首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
C. Lai  TFC. Mackay 《Genetics》1990,124(3):627-636
To determine the ability of the P-M hybrid dysgenesis system of Drosophila melanogaster to generate mutations affecting quantitative traits, X chromosome lines were constructed in which replicates of isogenic M and P strain X chromosomes were exposed to a dysgenic cross, a nondysgenic cross, or a control cross, and recovered in common autosomal backgrounds. Mutational heritabilities of abdominal and sternopleural bristle score were in general exceptionally high-of the same magnitude as heritabilities of these traits in natural populations. P strain chromosomes were eight times more mutable than M strain chromosomes, and dysgenic crosses three times more effective than nondysgenic crosses in inducing polygenic variation. However, mutational heritabilities of the bristle traits were appreciable for P strain chromosomes passed through one nondysgenic cross, and for M strain chromosomes backcrossed for seven generations to inbred P strain females, a result consistent with previous observations on mutations affecting quantitative traits arising from nondysgenic crosses. The new variation resulting from one generation of mutagenesis was caused by a few lines with large effects on bristle score, and all mutations reduced bristle number.  相似文献   

2.
J. A. Coyne  S. Aulard    A. Berry 《Genetics》1991,129(3):791-802
In(2LR)PL is a large pericentric inversion polymorphic in populations of Drosophila melanogaster on two Indian Ocean islands. This polymorphism is puzzling: because crossing over in female heterokaryotypes produces inviable zygotes, such inversions are thought to be underdominant and should be quickly eliminated from populations. The observed fixation for such inversions among related species has led to the idea that genetic drift can cause chromosome evolution in opposition to natural selection. We found, however, that In(2LR)PL is not underdominant for fertility, as heterokaryotypic females produce perfectly viable eggs. Genetic analysis shows that the lack of underdominance results from the nearly complete absence of crossing over in the inverted region. This phenomenon is probably caused by mechanical and not genetic factors, because crossing over is not suppressed in In(2LR)PL homokaryotypes. Our observations do not support the idea that the fixation of pericentric inversions among closely related species implies the action of genetic drift overcoming strong natural selection in very small populations. If chromosome arrangements vary in their underdominance, it is those with the least disadvantage as heterozygotes, like In(2LR)PL, that will be polymorphic or fixed in natural populations.  相似文献   

3.
Variation in susceptibility to infectious disease often has a substantial genetic component in animal and plant populations. We have used genome-wide association studies (GWAS) in Drosophila melanogaster to identify the genetic basis of variation in susceptibility to viral infection. We found that there is substantially more genetic variation in susceptibility to two viruses that naturally infect D. melanogaster (DCV and DMelSV) than to two viruses isolated from other insects (FHV and DAffSV). Furthermore, this increased variation is caused by a small number of common polymorphisms that have a major effect on resistance and can individually explain up to 47% of the heritability in disease susceptibility. For two of these polymorphisms, it has previously been shown that they have been driven to a high frequency by natural selection. An advantage of GWAS in Drosophila is that the results can be confirmed experimentally. We verified that a gene called pastrel—which was previously not known to have an antiviral function—is associated with DCV-resistance by knocking down its expression by RNAi. Our data suggest that selection for resistance to infectious disease can increase genetic variation by increasing the frequency of major-effect alleles, and this has resulted in a simple genetic basis to variation in virus resistance.  相似文献   

