P. marneffei, and found that antifungal agents including amphotericin B, terbinafine, fluconazole, itraconazole and voriconazole successfully prolonged the survival of nematodesinfected by P. marneffei. Overall, this alternative model host can provide us an easy tool to study the virulence of P. marneffei and screen antifungal agents.  相似文献   

6.
The prevalence of human and animal helminth infections remains staggeringly high, thus urging the need for concerted efforts towards this area of research. GABA receptors, encoded by the unc-49 gene, mediate body muscle inhibition in Caenorhabditis elegans and parasitic nematodes and are targets of anthelmintic drugs. Thus, the characterization of nematode GABA receptors provides a foundation for rational anti-parasitic drug design. We therefore explored UNC-49 channels from C. elegans muscle cultured cells of the first larval stage at the electrophysiological and behavioral levels. Whole-cell recordings reveal that GABA, muscimol and the anthelmintic piperazine elicit macroscopic currents from UNC-49 receptors that decay in their sustained presence, indicating full desensitization. Single-channel recordings show that all drugs elicit openings of ∼2.5 pA (+100 mV), which appear either as brief isolated events or in short bursts. The comparison of the lowest concentration required for detectable channel opening, the frequency of openings and the amplitude of macroscopic currents suggest that piperazine is the least efficacious of the three drugs. Macroscopic and single-channel GABA-activated currents are profoundly and apparently irreversibly inhibited by ivermectin. To gain further insight into ivermectin action at C. elegans muscle, we analyzed its effect on single-channel activity of the levamisol-sensitive nicotinic receptor (L-AChR), the excitatory receptor involved in neuromuscular transmission. Ivermectin produces a profound inhibition of the frequency of channel opening without significant changes in channel properties. By revealing that ivermectin inhibits C. elegans muscle GABA and L-AChR receptors, our study adds two receptors to the already known ivermectin targets, thus contributing to the elucidation of its pleiotropic effects. Behavioral assays in worms show that ivermectin potentiates piperazine-induced paralysis, thus suggesting that their combination is a good strategy to overcome the increasing resistance of parasites, an issue of global concern for human and animal health.  相似文献   

7.
Adhesion of conidia of the endoparasitic fungus Drechmeria coniospora to the cuticles of the wild type and four different head defective mutants of Caenorhabditis elegans, and subsequent infection, was studied. The conidia adhered around the sensory structures in the head region, vulva, and occasionally to other parts of the cuticle in both mutant and wild type hosts. Infection took place after adhesion to the head region by penetration through the cuticle, and, following adhesion around the vulva, through the natural orifice. Infection was not observed after adhesion to other parts of the cuticle. Adhesion was reduced after treatment of the nematodes with Pronase E. Adhesion returned towards normal again within 2 hours, indicating that the proteinaceous material emanating from the sensory structures was rapidly replaced.  相似文献   

8.
Caenorhabditis elegans Senses Bacterial Autoinducers   总被引:2,自引:0,他引:2       下载免费PDF全文
Pseudomonas aeruginosa uses virulence factors controlled by quorum sensing (QS) to kill Caenorhabditis elegans. Here we show that C. elegans is attracted to the acylated homoserine lactones (AHSLs) that mediate QS in P. aeruginosa. Our data also indicate that C. elegans can distinguish AHSLs and may use them to mediate aversive or attractive learning.  相似文献   

9.
Upon presentation of two distinct chemoattractants such as sodium acetate and diacetyl simultaneously, the nematode Caenorhabditis elegans was preferentially attracted by one of these chemoattractants. We isolated two mutants having altered preference of chemotaxis behavior toward simultaneous presentation of sodium acetate and diacetyl. The chep-1(qr1) (CHEmosensory Preference) mutant preferred sodium acetate to diacetyl, while the chep-2(qr2) mutant preferred diacetyl to sodium acetate in simultaneous presentation of these chemoattractants. The chemotaxis behavior of chep-2(qr2) mutant in simultaneous presentation suggests a function of chep-2 gene products within the chemosensory informational integration pathway as well as in the chemosensory pathway.  相似文献   

