首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mosquito Aedes aegypti is the vector agent responsible for the transmission of yellow fever and dengue fever viruses to over 80 million people in tropical and subtropical regions of the world. Exhaustive efforts have lead to a vaccine candidate with only 30% effectiveness against the dengue virus and failure to protect patients against the serotype 2. Hence, vector control remains the most viable route to dengue fever control programs. We have synthesized a class of 1,2,4-oxadiazole derivatives whose most biologically active compounds exhibit potent activity against Aedes aegypti larvae (ca. of 15 ppm) and low toxicity in mammals. Exposure to these larvicides results in larvae pigmentation in a manner correlated with the LC50 measurements. Structural comparisons of the 1,2,4-oxadiazole nucleus against known inhibitors of insect enzymes allowed the identification of 3-hydroxykynurenine transaminase as a potential target for these synthetic larvicides. Molecular docking calculations indicate that 1,2,4-oxadiazole compounds can bind to 3-hydroxykynurenine transaminase with similar conformation and binding energies as its crystallographic inhibitor 4-(2-aminophenyl)-4-oxobutanoic acid.  相似文献   

2.
3.
Vector-borne diseases transmitted by mosquitoes cause globally important diseases such as malaria, dengue fever, and filariasis. The incidence of these diseases can be reduced through mosquito control programs but these control programs currently rely on synthetic insecticides that can impact the environment, and has selected widespread mosquito resistance. Environment friendly and biodegradable natural insecticides discovered in plants offer an alternative approach to mosquito control. Here, we investigated extracts from root or aerial parts of Chicory (Cichorium intybus) and wormwood (Artemisia absinthium) against the early 4th instar larvae of Anopheles stephensi (malaria vector), Aedes aegypti (dengue fever vector), and Culex quinquefasciatus (filariasis vector). The root and aerial parts extracts of A. absinthium and C. intybus at 200, 100, 50, 25 and 12.5?ppm caused significant mortality of the tested mosquito species. Root extracts exhibited higher larvicidal activity that aerial part extracts. The highest larvicidal activity was recorded in methanol extract of roots of C. intybus with LC50?=?66.16, 18.88 and LC¬90?=?197.56, 107.16?ppm for An. stephensi; LC50?=?78.51, 40.15 and LC90?=?277.31, 231.28?ppm for Ae. aegypti and LC50?=?103.99, 64.56 and LC¬90?=?314.04, 247.54?ppm for Cx. quinquefasciatus. These results reveal potent mosquito larvicidal activity against vectors of malaria, dengue fever, and filariasis is present in extracts of chicory and wormwood.  相似文献   

4.
Aedes aegypti is the primary mosquito vector of dengue, yellow fever, Zika and chikungunya. Current strategies to control Ae. aegypti rely heavily on insecticide interventions. Pyrethroids are a major class of insecticides used for mosquito control because of their fast acting, highly insecticidal activities and low mammalian toxicity. However, Ae. aegypti populations around the world have begun to develop resistance to pyrethroids. So far, more than a dozen mutations in the sodium channel gene have been reported to be associated with pyrethroid resistance in Ae. aegypti. Co-occurrence of resistance-associated mutations is common in pyrethroid-resistant Ae. aegypti populations. As global use of pyrethroids in mosquito control continues, new pyrethroid-resistant mutations keep emerging. In this microreview, we compile pyrethroid resistance-associated mutations in Ae. aegypti in a chronological order, as they were reported, and summarize findings from functional evaluation of these mutations in an in vitro sodium channel expression system. We hope that the information will be useful for tracing possible evolution of pyrethroid resistance in this important human disease vector, in addition to the development of methods for global monitoring and management of pyrethroid resistance in Ae. aegypti.  相似文献   

5.

Background

No commercially licensed vaccine or treatment is available for dengue fever, a potentially lethal infection that impacts millions of lives annually. New tools that target mosquito control may reduce vector populations and break the cycle of dengue transmission. Male mosquito seminal fluid proteins (Sfps) are one such target since these proteins, in aggregate, modulate the reproduction and feeding patterns of the dengue vector, Aedes aegypti. As an initial step in identifying new targets for dengue vector control, we sought to identify the suite of proteins that comprise the Ae. aegypti ejaculate and determine which are transferred to females during mating.