4.
5.
The X chromosome constitutes a unique genomic environment because it is present in one copy in males, but two copies in females. This simple fact has motivated several theoretical predictions with respect to how standing genetic variation on the X chromosome should differ from the autosomes. Unmasked expression of deleterious mutations in males and a lower census size are expected to reduce variation, while allelic variants with sexually antagonistic effects, and potentially those with a sex-specific effect, could accumulate on the X chromosome and contribute to increased genetic variation. In addition, incomplete dosage compensation of the X chromosome could potentially dampen the male-specific effects of random mutations, and promote the accumulation of X-linked alleles with sexually dimorphic phenotypic effects. Here we test both the amount and the type of genetic variation on the X chromosome within a population of Drosophila melanogaster, by comparing the proportion of X linked and autosomal trans-regulatory SNPs with a sexually concordant and discordant effect on gene expression. We find that the X chromosome is depleted for SNPs with a sexually concordant effect, but hosts comparatively more SNPs with a sexually discordant effect. Interestingly, the contrasting results for SNPs with sexually concordant and discordant effects are driven by SNPs with a larger influence on expression in females than expression in males. Furthermore, the distribution of these SNPs is shifted towards regions where dosage compensation is predicted to be less complete. These results suggest that intrinsic properties of dosage compensation influence either the accumulation of different types of trans-factors and/or their propensity to accumulate mutations. Our findings document a potential mechanistic basis for sex-specific genetic variation, and identify the X as a reservoir for sexually dimorphic phenotypic variation. These results have general implications for X chromosome evolution, as well as the genetic basis of sex-specific evolutionary change.  相似文献   

6.
C. F. Aquadro  K. M. Lado    W. A. Noon 《Genetics》1988,119(4):875-888
A 40-kb region around the rosy and snake loci was analyzed for restriction map variation among 60 lines of Drosophila melanogaster and 30 lines of Drosophila simulans collected together at a single locality in Raleigh, North Carolina. DNA sequence variation in D. simulans was estimated to be 6.3 times greater than in D. melanogaster (heterozygosities per nucleotide of 1.9% vs. 0.3%). This result stands in marked contrast to results of studies of phenotypic variation including proteins (allozymes), morphology and chromosome arrangements which are generally less variable and less geographically differentiated in D. simulans. Intraspecific polymorphism is not distributed uniformly over the 40-kb region. The level of heterozygosity per nucleotide varies more than 12-fold across the region in D. simulans, being highest over the hsc2 gene. Similar, though less extreme, variation in heterozygosity is also observed in D. melanogaster. Average interspecific divergence (corrected for intraspecific polymorphism) averaged 3.8%. The pattern of interspecific divergence over the 40-kb region shows some disparities with the spatial distribution of intraspecific variation, but is generally consistent with selective neutrality predictions: the most polymorphic regions within species are generally the most divergent between species. Sequence-length polymorphism is observed for D. melanogaster to be at levels comparable to other gene regions in this species. In contrast, no sequence length variation was observed among D. simulans chromosomes (limit of resolution approximately 100 bp). These data indicate that transposable elements play at best a minor role in the generation of naturally occurring genetic variation in D. simulans compared to D. melanogaster. We hypothesize that differences in species effective population size are the major determinant of the contrasting levels and patterns of DNA sequence and insertion/deletion variation that we report here and the patterns of allozyme and morphological variation and differentiation reported by other workers for these two species.  相似文献   

7.
Previously, we mapped quantitative trait loci (QTL) affecting response to short-term selection for abdominal bristle number to seven suggestive regions that contain loci involved in bristle development and/or that have adult bristle number mutant phenotypes, and are thus candidates for bristle number QTL in natural populations. To test the hypothesis that the factors contributing to selection response genetically interact with these candidate loci, high and low chromosomes from selection lines were crossed to chromosomes containing wild-type or mutant alleles at the candidate loci, and the numbers of bristles were recorded in trans heterozygotes. Quantitative failure to complement, detected as a significant selection line*cross effect by analysis of variance, can be interpreted as evidence for allelism or epistasis between the factors on selected chromosomes and the candidate loci. Mutations at some candidate loci (bb, emc, h, Dl, Hairless) showed strong interactions with selected chromosomes, whereas others interacted weakly (ASC, abd, Scr) or not at all (N, mab, E(spl)). These results support the hypothesis that some candidate loci, initially identified through mutations of large effect on bristle number, either harbor or are close members in the same genetic pathway as variants that contribute to standing variation in bristle number.  相似文献   

