共查询到20条相似文献,搜索用时 15 毫秒
1.
《Bioorganic & medicinal chemistry letters》2020,30(3):126784
A series of heterocyclic pyrimidinedione-based HIV-1 integrase inhibitors was prepared and screened for activity against purified integrase enzyme and/or viruses modified with the following mutations within integrase: Q148R, Q148H/G140S and N155H. These are mutations that result in resistance to the first generation integrase inhibitors raltegravir and elvitegravir. Based on consideration of drug-target interactions, an approach was undertaken to replace the amide moiety of the first generation pyrimidinedione inhibitor with azole heterocycles that could retain potency against these key resistance mutations. An imidazole moiety was found to be the optimal amide substitute and the observed activity was rationalized with the use of calculated properties and modeling. Rat pharmacokinetic (PK) studies of the lead imidazole compounds demonstrated moderate clearance and moderate exposure. 相似文献
2.
Shenghui Yu Tino Wilson Sanchez Yang Liu Yanzhen Yin Nouri Neamati Guisen Zhao 《Bioorganic & medicinal chemistry letters》2013,23(22):6134-6137
A series of novel pyrimidone analogues have been designed and synthesized as HIV-1 integrase (IN) inhibitors. This study demonstrated that introducing a substituent in the N1-position of the pyrimidone scaffold does not significantly influence IN inhibitory activity. Molecular docking studies showed these compounds could occupy the IN active site and form pi–pi interactions with viral DNA nucleotides DC16 and DA17 to displace reactive viral DNA 3′OH and block intasome activity. 相似文献
3.
Johns BA Kawasuji T Weatherhead JG Boros EE Thompson JB Garvey EP Foster SA Jeffrey JL Miller WH Kurose N Matsumura K Fujiwara T 《Bioorganic & medicinal chemistry letters》2011,21(21):6461-6464
A series of naphthyridinone HIV-1 integrase strand-transfer inhibitors have been designed based on a psdeudo-C2 symmetry element present in the two-metal chelation pharmacophore. A combination of two distinct inhibitor binding modes resulted in potent inhibition of the integrase strand-transfer reaction in the low nM range. Effects of aryl and N1 substitutions are disclosed including the impact on protein binding adjusted antiviral activity. 相似文献
4.
5.
Suresh Paudel Ningning Sun Daulat Bikram Khadka Goon Yoon Kyeong-Man Kim Seung Hoon Cheon 《Bioorganic & medicinal chemistry》2018,26(14):4127-4135
Rational drug design method has been used to generate 4-arylpiperazine carboxamides in an effort to develop safer, more potent and effective monoamine neurotransmitters reuptake inhibitors. Out of twenty-seven synthesized compounds, compound 9 displayed potent monoamine neurotransmitter reuptake inhibitory activity against HEK cells transfected with hSERT or hNET. A Surflex-Dock docking model of 9 was also studied. 相似文献
6.
《Bioorganic & medicinal chemistry》2019,27(17):3836-3845
A novel series of 3-hydroxyquinazoline-2,4(1H,3H)-diones derivatives has been designed and synthesized. Their biochemical characterization revealed that most of the compounds were effective inhibitors of HIV-1 RNase H activity at sub to low micromolar concentrations. Among them, II-4 was the most potent in enzymatic assays, showing an IC50 value of 0.41 ± 0.13 μM, almost five times lower than the IC50 obtained with β-thujaplicinol. In addition, II-4 was also effective in inhibiting HIV-1 IN strand transfer activity (IC50 = 0.85 ± 0.18 μM) but less potent than raltegravir (IC50 = 71 ± 14 nM). Despite its relatively low cytotoxicity, the efficiency of II-4 in cell culture was limited by its poor membrane permeability. Nevertheless, structure-activity relationships and molecular modeling studies confirmed the importance of tested 3-hydroxyquinazoline-2,4(1H,3H)-diones as useful leads for further optimization. 相似文献
7.
HIV integrase (IN) catalyzes the insertion of proviral DNA into the host cell chromosome. While IN has strict sequence requirements for the viral cDNA ends, the integration site preference has been shown to be very diverse. Here, we mapped the HIV IN strand transfer reaction requirements using various short oligonucleotides (ON) that mimic the target DNA. Most double stranded DNA dodecamers served as excellent IN targets with variable integration efficiency depending mostly on the ON sequences. The preferred integration was lost with any changes in the geometry of the DNA double helical structures. Various hairpin-loop-forming ONs also served as efficient integration targets. Similar integration preferences were also observed for ONs, in which the nucleotide hairpin loop was replaced with a flexible aliphatic linker. The integration biases with all target DNA structures tested were significantly influenced by changes in the resulting secondary ON structures. 相似文献
8.