Methodology and Principal Findings

Using a stable-isotope labeling method coupled with proteomics to distinguish male- and female-derived proteins, we identified Sfps and sperm proteins transferred from males to females. Sfps were distinguished from sperm proteins by comparing the transferred proteins to sperm-enriched samples derived from testes and seminal vesicles. We identified 93 male-derived Sfps and 52 predicted sperm proteins that are transferred to females during mating. The Sfp protein classes we detected suggest roles in protein activation/inactivation, sperm utilization, and ecdysteroidogenesis. We also discovered that several predicted membrane-bound and intracellular proteins are transferred to females in the seminal fluids, supporting the hypothesis that Ae. aegypti Sfps are released from the accessory gland cells through apocrine secretion, as occurs in mammals. Many of the Ae. aegypti predicted sperm proteins were homologous to Drosophila melanogaster sperm proteins, suggesting conservation of their sperm-related function across Diptera.

Conclusion and Significance

This is the first study to directly identify Sfps transferred from male Ae. aegypti to females. Our data lay the groundwork for future functional analyses to identify individual seminal proteins that may trigger female post-mating changes (e.g., in feeding patterns and egg production). Therefore, identification of these proteins may lead to new approaches for manipulating the reproductive output and vectorial capacity of Ae. aegypti.  相似文献   

6.
Pyrethroid resistance is envisioned to be a major problem for the vector control program since, at present, there are no suitable chemical substitutes for pyrethroids. Cross-resistance to knockdown agents, which are mainly used in mosquito coils and related products as spatial repellents, is the most serious concern. Since cross-resistance is a global phenomenon, we have started to monitor the distribution of mosquito resistance to pyrethroids. The first pilot study was carried out in Vietnam. We periodically drove along the national road from the north end to the Mekong Delta in Vietnam and collected mosquito larvae from used tires. Simplified susceptibility tests were performed using the fourth instar larvae of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Compared with the other species, Ae. aegypti demonstrated the most prominent reduction in susceptibility. For Ae. aegypti, significant increases in the susceptibility indices with a decrease in the latitude of collection points were observed, indicating that the susceptibility of Ae. aegypti against d-allethrin was lower in the southern part, including mountainous areas, as compared to that in the northern part of Vietnam. There was a significant correlation between the susceptibility indices in Ae. aegypti and the sum of annual pyrethroid use for malaria control (1998–2002). This might explain that the use of pyrethroids as residual treatment inside houses and pyrethroid-impregnated bed nets for malaria control is attributable to low pyrethroid susceptibility in Ae. aegypti. Such insecticide treatment appeared to have been intensively administered in the interior and along the periphery of human habitation areas where, incidentally, the breeding and resting sites of Ae. aegypti are located. This might account for the strong selection pressure toward Ae. aegypti and not Ae. albopictus.  相似文献   

7.
《Journal of Asia》2021,24(3):645-652
Mosquitoes are medically important insects worldwide. They serve as a primary vector for transmitting several major diseases like dengue and chikungunya, chiefly spread through Aedes aegypti, a prominent mosquito vector. The present study focused on evaluating the inhibitory effect of natural alkaloids on the acetylcholinesterase present in Ae. aegypti using molecular docking studies. A total of 25 different alkaloids were selected as ligands and their docking ability with an Acetylcholinesterase 1 (AChE1) recept or found in Ae. aegypti was performed by AutoDock. Results indicated that alpha-solanine had the best fit into the AChE1 binding pocket with a minimum binding energy of −8.13 kJ/mol. Among the different alkaloids tested, it is suggested that alpha-solanine would serve as the best inhibitor of AChE1 in Ae. aegypti.  相似文献   

8.
Dengue is a serious disease transmitted by the mosquito Aedes aegypti during blood meal feeding. It is estimated that the dengue virus is transmitted to millions of individuals each year in tropical and subtropical areas. Dengue control strategies have been based on controlling the vector, Ae. aegypti, using insecticide, but the emergence of resistance poses new challenges. The aim of this study was the identification of specific protease inhibitors of the digestive enzymes from Ae. aegypti larvae, which may serve as a prospective alternative biocontrol method. High affinity protein inhibitors were selected by all of the digestive serine proteases of the 4th instar larval midgut, and the specificity of these inhibitors was characterized. These inhibitors were obtained from a phage library displaying variants of HiTI, a trypsin inhibitor from Haematobia irritans, that are mutated in the reactive loop (P1–P4′). Based on the selected amino acid sequence pattern, seven HiTI inhibitor variants were cloned, expressed and purified. The results indicate that the HiTI variants named T6 (RGGAV) and T128 (WNEGL) were selected by larval trypsin-like (IC50 of 1.1 nM) and chymotrypsin-like enzymes (IC50 of 11.6 nM), respectively. The variants T23 (LLGGL) and T149 (GGVWR) inhibited both larval chymotrypsin-like (IC50 of 4.2 nM and 29.0 nM, respectively) and elastase-like enzymes (IC50 of 1.2 nM for both). Specific inhibitors were successfully obtained for the digestive enzymes of Ae. aegypti larvae by phage display. Our data also strongly suggest the presence of elastase-like enzymes in Ae. aegypti larvae. The HiTI variants T6 and T23 are good candidates for the development as a larvicide to control the vector.  相似文献   