8.
The elements of the transposon families G, copia, mdg 1, 412, and gypsy that are located in the heterochromatin and on the Y chromosome have been identified by the Southern blotting technique in Drosophila simulans and D. melanogaster populations. Within species, the abundance of such elements differs between transposon families. Between species, the abundance in the heterochromatin and on the Y chromosome of the elements of the same family can differ greatly suggesting that differences within a species are unrelated to structural features of elements. By shedding some new light on the mechanism of accumulation of transposable elements in the heterochromatin, these data appear relevant to the understanding of the long-term interaction between transposable elements and the host genome. Received: 8 August 1997 / Accepted: 11 December 1997  相似文献   

9.
10.
11.
12.
13.
14.
Supernumerary chromosomes (B chromosomes) occur in approximately 15% of eukaryote species. Although these chromosomes have been extensively studied, knowledge concerning their specific molecular composition is lacking in most cases. The accumulation of repetitive DNAs is one remarkable characteristic of B chromosomes, and the occurrence of distinct types of multigene families, satellite DNAs and some transposable elements have been reported. Here, we describe the organization of repetitive DNAs in the A complement and B chromosome system in the grasshopper species Abracris flavolineata using classical cytogenetic techniques and FISH analysis using probes for five multigene families, telomeric repeats and repetitive C0t-1 DNA fractions. The 18S rRNA and H3 histone multigene families are highly variable and well distributed in A. flavolineata chromosomes, which contrasts with the conservation of U snRNA genes and less variable distribution of 5S rDNA sequences. The H3 histone gene was an extensively distributed with clusters occurring in all chromosomes. Repetitive DNAs were concentrated in C-positive regions, including the pericentromeric region and small chromosomal arms, with some occurrence in C-negative regions, but abundance was low in the B chromosome. Finally, the first demonstration of the U2 snRNA gene in B chromosomes in A. flavolineata may shed light on its possible origin. These results provide new information regarding chromosomal variability for repetitive DNAs in grasshoppers and the specific molecular composition of B chromosomes.  相似文献   

15.
We have cloned a novel transposable element from the neo-Y chromosome of Drosophila miranda. The size of the element, designated as TRAM, is 3.452 bp, including on both sides long terminal direct repeats (LTRs) of 372 bp, respectively. The element is flanked by a 5-bp target site duplication, ATATG. The putative primer binding site (PBS) for minus-strand priming is complementary to 18 nucleotides of the 3'-end of tRNA(Trp). Data base screens for DNA sequence identities were negative, apart from the sequence motif of the PBS. The deduced amino acid sequence from the large ORF does not reveal identities described for other transposons. In situ hybridizations with TRAM subclones show a biased distribution in the genome, with a massive accumulation of TRAM in the neo-Y chromosome, while the former homologue, the X2 chromosome is devoid of TRAM sites. The enriched occurrence of the TRAM element at the evolving neo-Y chromosome of D.miranda adds compelling evidence in favor of the view that Y chromosome degeneration is driven by the accumulation of transposable elements.  相似文献   

16.
The paternally inherited Y chromosome displays the population genetic history of males. While modern domestic horses (Equus caballus) exhibit abundant diversity within maternally inherited mitochondrial DNA, no significant Y-chromosomal sequence diversity has been detected. We used high throughput sequencing technology to identify the first polymorphic Y-chromosomal markers useful for tracing paternal lines. The nucleotide variability of the modern horse Y chromosome is extremely low, resulting in six haplotypes (HT), all clearly distinct from the Przewalski horse (E. przewalskii). The most widespread HT1 is ancestral and the other five haplotypes apparently arose on the background of HT1 by mutation or gene conversion after domestication. Two haplotypes (HT2 and HT3) are widely distributed at high frequencies among modern European horse breeds. Using pedigree information, we trace the distribution of Y-haplotype diversity to particular founders. The mutation leading to HT3 occurred in the germline of the famous English Thoroughbred stallion “Eclipse” or his son or grandson and its prevalence demonstrates the influence of this popular paternal line on modern sport horse breeds. The pervasive introgression of Thoroughbred stallions during the last 200 years to refine autochthonous breeds has strongly affected the distribution of Y-chromosomal variation in modern horse breeds and has led to the replacement of autochthonous Y chromosomes. Only a few northern European breeds bear unique variants at high frequencies or fixed within but not shared among breeds. Our Y-chromosomal data complement the well established mtDNA lineages and document the male side of the genetic history of modern horse breeds and breeding practices.  相似文献   

