首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Arginase performs the first enzymatic step in polyamine biosynthesis in Leishmania and represents a promising target for drug development. Polyamines in Leishmania are involved in trypanothione synthesis, which neutralize the oxidative burst of reactive oxygen species (ROS) and nitric oxide (NO) that are produced by host macrophages to kill the parasite. In an attempt to synthesize arginase inhibitors, six 1-phenyl-1H-pyrazolo[3,4-d]pyrimidine derivatives with different substituents at the 4-position of the phenyl group were synthesized. All compounds were initially tested at 100 µM concentration against Leishmania amazonensis ARG (LaARG), showing inhibitory activity ranging from 36 to 74%. Two compounds, 1 (R=H) and 6 (R=CF3), showed arginase inhibition >70% and IC50 values of 12 µM and 47 µM, respectively. Thus, the kinetics of LaARG inhibition were analyzed for compounds 1 and 6 and revealed that these compounds inhibit the enzyme by an uncompetitive mechanism, showing Kis values, and dissociation constants for ternary complex enzyme-substrate-inhibitor, of 8.5 ± 0.9 µM and 29 ± 5 µM, respectively. Additionally, the molecular docking studies proposed that these two uncompetitive inhibitors interact with different LaARG binding sites, where compound 1 forms more H-bond interactions with the enzyme than compound 6. These compounds showed low activity against L. amazonensis free amastigotes obtained from mice lesions when assayed with as much as 30 µM. The maximum growth inhibition reached was between 20 and 30% after 48 h of incubation. These results suggest that this system can be promising for the design of potential antileishmanial compounds.  相似文献   

3.
Epigallocatechin-3-gallate (EGCG), a dietary polyphenol (flavanol) from green tea, possesses leishmanicidal and antitrypanosomal activity. Mitochondrial damage was observed in Leishmania treated with EGCG, and it contributed to the lethal effect. However, the molecular target has not been defined. In this study, EGCG, (+)-catechin and (−)-epicatechin were tested against recombinant arginase from Leishmania amazonensis (ARG-L) and rat liver arginase (ARG-1). The compounds inhibit ARG-L and ARG-1 but are more active against the parasite enzyme. Enzyme kinetics reveal that EGCG is a mixed inhibitor of the ARG-L while (+)-catechin and (−)-epicatechin are competitive inhibitors. The most potent arginase inhibitor is (+)-catechin (IC50 = 0.8 µM) followed by (−)-epicatechin (IC50 = 1.8 µM), gallic acid (IC50 = 2.2 µM) and EGCG (IC50 = 3.8 µM). Docking analyses showed different modes of interaction of the compounds with the active sites of ARG-L and ARG-1. Due to the low IC50 values obtained for ARG-L, flavanols can be used as a supplement for leishmaniasis treatment.  相似文献   

4.
High-output synthesis of nitric oxide (NO) by the inducible isoform of NO-synthases (NOS-2) plays an important role in hepatic pathophysiological processes and may contribute to both organ protection and organ destruction during inflammatory reactions. As they compete for the same substrate, L-arginine, an interdependence of NOS-2 and arginase-1 has been repeatedly observed in cells where arginase-1 is cytokine-inducible. However, in hepatocytes, arginases are constitutively expressed and thus, their impact on hepatic NOS-2-derived NO synthesis as well as the influence of L-arginine influx via cationic amino acid transporters during inflammatory reactions are still under debate. Freshly isolated rat hepatocytes were cultured for 24h in the presence of various L-arginine concentrations with or without cytokine addition and nitrite and urea accumulation in culture supernatants was measured. We find that both, cytokine-induced NOS-2 and arginase activities strongly depend on extracellular L-arginine concentrations. When we competed for L-arginine influx via the cationic amino acid transporters by addition of L-lysine, we find a 60-70% inhibition of arginase activity without significant loss of NOS-2 activity. Addition of L-valine, as an arginase inhibitor, leads to a 25% increase in NO formation and an 80-90% decrease in arginase activity. Interestingly, product inhibition of arginase and competitive inhibition of CATs through the addition of L-ornithine leads to a highly significant increase in hepatocytic NOS-2 activity with a concomitant and complete abolishment of its dependence on extracellular L-arginine concentrations. In conclusion, hepatocytic NOS-2 activity shows a surprising pattern of dependence on exogenous L-arginine concentrations. Inhibition and competition experiments suggest a relatively tight link of NOS-2 and urea cycle activities. These data stress the hypothesis of a metabolon-like organization of the urea cycle together with NOS-2 in hepatocytes as excess L-ornithine will be metabolized to l-arginine and thereby increases NO production.  相似文献   