9.

Background

Aedes aegypti is the main mosquito vector of the four serotypes of dengue virus (DENV). Previous population genetic and vector competence studies have demonstrated substantial genetic structure and major differences in the ability to transmit dengue viruses in Ae. aegypti populations in Mexico.

Methodology/Principal Findings

Population genetic studies revealed that the intersection of the Neovolcanic axis (NVA) with the Gulf of Mexico coast in the state of Veracruz acts as a discrete barrier to gene flow among Ae. aegypti populations north and south of the NVA. The mosquito populations north and south of the NVA also differed in their vector competence (VC) for dengue serotype 2 virus (DENV2). The average VC rate for Ae. aegypti mosquitoes from populations from north of the NVA was 0.55; in contrast the average VC rate for mosquitoes from populations from south of the NVA was 0.20. Most of this variation was attributable to a midgut infection and escape barriers. In Ae. aegypti north of the NVA 21.5% failed to develop midgut infections and 30.3% of those with an infected midgut failed to develop a disseminated infection. In contrast, south of the NVA 45.2% failed to develop midgut infections and 62.8% of those with an infected midgut failed to develop a disseminated infection.

Conclusions

Barriers to gene flow in vector populations may also impact the frequency of genes that condition continuous and epidemiologically relevant traits such as vector competence. Further studies are warranted to determine why the NVA is a barrier to gene flow and to determine whether the differences in vector competence seen north and south of the NVA are stable and epidemiologically significant.  相似文献   

10.

Background

Aedes aegypti is the main vector of dengue, a disease that is increasing its geographical range as well as incidence rates. Despite its public health importance, the effect of dengue virus (DENV) on some mosquito traits remains unknown. Here, we investigated the impact of DENV-2 infection on the feeding behavior, survival, oviposition success and fecundity of Ae. aegypti females.

Methods/Principal Findings

After orally-challenging Ae. aegypti females with a DENV-2 strain using a membrane feeder, we monitored the feeding behavior, survival, oviposition success and fecundity throughout the mosquito lifespan. We observed an age-dependent cost of DENV infection on mosquito feeding behavior and fecundity. Infected individuals took more time to ingest blood from anesthetized mice in the 2nd and 3rd weeks post-infection, and also longer overall blood-feeding times in the 3rd week post-infection, when females were around 20 days old. Often, infected Ae. aegypti females did not lay eggs and when they were laid, smaller number of eggs were laid compared to uninfected controls. A reduction in the number of eggs laid per female was evident starting on the 3rd week post-infection. DENV-2 negatively affected mosquito lifespan, since overall the longevity of infected females was halved compared to that of the uninfected control group.

Conclusions

The DENV-2 strain tested significantly affected Ae. aegypti traits directly correlated with vectorial capacity or mosquito population density, such as feeding behavior, survival, fecundity and oviposition success. Infected mosquitoes spent more time ingesting blood, had reduced lifespan, laid eggs less frequently, and when they did lay eggs, the clutches were smaller than uninfected mosquitoes.  相似文献   

11.
A number of studies have shown that both innate and adaptive immune defense mechanisms greatly influence the course of human dengue virus (DENV) infections, but little is known about the innate immune response of the mosquito vector Aedes aegypti to arbovirus infection. We present evidence here that a major component of the mosquito innate immune response, RNA interference (RNAi), is an important modulator of mosquito infections. The RNAi response is triggered by double-stranded RNA (dsRNA), which occurs in the cytoplasm as a result of positive-sense RNA virus infection, leading to production of small interfering RNAs (siRNAs). These siRNAs are instrumental in degradation of viral mRNA with sequence homology to the dsRNA trigger and thereby inhibition of virus replication. We show that although dengue virus type 2 (DENV2) infection of Ae. aegypti cultured cells and oral infection of adult mosquitoes generated dsRNA and production of DENV2-specific siRNAs, virus replication and release of infectious virus persisted, suggesting viral circumvention of RNAi. We also show that DENV2 does not completely evade RNAi, since impairing the pathway by silencing expression of dcr2, r2d2, or ago2, genes encoding important sensor and effector proteins in the RNAi pathway, increased virus replication in the vector and decreased the extrinsic incubation period required for virus transmission. Our findings indicate a major role for RNAi as a determinant of DENV transmission by Ae. aegypti.  相似文献   

12.

