首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supernumerary centrosomes contribute to spindle defects and aneuploidy at mitosis, but the effects of excess centrosomes during interphase are poorly understood. In this paper, we show that interphase endothelial cells with even one extra centrosome exhibit a cascade of defects, resulting in disrupted cell migration and abnormal blood vessel sprouting. Endothelial cells with supernumerary centrosomes had increased centrosome scattering and reduced microtubule (MT) nucleation capacity that correlated with decreased Golgi integrity and randomized vesicle trafficking, and ablation of excess centrosomes partially rescued these parameters. Mechanistically, tumor endothelial cells with supernumerary centrosomes had less centrosome-localized γ-tubulin, and Plk1 blockade prevented MT growth, whereas overexpression rescued centrosome γ-tubulin levels and centrosome dynamics. These data support a model whereby centrosome–MT interactions during interphase are important for centrosome clustering and cell polarity and further suggest that disruption of interphase cell behavior by supernumerary centrosomes contributes to pathology independent of mitotic effects.  相似文献   

2.
Centrosome duplication is tightly controlled during faithful cell division, and unnecessary reduplication can lead to supernumerary centrosomes and multipolar spindles that are associated with most human cancer cells. In addition to nucleocytoplasmic transport, the Ran-Crm1 network is involved in regulating centrosome duplication to ensure the formation of a bipolar spindle. Here, we discover that nucleophosmin (NPM) may be a Ran-Crm1 substrate that controls centrosome duplication. NPM contains a functional nuclear export signal (NES) that is responsible for both its nucleocytoplasmic shuttling and its association with centrosomes, which are Ran-Crm1-dependent as they are sensitive to Crm1-specific nuclear export inhibition, either by leptomycin B (LMB) or by the expression of a Ran-binding protein, RanBP1. Notably, LMB treatment induces premature centrosome duplication in quiescent cells, which coincides with NPM dissociation from centrosomes. Moreover, deficiency of NPM by RNA interference results in supernumerary centrosomes, which can be reversed by reintroducing wild-type but not NES-mutated NPM. Mutation of a potential proline-dependent kinase phosphorylation site at residue 95, from threonine to aspartic acid (T95D) within the NES motif, abolishes NPM association and inhibition of centrosome duplication. Our results are consistent with the hypothesis that the Ran-Crm1 complex may promote a local enrichment of NPM on centrosomes, thereby preventing centrosome reduplication.  相似文献   

3.
We have prepared antibodies specific for HSET, the human homologue of the KAR3 family of minus end-directed motors. Immuno-EM with these antibodies indicates that HSET frequently localizes between microtubules within the mammalian metaphase spindle consistent with a microtubule cross-linking function. Microinjection experiments show that HSET activity is essential for meiotic spindle organization in murine oocytes and taxol-induced aster assembly in cultured cells. However, inhibition of HSET did not affect mitotic spindle architecture or function in cultured cells, indicating that centrosomes mask the role of HSET during mitosis. We also show that (acentrosomal) microtubule asters fail to assemble in vitro without HSET activity, but simultaneous inhibition of HSET and Eg5, a plus end-directed motor, redresses the balance of forces acting on microtubules and restores aster organization. In vivo, centrosomes fail to separate and monopolar spindles assemble without Eg5 activity. Simultaneous inhibition of HSET and Eg5 restores centrosome separation and, in some cases, bipolar spindle formation. Thus, through microtubule cross-linking and oppositely oriented motor activity, HSET and Eg5 participate in spindle assembly and promote spindle bipolarity, although the activity of HSET is not essential for spindle assembly and function in cultured cells because of centrosomes.  相似文献   

4.
Chlamydiae are Gram negative, obligate intracellular bacteria, and Chlamydia trachomatis is the etiologic agent of the most commonly reported sexually transmitted disease in the United States. Chlamydiae undergo a biphasic life cycle that takes place inside a parasitophorous vacuole termed an inclusion. Chlamydial infections have been epidemiologically linked to cervical cancer in patients previously infected by human papillomavirus (HPV). The inclusion associates very closely with host cell centrosomes, and this association is dependent upon the host motor protein dynein. We have previously reported that this interaction induces supernumerary centrosomes in infected cells, leading to multipolar mitotic spindles and inhibiting accurate chromosome segregation. Our findings demonstrate that chlamydial infection causes mitotic spindle defects independently of its effects on centrosome amplification. We show that chlamydial infection increases centrosome spread and inhibits the spindle assembly checkpoint delay to disrupt centrosome clustering. These data suggest that chlamydial infection exacerbates the consequences of centrosome amplification by inhibiting the cells' ability to suppress the effects of these defects on mitotic spindle organization. We hypothesize that these combined effects on mitotic spindle architecture identifies a possible mechanism for Chlamydia as a cofactor in cervical cancer formation.  相似文献   