9.
De Luca L Barreca ML Ferro S Iraci N Michiels M Christ F Debyser Z Witvrouw M Chimirri A 《Bioorganic & medicinal chemistry letters》2008,18(9):2891-2895
We report herein the development of a new three-dimensional pharmacophore model for HIV-1 integrase inhibitors which led to the discovery of some 4-[1-(4-fluorobenzyl)-1H-indol-3-yl]-2-hydroxy-4-oxobut-2-enoic acids that are able to specifically inhibit the strand transfer step of integration at nanomolar concentration. The synthesis of the new designed molecules is also described. 相似文献
10.
The human immunodeficiency virus type-1 (HIV-1) integrase (IN) catalyzes the insertion of the retroviral genome into the chromosome of an infected host cell. HIV-1 IN was expressed as a N-terminal hexa-histidine fusion in Escherichia coli. A high-throughput purification strategy was developed using denaturing methods for the initial protein extraction, followed by a one-step nickel-chelating chromatography purification and step-wise refolding. IN was routinely greater than 90% pure with yields exceeding 14 microg of purified IN per ml of E. coli culture. In vitro 3' processing and strand transfer assays showed the enzyme preparations to be highly active. The specific activity of the purified IN was 2.65 pmol/h/microg IN, which is very similar to the activity of IN routinely produced by large-scale column chromatographic methods. This high-throughput platform should be of general utility to those interested in defining the structure-function relationship of proteins and enzymes. 相似文献
11.
12.
Design, synthesis, and biological evaluation of novel tricyclic HIV-1 integrase inhibitors by modification of its pyridine ring 总被引:2,自引:0,他引:2
This communication details both the syntheses and biological evaluation of a novel class of HIV-1 integrase inhibitors. When the quinoline moiety is replaced with the quinoxoline moiety, the antiviral activity is significantly compromised. Similarly, introduction of imidazole to replace the pyridine ring is deleterious to the potency of the compound against the enzyme. Substitution at the 3-position of the pyridine has been investigated. The presence of the pyridine ring in the tricyclic core is preferred for antiviral activity against HIV integrase. 相似文献
13.
Zhao XZ Maddali K Metifiot M Smith SJ Vu BC Marchand C Hughes SH Pommier Y Burke TR 《Bioorganic & medicinal chemistry letters》2011,21(10):2986-2990
New tricyclic HIV-1 integrase (IN) inhibitors were prepared that combined structural features of bicyclic pyrimidinones with recently disclosed 4,5-dihydroxy-1H-isoindole-1,3(2H)-diones. This combination resulted in the introduction of a nitrogen into the aryl ring and the addition of a fused third ring to our previously described inhibitors. The resulting analogues showed low micromolar inhibitory potency in in vitro HIV-1 integrase assays, with good selectivity for strand transfer relative to 3′-processing. 相似文献
14.
《Microbes and infection / Institut Pasteur》2014,16(5):434-438
Interplay between drug-resistance mutations in CTL epitopes and HIV-1-specific CTLs may influence the control of HIV-1 viremia. However, the effect of integrase inhibitor (INI)-resistance mutations on the CTL recognition has not been reported. We here investigated the effect of a raltegravir and elvitegravir-resistance mutation (E92Q) on HLA-B*40:02-restricted Int92-102 (EL11: ETGQETAYFLL)-specific CTLs. EL11-specific CTLs recognized E92Q peptide-pulsed and E92Q mutant virus-infected cells less effectively than EL11 peptide-pulsed and wild-type virus-infected cells, respectively. Ex vivo ELISpot analysis showed no induction of E92Q-specific T cells in chronically HIV-1-infected individuals. Thus, we demonstrated that EL11-specific CTL recognition was affected by the INI-resistance mutation. 相似文献
15.
Nagasawa JY Song J Chen H Kim HW Blazel J Ouk S Groschel B Borges V Ong V Yeh LT Girardet JL Vernier JM Raney AK Pinkerton AB 《Bioorganic & medicinal chemistry letters》2011,21(2):760-763
SAR studies on the quinolone carboxylic acid class of HIV-1 integrase inhibitors focused on improving the metabolic stability and led to the discovery of 27 and 38. 相似文献
16.
Ma K Wang P Fu W Wan X Zhou L Chu Y Ye D 《Bioorganic & medicinal chemistry letters》2011,21(22):6724-6727
HIV-1 integrase is an essential enzyme for viral replication and a validated target for the development of drugs against AIDS. With an aim to discover new potent inhibitors of HIV-1 integrase, we developed a pharmacophore model based on reported inhibitors embodying structural diversity. Eight compounds of 2-pyrrolinones fitting all the features of the pharmacophore query were found through the screening of an in-house database. These candidates were successfully synthesized, and three of them showed strand transfer inhibitory activity, in which, one compound showed antiviral activity. Further mapping analysis and docking studies affirmed these results. 相似文献
17.