5.
The Ugi reaction has been successfully applied to the synthesis of novel arginase inhibitors. In an effort to decrease conformational flexibility of the previously reported series of 2-amino-6-boronohexanoic acid (ABH) analogs 1, we designed and synthesized a series of compounds, 2, in which a piperidine ring is linked directly to a quaternary amino acid center. Further improvement of in vitro activity was achieved by adding two carbon bridge in the piperidine ring, that is, tropane analogs 11. These improvements in activity are rationalized by X-ray crystallography analysis, which show that the tropane ring nitrogen atom moves into direct contact with Asp202 (arginase II numbering). The synthetic routes described here enabled the design of novel arginase inhibitors with improved potency and markedly different physico-chemical properties compared to ABH. Compound 11c represents the most in vitro active arginase inhibitor reported to date.  相似文献   

6.
Nitric oxide (NO) has been shown to inhibit Giardia lamblia in vitro and in vivo. This study sought to determine if Giardia infection induces arginase 1 (ARG1) expression in host macrophages to reduce NO production. Stimulations of RAW 264.7 macrophage-like cells with Giardia extract induced arginase activity. Real-time PCR and immunohistochemistry showed increased ARG1 and nitric oxide synthase 2 (NOS2) expression in mouse intestine following infection. Flow cytometry demonstrated increased numbers of macrophages positive for both ARG1 and NOS2 in lamina propria following infection, but there was no evidence of increased expression of ARG1 in these cells.  相似文献   

7.
We have recently shown that inhibition of nitric oxide (NO) synthesis by asymmetrical dimethylarginine (ADMA) accelerated endothelial cell (EC) senescence which was prevented by coincubation with l-arginine; however the effect of long-term treatment of l-arginine alone on senescence of ECs have not been investigated. Human ECs were cultured in medium containing different concentrations of l-arginine until senescence. l-Arginine paradoxically accelerated senescence indicated by inhibiting telomerase activity. Moreover, l-arginine decreased NO metabolites, increased peroxynitrite, and 8-iso-prostaglandin F formation. In old cells, the mRNA expression of human amino acid transporter (hCAT)2B, the activity and protein expression of arginase II were upregulated indicated by enhanced urea, l-ornithine, and l-arginine consumption. Inhibition of arginase activity, or transfection with arginase II siRNA prevented l-arginine-accelerated senescence. The most possible explanation for the paradoxical acceleration of senescence by l-arginine so far may be the translational and posttranslational activation of arginase II.  相似文献   

8.
Suspension cultures of ‘Chang liver’ cells were synchronized by preincubation in a glutamine-deficient medium or by thymidine blockade. Specific arginase activity varied in the synchronized cultures, being high when the number of S-phase cells was maximal. A relationship between high arginase activity and a high percentage of (S+G2) cells was also found when unsynchronized cells were separated by velocity sedimentation. The increase in arginase activity near the G1/S border was totally inhibited in the presence of cycloheximide. The rate of decrease in activity after addition of the drug indicated that the variations in the rate of synthesis of the enzyme, while the rate of degradation was more or less constant, corresponding to 4–6% per h. The role of arginase in cells lacking a urea cycle and the regulation of arginase activity in ‘Chang liver’ cells is discussed.  相似文献   