5.
Telomeres and centromeres have traditionally been considered to perform distinct roles. During meiotic prophase, in a conserved chromosomal configuration called the bouquet, telomeres gather to the nuclear membrane (NM), often near centrosomes. We found previously that upon disruption of the fission yeast bouquet, centrosomes failed to insert into the NM at meiosis I and nucleate bipolar spindles. Hence, the trans-NM association of telomeres with centrosomes during prophase is crucial for efficient spindle formation. Nonetheless, in approximately half of bouquet-deficient meiocytes, spindles form properly. Here, we show that bouquet-deficient cells can successfully undergo meiosis using centromere–centrosome contact instead of telomere–centrosome contact to generate spindle formation. Accordingly, forced association between centromeres and centrosomes fully rescued the spindle defects incurred by bouquet disruption. Telomeres and centromeres both stimulate focal accumulation of the SUN domain protein Sad1 beneath the centrosome, suggesting a molecular underpinning for their shared spindle-generating ability. Our observations demonstrate an unanticipated level of interchangeability between the two most prominent chromosomal landmarks.  相似文献   

6.
Aneuploidy, frequently observed in premalignant lesions, disrupts gene dosage and contributes to neoplastic progression. Theodor Boveri hypothesized nearly 100 years ago that aneuploidy was due to an increase in centrosome number (multipolar mitoses) and the resultant abnormal segregation of chromosomes. We performed immunocytochemistry, quantitative immunofluorescence, karyotypic analysis, and time-lapse microscopy on primary human diploid epithelial cells and fibroblasts to better understand the mechanism involved in the production of supernumerary centrosomes (more than two microtubule nucleating bodies) to directly demonstrate that the presence of supernumerary centrosomes in genomically intact cells generates aneuploid daughter cells. We show that loss of p16INK4a generates supernumerary centrosomes through centriole pair splitting. Generation of supernumerary centrosomes in human diploid epithelial cells was shown to nucleate multipolar spindles and directly drive production of aneuploid daughter cells as a result of unequal segregation of the genomic material during mitosis. Finally, we demonstrate that p16INK4a cooperates with p21 through regulation of cyclin-dependent kinase activity to prevent centriole pair splitting. Cells with loss of p16INK4a activity have been found in vivo in histologically normal mammary tissue from a substantial fraction of healthy, disease-free women. Demonstration of centrosome dysfunction in cells due to loss of p16INK4a suggests that, under the appropriate conditions, these cells can become aneuploid. Gain or loss of genomic material (aneuploidy) may provide the necessary proproliferation and antiapoptotic mechanisms needed for the earliest stages of tumorigenesis.  相似文献   

7.
Aneuploidy, frequently observed in premalignant lesions, disrupts gene dosage and contributes to neoplastic progression. Theodor Boveri hypothesized nearly 100 years ago that aneuploidy was due to an increase in centrosome number (multipolar mitoses) and the resultant abnormal segregation of chromosomes. We performed immunocytochemistry, quantitative immunofluorescence, karyotypic analysis, and time-lapse microscopy on primary human diploid epithelial cells and fibroblasts to better understand the mechanism involved in the production of supernumerary centrosomes (more than two microtubule nucleating bodies) to directly demonstrate that the presence of supernumerary centrosomes in genomically intact cells generates aneuploid daughter cells. We show that loss of p16INK4a generates supernumerary centrosomes through centriole pair splitting. Generation of supernumerary centrosomes in human diploid epithelial cells was shown to nucleate multipolar spindles and directly drive production of aneuploid daughter cells as a result of unequal segregation of the genomic material during mitosis. Finally, we demonstrate that p16INK4a cooperates with p21 through regulation of cyclin-dependent kinase activity to prevent centriole pair splitting. Cells with loss of p16INK4a activity have been found in vivo in histologically normal mammary tissue from a substantial fraction of healthy, disease-free women. Demonstration of centrosome dysfunction in cells due to loss of p16INK4a suggests that, under the appropriate conditions, these cells can become aneuploid. Gain or loss of genomic material (aneuploidy) may provide the necessary proproliferation and antiapoptotic mechanisms needed for the earliest stages of tumorigenesis.  相似文献   