Background

The mosquito Aedes aegypti is the primary global vector for dengue and yellow fever viruses. Sequencing of the Ae. aegypti genome has stimulated research in vector biology and insect genomics. However, the current genome assembly is highly fragmented with only ∼31% of the genome being assigned to chromosomes. A lack of a reliable source of chromosomes for physical mapping has been a major impediment to improving the genome assembly of Ae. aegypti.

Methodology/Principal Findings

In this study we demonstrate the utility of mitotic chromosomes from imaginal discs of 4th instar larva for cytogenetic studies of Ae. aegypti. High numbers of mitotic divisions on each slide preparation, large sizes, and reproducible banding patterns of the individual chromosomes simplify cytogenetic procedures. Based on the banding structure of the chromosomes, we have developed idiograms for each of the three Ae. aegypti chromosomes and placed 10 BAC clones and a 18S rDNA probe to precise chromosomal positions.

Conclusion

The study identified imaginal discs of 4th instar larva as a superior source of mitotic chromosomes for Ae. aegypti. The proposed approach allows precise mapping of DNA probes to the chromosomal positions and can be utilized for obtaining a high-quality genome assembly of the yellow fever mosquito.  相似文献   

13.
14.

Identification and classification of high-risk areas for the presence of Aedes aegypti is not an easy task. To develop suitable methods to identify this areas is an essential task that will increase the efficiency and effectiveness of control measures and to optimize the use of resources. The objectives of this study were to identify high- risk areas for the presence of Ae. aegypti using mosquito traps and household visits to identify breeding sites; to identify and validate aspects of the remote sensing images that could characterize these areas; to evaluate the relationship between this spatial risk classification and the occurrence of Ae. aegypti; and provide a methodology to the health and control vector services and prioritize these areas for development of control measure. Information about the geographical coordinates of these traps will enable us to apply the kriging spatial analysis tool to generate maps with the predicted numbers of Ae. aegypti. Satellite images were used to identify the characteristic features the four areas, so that other areas could also be classified using only the sensing remote images. The developed methodology enables the identification of high-risk areas for Ae. aegypti and for the occurrence of Dengue, as well as Zika fever and Chikungunya fever using only sensing remote images. These results allow health and vector control services to prioritize these areas for developing surveillance and control measures. The use of the available resources can be optimized and potentially promote a decrease in the expected incidences of these diseases, particularly Dengue.

  相似文献   

15.
16.

Background

Much effort is being devoted for developing new indicators to evaluate the human exposure to Aedes mosquito bites and the risk of arbovirus transmission. Human antibody (Ab) responses to mosquito salivary components could represent a promising tool for evaluating the human-vector contact.

Methodology/Principal findings

To develop a specific biomarker of human exposure to Aedes aegypti bites, we measured IgG Ab response to Ae. aegypti Nterm-34 kDa salivary peptide in exposed children in 7 villages of Southern Benin (West Africa). Results showed that specific IgG response presented high inter-individual heterogeneity between villages. IgG response was associated with rainfall and IgG level increased from dry (low exposure) to rainy (high exposure) seasons. These findings indicate that IgG Ab to Nterm-34 kDa salivary peptide may represent a reliable biomarker to detect variation in human exposure to Ae. aegypti bites.