9.
 Rat liver arginase contains a dinuclear Mn2(II,II) center in each subunit having EPR properties similar to those observed in Mn-catalases. The principal physiologic role of arginase is catalyzing the hydrolytic cleavage of l-arginine to produce l-ornithine and urea. Here we demonstrate that arginase catalyzes the disproportionation of hydrogen peroxide by a redox mechanism analogous to Mn-catalases, but at rates that are 10–5 to 10–6 of k cat for the Mn-catalases, and also exhibits peroxidase activity. The dinuclear Mn2(II,II) center is essential for maximal catalase activity, since both the H101N and H126N mutant arginases containing only one Mn(II)/subunit have catalase activities that are <3% of that for the wild-type enzyme. Like the Mn-catalases, the catalase activity of arginase is not inhibited by millimolar concentrations of CN, the most potent inhibitor of heme catalases, or by EDTA, a chelator of free metal ions. The catalase activity of arginase is not significantly inhibited by Cl or F, in contrast to Mn-catalases, while potent inhibitors of the hydrolytic activity are also effective inhibitors of the catalase activity. These results suggest that lower affinity of hydrogen peroxide to the active site of arginase contributes to the lower catalase activity. EPR spectroscopy reveals that potent inhibitors of the hydrolytic reaction, including N ω-hydroxy-l-arginine, l-lysine, and l-valine, decouple the electronic interaction between the Mn2+ ions, most probably by removing a μ-bridging ligand or by increasing the intermanganese separation. The capacity for arginase to deliver a hydroxide ion to hydrolyze the l-arginine substrate is suggested to arise from a "dinuclear effect", wherein the two metal ions contribute more or less equivalently in deprotonation of metal-bound water molecule. Structure-reactivity analyses of these reactions will provide insights into the factors that control redox versus hydrolytic function in dimanganese clusters. Received: 18 November 1996 / Accepted: 7 April 1997  相似文献   

10.
11.
Arginase catalyses the last step of the urea cycle. At least two isoenzymes of arginase are known; cytosolic ARG I and mitochondrial ARG II. ARG I is predominantly expressed in liver cytosol, as a part of urea cycle in ureotelic animals. The second isoform ARG II is primarily responsible for non-ureogenic functions, expressed in mitochondria of both hepatic and non-hepatic tissues in most vertebrates. Most micro-organisms and invertebrates are known to have only one type of arginase, whose function is unrelated to ornithine-urea cycle (OUC). However, in ureo-osmotic marine elasmobranchs arginase is localized in liver mitochondria as a part of OUC to synthesize urea for osmoregulation. An evolutionary transition occurred in arginase enzyme in terrestrial ureotelic vertebrates, with the evolution of ARG I from a pre-existing ancestral mitochondrial ARG II. This cytosolic ARG I activity is supposed to have first appeared in lung fishes, but the 40% and 60% distribution of arginase I and II activity in liver and kidney tissue of Heteropneustes fossilis indicates reconsideration of the above fact.  相似文献   

12.
Important progress in arginine metabolism includes the discovery of widespread expression of two isoforms of arginase, arginase I and II, not only in hepatic cells but also in non-hepatic cells, and the formation of nitric oxide, a widely distributed signal-transducing molecule, from arginine by nitric oxide synthase. Possible physiological roles of arginase may therefore include regulation of nitric oxide synthesis through arginine availability for nitric oxide synthase. In this paper, arginase was investigated in the submandibular, sublingual, and parotid glands of rat, mouse, guinea pig, and rabbit. From their arginase contents, the salivary glands of these species were divided into two groups. Variable levels of arginase activity were detected in the salivary glands of mouse and rat. However, salivary glands of rabbit and guinea pig had almost no arginase activity. The presence of nitric oxide synthase has been reported in all the salivary glands used in this study. Therefore, one of the important findings was the presence of species specificity in the co-localization of arginase and nitric oxide synthase in the salivary glands of the four species. The highest specific activity of arginase was found in mouse parotid gland. In rat, considerable arginase activity was detected in all three glands, at 3.6–7.3% of that in rat liver. In rat submandibular gland, arginase was detected in both cytosolic and particulate fractions. In addition, arginase was detected in isolated acinar cells, but not in duct cells. Experiments on the intracellular distribution and the effects of the arginase inhibitors ornithine and N-hydroxy-L-arginine (NOHA), suggested the presence of both arginase I and arginase II in rat submandibular gland.Abbreviations cGMP cyclic guanosine 3,5-monophosphate - NO nitric oxide - NOHA N-hydroxy-L-arginine - NOS nitric oxide synthase Communicated by I.D. Hume  相似文献   

13.
 The effects of various compounds bearing an N-OH group such as N-hydroxy-guanidines, amidoximes, and hydroxylamines, on bovine and rat liver arginases was studied. Some of these compounds with an l-α-amino acid function at an appropriate distance from the N-OH group acted as strong competitive liver arginase inhibitors, displaying Ki values between 4 and 150 μM. Two compounds, N ε-hydroxy-l-lysine and N ω-hydroxy-d,l-indospicine, which exhibited Ki values of 4 and 20 μM (at pH 7.4), were the most potent inhibitors of arginase described to date. The distance between the α-amino acid and N-OH functions appeared to be crucial for potent inhibition of arginase, as N δ-hydroxy-l-ornithine, which has one -CH2 group less than N ε-hydroxy-l-lysine, exhibited a 37-fold higher Ki value than N ε-hydroxy-l-lysine. Based on these results, a model for the interaction of N ω-hydroxyamino-l-α-amino acids with the arginase active site is proposed. This model involves the binding of the N-OH group of the inhibitors to the arginase Mn(II) center and suggests that N ε-hydroxy-l-lysine is a good transition state analog of arginase.  相似文献   