17.
18.
A dual culture-based and non–culture-based approach was applied to characterize predator bacterial groups in surface water samples collected from Apalachicola Bay, Florida. Chemotaxis drop assays were performed on concentrated samples in an effort to isolate predator bacteria by their chemotactic ability. Yeast extract (YE) and casamino acids (CA) proved to be strong chemoattractants and resulted in three visibly distinct bands; however, dextrose, succinate, pyruvate, and concentrated cells of Vibrio parahaemolyticus P5 as prey did not elicit any response. The three distinct bands from YE and CA were separately collected to identify the chemotactic microbial assemblages. Plaque-forming unit assays from different chemotaxis bands with P5 as prey indicated 5- (CA) to 10-fold (YE) higher numbers of predator bacteria in the outermost chemotactic bands. Polymerase chain reaction–restriction fragment length polymorphism and 16S rDNA sequencing of clones from different chemotaxis bands resulted in identification of Pseudoalteromonas spp., Marinomonas spp., and Vibrio spp., with their numbers inversely proportional to the numbers of predators—i.e., Bdellovibrio spp. and Bacteriovorax spp—in the chemotaxis bands. This study indicates that predatorial bacteria potentially respond to high densities of microbial biomass in aquatic ecosystems and that chemotaxis drop assay may be an alternate culture-independent method to characterize predatorial bacterial guilds from the environment.  相似文献   

19.
R. M. Kliman  J. Hey 《Genetics》1993,133(2):375-387
A 1.9-kilobase region of the period locus was sequenced in six individuals of Drosophila melanogaster and from six individuals of each of three sibling species: Drosophila simulans, Drosophila sechellia and Drosophila mauritiana. Extensive genealogical analysis of 174 polymorphic sites reveals a complex history. It appears that D. simulans, as a large population still segregating very old lineages, gave rise to the island species D. mauritiana and D. sechellia. Rather than considering these speciation events as having produced ``sister' taxa, it seems more appropriate to consider D. simulans a parent species to D. sechellia and D. mauritiana. The order, in time, of these two phylogenetic events remains unclear. D. mauritiana supports a large number of polymorphisms, many of which are shared with D. simulans, and so appears to have begun and persisted as a large population. In contrast, D. sechellia has very little variation and seems to have experienced a severe population bottleneck. Alternatively, the low variation in D. sechellia could be due to recent directional selection and genetic hitchhiking at or near the per locus.  相似文献   

20.
A physical map of the euchromatic X chromosome of Drosophila melanogaster has been constructed by assembling contiguous arrays of cosmids that were selected by screening a library with DNA isolated from microamplified chromosomal divisions. This map, consisting of 893 cosmids, covers ~64% of the euchromatic part of the chromosome. In addition, 568 sequence tagged sites (STS), in aggregate representing 120 kb of sequenced DNA, were derived from selected cosmids. Most of these STSs, spaced at an average distance of ~35 kb along the euchromatic region of the chromosome, represent DNA tags that can be used as entry points to the fruitfly genome. Furthermore, 42 genes have been placed on the physical map, either through the hybridization of specific probes to the cosmids or through the fact that they were represented among the STSs. These provide a link between the physical and the genetic maps of D. melanogaster. Nine novel genes have been tentatively identified in Drosophila on the basis of matches between STS sequences and sequences from other species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号