10.
During programmed cell death, apoptotic cells are recognized and rapidly engulfed by phagocytes. Although a number of genes have been identified that promote cell corpse engulfment, it is not well understood how phagocytosis of apoptotic cells is negatively regulated. Here we have identified Caenorhabditis elegans myotubularin MTM-1 as a negative regulator of cell corpse engulfment. Myotubularins (MTMs) constitute a large, highly conserved family of lipid phosphatases. MTM gene mutations are associated with various human diseases, but the cellular functions of MTM proteins are not clearly defined. We found that inactivation of MTM-1 caused significant reduction in cell corpses in strong loss-of-function mutants of ced-1, ced-6, ced-7, and ced-2, but not in animals deficient in the ced-5, ced-12, or ced-10 genes. In contrast, overexpression of MTM-1 resulted in accumulation of cell corpses. This effect is dependent on the lipid phosphatase activity of MTM-1. We show that loss of mtm-1 function accelerates the clearance of cell corpses by promoting their internalization. Importantly, the reduction of cell corpses caused by mtm-1 RNAi not only requires the activities of CED-5, CED-12, and CED-10, but also needs the functions of the phosphatidylinositol 3-kinases (PI3Ks) VPS-34 and PIKI-1. We found that MTM-1 localizes to the plasma membrane in several known engulfing cell types and may modulate the level of phosphatidylinositol 3-phosphate (PtdIns(3)P) in vivo. We propose that MTM-1 negatively regulates cell corpse engulfment through the CED-5/CED-12/CED-10 module by dephosphorylating PtdIns(3)P on the plasma membrane.  相似文献   

11.
Mitochondrial alterations have been documented for many years in the brains of Parkinson’s disease (PD), a disorder that is characterized by the selective loss of dopamine neurons. Recent studies have demonstrated that Parkinson’s disease-associated proteins are either present in mitochondria or translocated into mitochondria in response to stress, further reinforcing the importance of the mitochondrial function in the pathogenesis of Parkinson’s disease. Exposure to environmental chemicals such as pesticides and heavy metals has been suggested as risk factors in the development of Parkinson’s disease. It has been reported that a number of environmental agents including tobacco smoke and perfluorinated compounds, pesticides, as well as metals (Mn2+ and Pb2+) modulate mitochondrial function. However the exact mechanism of mitochondrial alteration has not been defined in the context of the development and progression of Parkinson’s disease. The complexity of the mammalian system has made it difficult to dissect the molecular components involved in the pathogenesis of Parkinson’s disease. In the present study we used the nematode Caenorhabditis elegans (C. elegans) model of neuron degeneration and investigated the effect of environmental chemicals on mitochondrial biogenesis and mitochondrial gene regulation. Chronic exposure to low concentration (2 or 4 μM) of pesticide rotenone, resulted in significant loss of dopamine neuron in C. elegans, a classic feature of Parkinson’s disease. We then determined if the rotenone-induced neuron degeneration is accompanied by a change in mitochondria biogenesis. Analysis of mitochondrial genomic replication by quantitative PCR showed a dramatic decrease in mitochondrial DNA (mtDNA) copies of rotenone-treated C. elegans compared to control. This decreased mitochondrial biogenesis occurred prior to the development of loss of dopamine neurons, and was persistent. The inhibition of mtDNA replication was also found in C. elegans exposed to another neuron toxicant Mn2+ at the concentration 50 or 100 mM. We further examined the mitochondrial gene expression and found significant lower level of mitochondrial complex IV subunits COI and COII in C. elegans exposed to rotenone. These results demonstrate that environmental chemicals cause persistent suppression of mitochondrial biogenesis and mitochondrial gene expression, and suggest a critical role of modifying mitochondrial biogenesis in toxicants-induced neuron degeneration in C. elegans model.  相似文献   

12.
Primary cilia play a role in the sensation of and response to the surrounding environment. Caenorhabditis elegans (C. elegans) have primary cilia only on the distal tips of some dendrites. In order to better understand the relationship between receptor localization to cilia, cilia structure and cilia function, we have characterized a mutation originally identified in a forward genetic screen for mutants with defective PKD-2 ciliary localization. Through behavioral assays and examination of the structure of cilia in the cil-5 (my13) mutant animals, we have found that my13 disrupts not only receptor localization, but also some cilia-mediated sensory behaviors and cilia structural integrity. We have identified the my13 lesion and found that it is a missense mutation in bbs-7, an ortholog of human BBS-7, a gene known to affect human cilia and to be involved in Bardet-Biedl syndrome. Finally, we show that bbs-7(my13) also affects the glia cells which support the cilia.  相似文献   