14.
Arginase II catalyzes the conversion of arginine to urea and ornithine in many extrahepatic tissues. We investigated the protective role of arginase II on lipopolysaccharide-mediated apoptosis in the macrophage cells. Adenoviral gene transfer of full length of arginase II was performed in the murine macrophage cell line RAW264.7. The role of arginase II was investigated with cell viability, cytoplasmic histone-associated DNA fragmentation assay, arginase activity, nitric oxide production, and Western blot analysis. Arginase II is localized in mitochondria of macrophage cells, and the expression of arginase II was increased by lipopolysaccharide (LPS). LPS significantly increased cell death which was inhibited by AMT, a specific inducible nitric oxide synthase (iNOS) inhibitor. In contrast, LPS-induced cell death and nitric oxide production were increased by 2-boronoethyl-L-cysteine, a specific inhibitor of arginase. Adenoviral overexpression of arginase II significantly inhibited LPS-induced cell death and cytoplasmic histone-associated DNA fragmentation. LPS-induced iNOS expression and poly ADP-ribose polymerase cleavage were significantly suppressed by arginase II overexpression. Furthermore, arginase II overexpression resulted in a decrease in the Bax protein level and the reverse induction of Bcl-2 protein. Our data demonstrated that inhibition of NO production by arginase II may be due to arginine depletion as well as iNOS suppression though its reaction products. Moreover, arginase II plays a protective role of LPS-induced apoptosis in RAW264.7 cells.  相似文献   

15.
The catabolic products of arginine metabolism were observed in Aphanocapsa 6308, a unicellular cyanobacterium, by thin layer chromatography of growth media, by limiting growth conditions, and by enzymatic analysis. Of the organic, nitrogenous compounds examined, only arginine supported growth in CO2-free media. The excretion of ornithine at a concentration level greater than citrulline suggested the existence in Aphanocapsa 6308 of the arginine dihydrolase pathway which produced ornithine, CO2, NH4, + adenosine 5-triphosphate. Its existence was confirmed by enzymatic analysis. Although cells could not grow on urea as a sole carbon source a very active urease and subsequently an arginase were also demonstrated, indicating that Aphanocapsa can metabolize arginine via the arginase pathway. The level of enzymes for both pathways indicates a lack of genetic control. It is suggested that the arginase pathway provides only nitrogen for the cells whereas the arginine dihydrolase pathway provides not only nitrogen, but also CO2 and adenosine 5-triphosphate.Nonstandard Abbreviations CCCP carbonylcyanide mchlorophenyl hydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - CGP cyanophycin granule protein - PS II photosystem II - PSI photosystem I - TLC thin layer chromatography - TCA trichloroacetic acid - DPM disintegrations per min  相似文献   

16.
The effect of proline, isoleucine, leucine, valine, lysine and ornithine under standard physiological conditions, on purified Vigna catjang cotyledon and buffalo liver arginases was studied. The results showed that V. catjang cotyledon arginase is inhibited by proline at a lower concentration than buffalo liver arginase and the inhibition was found to be linear competitive for both enzymes. Buffalo liver arginase was more sensitive to inhibition by branched-chain amino acids than V. catjang cotyledon. Leucine, lysine, ornithine and valine are competitive inhibitors while isoleucine is a mixed type of inhibitor of liver arginase. We have also studied the effect of manganese concentration which acts as a cofactor and leads to activation of arginase. The optimum Mn2 + concentration for Vigna catjang cotyledon arginase is 0.6 mM and liver arginase is 2.0 mM. The preincubation period required for liver arginase is 20 min at 55°C, the preincubation period and temperature required for activation of cotyledon arginase was found to be 8 min at 35°C. The function of cotyledon arginase in polyamine biosynthesis and a possible role of branched chain amino acids in hydrolysis of arginine in liver are discussed.  相似文献   