8.
Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo.  相似文献   

9.
Accurate mitotic spindle positioning is essential for the regulation of cell fate choices, cell size and cell position within tissues. The most prominent model of spindle positioning involves a cortical pulling mechanism, where the minus end-directed microtubule motor protein dynein is attached to the cell cortex and exerts pulling forces on the plus ends of astral microtubules that reach the cortex. In nonpolarized cultured cells integrin-dependent, retraction fiber-mediated cell adhesion is involved in spindle orientation. Proteins serving as intermediaries between cortical actin or retraction fibers and astral microtubules remain largely unknown. In a recent genome-wide RNAi screen we identified a previously uncharacterized protein, MISP (C19ORF21) as being involved in centrosome clustering, a process leading to the clustering of supernumerary centrosomes in cancer cells into a bipolar mitotic spindle array by microtubule tension. Here, we show that MISP is associated with the actin cytoskeleton and focal adhesions and is expressed only in adherent cell types. During mitosis MISP is phosphorylated by Cdk1 and localizes to retraction fibers. MISP interacts with the +TIP EB1 and p150glued, a subunit of the dynein/dynactin complex. Depletion of MISP causes mitotic arrest with reduced tension across sister kinetochores, chromosome misalignment and spindle multipolarity in cancer cells with supernumerary centrosomes. Analysis of spindle orientation revealed that MISP depletion causes randomization of mitotic spindle positioning relative to cell axes and cell center. Together, we propose that MISP links microtubules to the actin cytoskeleton and focal adhesions in order to properly position the mitotic spindle.  相似文献   

10.
Hepatitis B virus (HBV) includes an X gene (HBx gene) that plays a critical role in liver carcinogenesis. Because centrosome abnormalities are associated with genomic instability in most human cancer cells, we examined the effect of HBx on centrosomes. We found that HBx induced supernumerary centrosomes and multipolar spindles. This effect was independent of mutations in the p21 gene. Furthermore, the ability of HBV to induce supernumerary centrosomes was dependent on the presence of physiological HBx expression. We recently showed that HBx induces cytoplasmic sequestration of Crm1, a nuclear export receptor that binds to Ran GTPase, thereby inducing nuclear localization of NF-kappaB. Consistently, supernumerary centrosomes were observed in cells treated with a Crm1-specific inhibitor but not with an HBx mutant that lacked the ability to sequester Crm1 in the cytoplasm. Moreover, a fraction of Crm1 was found to be localized at the centrosomes. Immunocytochemical and ultrastructural examination of these supernumerary centrosomes revealed that inactivation of Crm1 was associated with abnormal centrioles. The presence of more than two centrosomes led to an increased frequency of defective mitoses and chromosome transmission errors. Based on this evidence, we suggest that Crm1 is actively involved in maintaining centrosome integrity and that HBx disrupts this process by inactivating Crm1 and thus contributes to HBV-mediated carcinogenesis.  相似文献   

11.
The centrosome is a highly regulated organelle and its proper duplication is indispensable for the formation of bipolar mitotic spindles and balanced chromosome segregation. To elucidate a possible linkage between centrosome duplication and radiation-induced nuclear damage, we examined centrosome dynamics in U2-OS osteosarcoma cells following gamma-irradiation. Nearly all control cells contained one or two centrosomes, and at mitosis more than 97% of the cells displayed typical bipolar spindles. In contrast, over 20% of cells at 48 h after 10 Gy gamma-irradiation contained more than two centrosomes, and 60% of the mitotic cells showed aberrant spindles organized by multiple poles. Remarkably, the cells with multiple centrosomes frequently exhibited changes in size and/or morphology of the nucleus, including micronuclei formation. We conclude that abnormal centrosome duplication could be one of the key events involved in nuclear fragmentation and perhaps even cell death following irradiation.  相似文献   

12.
The centrosome is a subcellular organelle from which a cilium assembles. Since centrosomes function as spindle poles during mitosis, they have to be present as a pair in a cell. How the correct number of centrosomes is maintained in a cell has been a major issue in the fields of cell cycle and cancer biology. Centrioles, the core of centrosomes, assemble and segregate in close connection to the cell cycle. Abnormalities in centriole numbers are attributed to decoupling from cell cycle regulation. Interestingly, supernumerary centrioles are commonly observed in cancer cells. In this review, we discuss how supernumerary centrioles are generated in diverse cellular conditions. We also discuss how the cells cope with supernumerary centrioles during the cell cycle.  相似文献   