13.
Mutants of Caenorhabditis elegans that form dauer-like larvae   总被引:7,自引:0,他引:7  
The development, ultrastructure, and genetics of two mutants that form dauer-like larvae have been characterized. Dauer larva morphogenesis is initiated regardless of environmental stimuli, and it is incomplete or abnormal. The resistance to detergent characteristic of normal dauer larvae is not fully achieved, and the mutants are unable to exit from the dauer-like state of developmental arrest. Mutant life span is not extended beyond the three weeks characteristic of the nondauer life cycle, whereas normal dauer larvae can live for several months. Growth of daf-15(m81)IV, the less dauer-like of the two, is nearly arrested at the second (dauer-specific) molt, but feeding is not completely suppressed. Head shape, cuticle, and intestinal ultrastructure are nondauer, whereas sensory structures (amphid and deirid) and excretory gland morphology are intermediate between that of dauer and nondauer stages. The daf-9(e1406)X mutant is dauer-like in head shape, cuticle, and deirid ultrastructure, intermediate in amphid and inner labial neuron morphology, and nondauer or abnormal in the intestine. Also, the daf-9 mutant exhibits abnormalities in the pharyngeal arcade cell processes and pharyngeal g1 gland. Double mutants carrying both daf-9 and daf-15 are more resistant to detergent than either single mutant. Like the single mutants, they cannot complete morphogenesis, and they are unable to exit from the dauer-like stage. Both daf-9 and daf-15 mutations are epistatic to previously described dauer-defective mutations, indicating that these two genes act late in the pathway leading to the dauer larva. The genetic tests and the mutant ultrastructure suggest that the two genes may affect parallel pathways of morphogenesis.  相似文献   

14.
15.
A collection of Caenorhabditis elegans mutants that show ectopic surface lectin binding (Srf mutants) was analyzed to determine the biochemical basis for this phenotype. This analysis involved selective removal or labeling of surface components, specific labeling of surface glycans, and fractionation of total protein with subsequent detection of wheat germ agglutinin (WGA) binding proteins. Wild-type and mutant nematodes showed no differences in their profiles of extractable surface glycoproteins or total WGA-binding proteins, suggesting that the ectopic lectin binding does not result from the novel expression of surface glycans. Instead, these results support a model in which ectopic lectin binding results from an unmasking of glycosylated components present in the insoluble cuticle matrix of wild-type animals. To explain the multiple internal defects found in some surface mutants, we propose that these mutants have a basic defect in protein processing. This defect would interfere with the expression of the postulated masking protein(s), as well as other proteins required for normal development.  相似文献   

16.
The Caenorhabditis elegans unc-45 locus has been proposed to encode a protein machine for myosin assembly. The UNC-45 protein is predicted to contain an NH2-terminal domain with three tetratricopeptide repeat motifs, a unique central region, and a COOH-terminal domain homologous to CRO1 and She4p. CRO1 and She4p are fungal proteins required for the segregation of other molecules in budding, endocytosis, and septation. Three mutations that lead to temperature-sensitive (ts) alleles have been localized to conserved residues within the CRO1/She4p-like domain, and two lethal alleles were found to result from stop codon mutations in the central region that would prevent translation of the COOH-terminal domain. Electron microscopy shows that thick filament accumulation in vivo is decreased by ∼50% in the CB286 ts mutant grown at the restrictive temperature. The thick filaments that assemble have abnormal structure. Immunofluorescence and immunoelectron microscopy show that myosins A and B are scrambled, in contrast to their assembly into distinct regions at the permissive temperature and in wild type. This abnormal structure correlates with the high degree of instability of the filaments in vitro as reflected by their extremely low yields and shortened lengths upon isolation. These results implicate the UNC-45 CRO1/She4p-like region in the assembly of myosin isoforms in C. elegans and suggest a possible common mechanism for the function of this UCS (UNC-45/CRO1/She4p) protein family.  相似文献   

17.
C. elegans is proving useful for the study of cell determination in early embryos. Breeding experiments with embryonic lethal mutants show that abnormal embryogenesis often results from defective gene function in the maternal parent, suggesting that much of the information for normal embryonic development is laid down during oogenesis. Analysis of a gut-specific differentiation marker in cleavage-arrested embryos has provided evidence that the potential for this differentiation behaves as a cell-autonomous internally segregating developmental determinant, which is present from the 2-cell stage onward and is partitioned into the gut precursor cell during early cleavage divisions. Visible prelocalized cytoplasmic granules that segregate with a particular cell lineage have heen observed in the embryonic germline precursor cells by fluorescent antibody staining. Whether these granules play a role in germline determina... [remainder of abstract missing in original]  相似文献   