Conclusion/Significance

This preliminary study highlights the potential use of Ab response to this salivary peptide for evaluating human exposure to Ae. aegypti. This biomarker could represent a new promising tool for assessing the risk of arbovirus transmission and for evaluating the efficacy of vector control interventions.  相似文献   

17.
Aedes aegypti is implicated in dengue transmission in tropical and subtropical urban areas around the world. Ae. aegypti populations are controlled through integrative vector management. However, the efficacy of vector control may be undermined by the presence of alternative, competent species. In Puerto Rico, a native mosquito, Ae. mediovittatus, is a competent dengue vector in laboratory settings and spatially overlaps with Ae. aegypti. It has been proposed that Ae. mediovittatus may act as a dengue reservoir during inter-epidemic periods, perpetuating endemic dengue transmission in rural Puerto Rico. Dengue transmission dynamics may therefore be influenced by the spatial overlap of Ae. mediovittatus, Ae. aegypti, dengue viruses, and humans. We take a landscape epidemiology approach to examine the association between landscape composition and configuration and the distribution of each of these Aedes species and their co-occurrence. We used remotely sensed imagery from a newly launched satellite to map landscape features at very high spatial resolution. We found that the distribution of Ae. aegypti is positively predicted by urban density and by the number of tree patches, Ae. mediovittatus is positively predicted by the number of tree patches, but negatively predicted by large contiguous urban areas, and both species are predicted by urban density and the number of tree patches. This analysis provides evidence that landscape composition and configuration is a surrogate for mosquito community composition, and suggests that mapping landscape structure can be used to inform vector control efforts as well as to inform urban planning.  相似文献   

18.

Background

A life-shortening strain of the obligate intracellular bacteria Wolbachia, called wMelPop, is seen as a promising new tool for the control of Aedes aegypti. However, developing a vector control strategy based on the release of mosquitoes transinfected with wMelPop requires detailed knowledge of the demographics of the target population.

Methodology/Principal Findings

In Tri Nguyen village (611 households) on Hon Mieu Island in central Vietnam, we conducted nine quantitative entomologic surveys over 14 months to determine if Ae. aegypti populations were spatially and temporally homogenous, and to estimate population size. There was no obvious relationship between mosquito (larval, pupal or adult) abundance and temperature and rainfall, and no area of the village supported consistently high numbers of mosquitoes. In almost all surveys, key premises produced high numbers of Ae. aegypti. However, these premises were not consistent between surveys. For an intervention based on a single release of wMelPop-infected Ae. aegypti, release ratios of infected to uninfected adult mosquitoes of all age classes are estimated to be 1.8–6.7∶1 for gravid females (and similarly aged males) or teneral adults, respectively. We calculated that adult female mosquito abundance in Tri Nguyen village could range from 1.1 to 43.3 individuals of all age classes per house. Thus, an intervention could require the release of 2–78 wMelPop-infected gravid females and similarly aged males per house, or 7–290 infected teneral female and male mosquitoes per house.

Conclusions/Significance

Given the variability we encountered, this study highlights the importance of multiple entomologic surveys when evaluating the spatial structure of a vector population or estimating population size. If a single release of wMelPop-infected Ae. aegypti were to occur when wild Ae. aegypti abundance was at its maximum, a preintervention control program would be necessary to ensure that there was no net increase in mosquito numbers. However, because of the short-term temporal heterogeneity, the inconsistent spatial structure and the impact of transient key premises that we observed, the feasibility of multiple releases of smaller numbers of mosquitoes also needs to be considered. In either case, fewer wMelPop-infected mosquitoes would then need to be released, which will likely be more acceptable to householders.  相似文献   

19.
20.
How microbe–microbe interactions dictate microbial complexity in the mosquito gut is unclear. Previously we found that, Serratia, a gut symbiont that alters vector competence and is being considered for vector control, poorly colonized Aedes aegypti yet was abundant in Culex quinquefasciatus reared under identical conditions. To investigate the incompatibility between Serratia and Ae. aegypti, we characterized two distinct strains of Serratia marcescens from Cx. quinquefasciatus and examined their ability to infect Ae. aegypti. Both Serratia strains poorly infected Ae. aegypti, but when microbiome homeostasis was disrupted, the prevalence and titers of Serratia were similar to the infection in its native host. Examination of multiple genetically diverse Ae. aegypti lines found microbial interference to S. marcescens was commonplace, however, one line of Ae. aegypti was susceptible to infection. Microbiome analysis of resistant and susceptible lines indicated an inverse correlation between Enterobacteriaceae bacteria and Serratia, and experimental co-infections in a gnotobiotic system recapitulated the interference phenotype. Furthermore, we observed an effect on host behavior; Serratia exposure to Ae. aegypti disrupted their feeding behavior, and this phenotype was also reliant on interactions with their native microbiota. Our work highlights the complexity of host–microbe interactions and provides evidence that microbial interactions influence mosquito behavior.Subject terms: Symbiosis, Microbial ecology, Bacterial host response  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号