17.
The availability of l-arginine can be a rate-limiting factor for cellular NO production by nitric oxide synthases (NOS). Arginase competes with NOS for l-arginine as the common substrate. Increased arginase activity has been linked to low NO levels, and an inhibition of arginase activity has been reported to improve endothelium-dependent vasorelaxation. Based on the above, we hypothesized that an increase in the circulating NO pool following flavanol consumption could be correlated with decreased arginase activity. To test this hypothesis we (a) investigated the effects of (−)-epicatechin and its structurally related metabolites on endothelial arginase expression and activity in vitro; (b) evaluated the effects of dietary flavanol-rich cocoa on kidney arginase activity in vivo; and (c) assessed human erythrocyte arginase activity following flavanol-rich cocoa beverage consumption in a double-blind intervention study with cross-over design. The results demonstrate that cocoa flavanols lower arginase-2 mRNA expression and activity in HUVEC. Dietary intervention with flavanol-rich cocoa caused diminished arginase activity in rat kidney and, erythrocyte arginase activity was lowered in healthy humans following consumption of a high flavanol beverage in vivo.  相似文献   

18.
Arginase (ARG), the enzyme that catalyzes the conversion of arginine to ornithine and urea, is the first and committed step in polyamine biosynthesis in Leishmania. The creation of a conditionally lethal Δarg null mutant in Leishmania mexicana has established that ARG is an essential enzyme for the promastigote form of the parasite and that the enzyme provides an important defense mechanism for parasite survival in the eukaryotic host. Furthermore, human ARGI (HsARGI) has also been implicated as a key factor in parasite proliferation. Thus, inhibitors of ARG offer a rational paradigm for drug design. To initiate a search for inhibitors of the L. mexicana ARG (LmARG), recombinant LmARG and HsARGI enzymes were purified from Escherichia coli. Both LmARG and HsARGI were specific for l-arginine and exhibited no activity with either d-arginine or agmatine as possible substrates. LmARG exhibited a Km of 25 ± 4 mM for l-arginine, a pH optimum ∼9.0, and was dependent upon the presence of a divalent cation, preferentially manganese. A Km of 13.5 ± 2 mM for l-arginine was calculated for the HsARGI. A collection of 37 compounds was evaluated against both enzymes. Twelve of these compounds were identified as being either strong inhibitors of both LmARG and HsARGI or differential inhibitors between the two enzymes. Of the 12 compounds, six were selected for further analysis and the type and extent of inhibition determined.  相似文献   

19.
20.
Although arginase primarily participates in the last reaction of the urea cycle, we have previously demonstrated that arginase II is an important cytosolic calcium regulator through spermine production in a p32-dependent manner. Here, we demonstrated that rhaponticin (RPT) is a novel medicinal-plant arginase inhibitor and investigated its mechanism of action on Ca2+-dependent endothelial nitric oxide synthase (eNOS) activation. RPT was uncompetitively inhibited for both arginases I and II prepared from mouse liver and kidney. It also inhibited arginase activity in both aorta and human umbilical vein endothelial cells (HUVECs). Using both microscope and FACS analyses, RPT treatments induced increases in cytosolic Ca2+ levels using Fluo-4 AM as a calcium indicator. Increased cytosolic Ca2+ elicited the phosphorylations of both CaMKII and eNOS Ser1177 in a time-dependent manner. RPT incubations also increased intracellular L-arginine (L-Arg) levels and activated the CaMKII/AMPK/Akt/eNOS signaling cascade in HUVECs. Treatment of L-Arg and ABH, arginase inhibitor, increased intracellular Ca2+ concentrations and activated CaMKII-dependent eNOS activation in ECs of WT mice, but, the effects were not observed in ECs of inositol triphosphate receptor type 1 knockout (IP3R1−/−) mice. In the aortic endothelium of WT mice, RPT also augmented nitric oxide (NO) production and attenuated reactive oxygen species (ROS) generation. In a vascular tension assay using RPT-treated aortic tissue, cumulative vasorelaxant responses to acetylcholine (Ach) were enhanced, and phenylephrine (PE)-dependent vasoconstrictive responses were retarded, although sodium nitroprusside and KCl responses were not different. In this study, we present a novel mechanism for RPT, as an arginase inhibitor, to increase cytosolic Ca2+ concentration in a L-Arg-dependent manner and enhance endothelial function through eNOS activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号