18.
The Gram-negative bacterium Shigella flexneri is the causative agent of shigellosis, a diarrhoeal disease also known as bacillary dysentery. S. flexneri infects the colonic and rectal epithelia of its primate host and induces a cascade of inflammatory responses that culminates in the destruction of the host intestinal lining. Molecular characterization of host-pathogen interactions in this infection has been challenging due to the host specificity of S. flexneri strains, as it strictly infects humans and non-human primates. Recent studies have shown that S. flexneri infects the soil dwelling nematode Caenorhabditis elegans, however, the interactions between S. flexneri and C. elegans at the cellular level and the cause of nematode death are unknown. Here we attempt to gain insight into the complex host-pathogen interactions between S. flexneri and C. elegans. Using transmission electron microscopy, we show that live S. flexneri cells accumulate in the nematode intestinal lumen, produce outer membrane vesicles and invade nematode intestinal cells. Using two-dimensional differential in-gel electrophoresis we identified host proteins that are differentially expressed in response to S. flexneri infection. Four of the identified genes, aco-1, cct-2, daf-19 and hsp-60, were knocked down using RNAi and ACO-1, CCT-2 and DAF-19, which were identified as up-regulated in response to S. flexneri infection, were found to be involved in the infection process. aco-1 RNAi worms were more resistant to S. flexneri infection, suggesting S. flexneri-mediated disruption of host iron homeostasis. cct-2 and daf-19 RNAi worms were more susceptible to infection, suggesting that these genes are induced as a protective mechanism by C. elegans. These observations further our understanding of the processes involved in S. flexneri infection of C. elegans, which is immensely beneficial to the routine use of this new in vivo model to study S. flexneri pathogenesis.  相似文献   

19.
Ecdysteroids (insect molting hormones) from Caenorhabditis elegans were chromatographically purified and quantified by radioimmunoassay. Nematodes from semidefined medium contained the immunoreactive equivalent of 460 pg ecdysone per gram dry weight. Culture medium, however, contained the immunoreactive equivalent of 68 times the quantity within the nematodes. In a defined medium lacking immunoreactivity, C. elegans contained 520 pg ecdysone equivalents per gram dry weight but reproduced slowly. Reproduction of C. elegans in defined medium was enhanced by formulation in agar. Propagation of C. elegans in either agar-based or aqueous defined medium supplemented with [¹⁴C]cholesterol of high specific activity failed to result in production of radiolabeled free ecdysteroids or polar or apolar ecdysteroid conjugates. Failure to demonstrate ecdysteroid biosynthesis in C. elegans raises questions about the ecdysteroids identified previously in nematodes being products of endogenous biosynthesis, a necessary condition for these compounds to be nematode hormones.  相似文献   

20.
The Piwi-interacting RNA (piRNA) pathway defends the germline of animals from the deleterious activity of selfish transposable elements (TEs) through small-RNA mediated silencing. Adaptation to novel invasive TEs is proposed to occur by incorporating their sequences into the piRNA pool that females produce and deposit into their eggs, which then propagates immunity against specific TEs to future generations. In support of this model, the F1 offspring of crosses between strains of the same Drosophila species sometimes suffer from germline derepression of paternally inherited TE families, caused by a failure of the maternal strain to produce the piRNAs necessary for their regulation. However, many protein components of the Drosophila piRNA pathway exhibit signatures of positive selection, suggesting that they also contribute to the evolution of host genome defense. Here we investigate piRNA pathway function and TE regulation in the F1 hybrids of interspecific crosses between D. melanogaster and D. simulans and compare them with intraspecific control crosses of D. melanogaster. We confirm previous reports showing that intraspecific crosses are characterized by derepression of paternally inherited TE families that are rare or absent from the maternal genome and piRNA pool, consistent with the role of maternally deposited piRNAs in shaping TE silencing. In contrast to the intraspecific cross, we discover that interspecific hybrids are characterized by widespread derepression of both maternally and paternally inherited TE families. Furthermore, the pattern of derepression of TE families in interspecific hybrids cannot be attributed to their paucity or absence from the piRNA pool of the maternal species. Rather, we demonstrate that interspecific hybrids closely resemble piRNA effector-protein mutants in both TE misregulation and aberrant piRNA production. We suggest that TE derepression in interspecific hybrids largely reflects adaptive divergence of piRNA pathway genes rather than species-specific differences in TE-derived piRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号