Mario Sechi Giuseppe Rizzi Alessia Bacchi Mauro Carcelli Dominga Rogolino Nicolino Pala Tino W. Sanchez Laleh Taheri Raveendra Dayam Nouri Neamati 《Bioorganic & medicinal chemistry》2009,17(7):2925-2935
Previously, we discovered linomide analogues as novel HIV-1 integrase (IN) inhibitors. Here, to make possible structure–activity relationships, we report on the design and synthesis of a series of substituted dihydroquinoline-3-carboxylic acids. The crystal structure of the representative compound 2c has also been solved. Among the eight new analogues, 2e showed a potency in inhibiting IN strand transfer catalytic activity similar to the reference diketo acid inhibitor L-731,988 (IC50 = 0.9 μM vs. 0.54 μM, for 2e and L-731,988, respectively). Furthermore, none of the compounds showed significant cytotoxicity in two tested cancer cell lines. These compounds represent an interesting prototype of IN inhibitors, potentially involved in a metal chelating mechanism, and further optimization is warranted. 相似文献
18.
《Bioorganic & medicinal chemistry》2014,22(12):3146-3158
HIV integrase (IN) is an essential enzyme for the viral replication. Currently, three IN inhibitors have been approved for treating HIV-1 infection. All three drugs selectively inhibit the strand transfer reaction by chelating a divalent metal ion in the enzyme active site. Flavonoids are a well-known class of natural products endowed with versatile biological activities. Their β-ketoenol or catechol structures can serve as a metal chelation motif and be exploited for the design of novel IN inhibitors. Using the metal chelation as a common pharmacophore, we introduced appropriate hydrophobic moieties into the flavonol core to design natural product-based novel IN inhibitors. We developed selective and efficient syntheses to generate a series of mono 3/5/7/3′/4′-substituted flavonoid derivatives. Most of these new compounds showed excellent HIV-1 IN inhibitory activity in enzyme-based assays and protected against HIV-1 infection in cell-based assays. The 7-morpholino substituted 7c showed effective antiviral activity (EC50 = 0.826 μg/mL) and high therapeutic index (TI > 242). More significantly, these hydroxyflavones block the IN–LEDGF/p75 interaction with low- to sub-micromolar IC50 values and represent a novel scaffold to design new generation of drugs simultaneously targeting the catalytic site as well as protein–protein interaction domains. 相似文献
19.
A series of analogs of the potent HIV-1 integrase (HIV IN) inhibitor chicoric acid (CA) was designed with the intention of ameliorating some of the parent natural product's undesirable properties, in particular its toxicity, instability, and poor membrane permeability. More than 70 analogs were synthesized and assayed for three types of activity: (1) the ability to inhibit 3'-end processing and strand transfer reactions using recombinant HIV IN in vitro, (2) toxicity against the CD4+ lymphoblastoid cell line, MT2, and (3) anti-HIV activity against HIV(LAI). CA analogs lacking one of the carboxyl groups of CA and with 3,4,5-trihydroxycinnamoyl sidechains in place of the caffeoyl group of CA exhibited the most potent inhibition of HIV replication and end-processing activity. Galloyl-substituted derivatives also displayed very potent in vitro and in vivo activities, in most cases exceeding the inhibitory effects of CA itself. Conversely, analogous monocarboxy caffeoyl analogs exhibited only modest inhibition, while the corresponding 3,4-dihydroxybenzoyl-substituted compounds were devoid of activity. 相似文献
20.
Bodiwala HS Sabde S Gupta P Mukherjee R Kumar R Garg P Bhutani KK Mitra D Singh IP 《Bioorganic & medicinal chemistry》2011,19(3):1256-1263
Designing multi-functional ligands is a recent strategy by which multiple targets can be inhibited by a single entity. A series of caffeoyl-anilide compounds based on structures of various integrase and CCR-5 inhibitors have been designed and synthesized as anti-HIV agents in the present study. Most of the compounds exhibited potent anti-HIV activity at micromolar concentration in CEM-GFP CD4+ T cells infected with HIV-1NL4.3 virus. Compound 14 showed a lower EC(50) and better TI as compared to AZT. Mechanism based studies suggest that these compounds inhibit either one or in some cases, both the targets. The experimental data and the docking results showed that these compounds are potential inhibitors for both HIV-1 IN and CCR5. 相似文献