13.
The presence of supernumerary centrosomes in cells infected with Chlamydia trachomatis may provide a mechanism to explain the association of C. trachomatis genital infection with cervical cancer. We show that the amplified centrosomal foci induced during a chlamydial infection contain both centriolar and pericentriolar matrix markers, demonstrating that they are bona fide centrosomes. As there were multiple immature centrioles but approximately one mature centriole per cell, aborted cytokinesis alone cannot account for centrosome amplification during a chlamydial infection. Production of supernumerary centrosomes required the kinase activities of Cdk2 and Plk4, which are known regulators of centrosome duplication, and progression through S-phase, which is the stage in the cell cycle when duplication of the centrosome occurs. These requirements indicate that centrosome amplification during a chlamydial infection depends on the host centrosome duplication pathway, which normally produces a single procentriole from each template centriole. However, C. trachomatis induces a loss of numerical control so that multiple procentrioles are formed per template.  相似文献   

14.
Aneuploid tumor cells can arise through multipolar mitosis caused by supernumerary centrosomes. Multipolar spindles, however, are antagonistic to cell viability. Thus, most cells derived from such an aberrant mitosis would be eliminated by apoptosis. A rare daughter cell, through chance acquisition of an appropriate chromosome complement and/or gene dosage, could survive and contribute to a clone of aneuploid tumor cells. Survival and perpetuation of the clone, however, requires an additional step - the resumption of mitotic stability through the assembly of a bipolar, not multipolar, spindle. Either selective inactivation of the extra centrosomes or their coalescence into two functional spindle poles corrects the problem of centrosome excess. Current data support coalescence as a mechanism for regulating the number of functional centrosomes in tumor cells.  相似文献   

15.
In vertebrate somatic cells, the centrosome functions as the major microtubule-organizing center (MTOC), which splits and separates to form the poles of the mitotic spindle. However, the role of the centriole-containing centrosome in the formation of bipolar mitotic spindles continues to be controversial. Cells normally containing centrosomes are still able to build bipolar spindles after their centrioles have been removed or ablated. In naturally occurring cellular systems that lack centrioles, such as plant cells and many oocytes, bipolar spindles form in the complete absence of canonical centrosomes. These observations have led to the notion that centrosomes play no role during mitosis. However, recent work has re-examined spindle assembly in the absence of centrosomes, both in cells that naturally lack them and those that have had them experimentally removed. The results of these studies suggest that an appreciation of microtubule network organization, both before and after nuclear envelope breakdown (NEB), is the key to understanding the mechanisms that regulate spindle assembly and the generation of bipolarity.Key words: centrosome, centriole, mitosis, spindle, cell cycle, meiosis, plant cell, microsurgery  相似文献   

16.
The Dictyostelium XMAP215 family member DdCP224 is involved in centrosome duplication and cytokinesis and is concentrated at the centrosome and microtubule tips. Herein, we have created a DdCP224 promoter replacement mutant that allows both over- and underexpression. Overexpression led to supernumerary microtubule-organizing centers and, independently, an increase of the number of multinuclear cells. Electron microscopy demonstrated that supernumerary microtubule-organizing centers represented bona fide centrosomes. Live cell imaging of DdCP224-green fluorescent protein mutants also expressing green fluorescent protein-histone2B as a DNA label revealed that supernumerary centrosomes were also competent of cell cycle-dependent duplication. In contrast, underexpression of DdCP224 inhibited cell growth, reduced the number and length of astral microtubules, and caused nocodazole hypersensitivity. Moreover, microtubule regrowth after nocodazole removal was dependent on DdCP224. Underexpression also resulted in a striking disappearance of supernumerary centrosomes and multinuclear cells caused by previous overexpression. We show for the first time by live cell observation that the number of supernumerary centrosomes can be reduced either by centrosome fusion (coalescence) or by the formation of cytoplasts containing supernumerary centrosomes during cytokinesis.  相似文献   

17.
The centrosome is a unique organelle that functions as the microtubule organizing center in most animal cells. During cell division, the centrosomes form the poles of the bipolar mitotic spindle. In addition, the centrosomes are also needed for cytokinesis. Each mammalian somatic cell typically contains one centrosome, which is duplicated in coordination with DNA replication. Just like the chromosomes, the centrosome is precisely reproduced once and only once during each cell cycle. However, it remains a mystery how this protein-based structure undergoes accurate duplication in a semiconservative manner. Intriguingly, amplification of the centrosome has been found in numerous forms of cancers. Cells with multiple centrosomes tend to form multipolar spindles, which result in abnormal chromosome segregation during mitosis. It has therefore been postulated that centrosome aberration may compromise the fidelity of cell division and cause chromosome instability. Here we review the current understanding of how the centrosome is assembled and duplicated. We also discuss the possible mechanisms by which centrosome abnormality contributes to the development of malignant phenotype.  相似文献   

18.
The centrosome is the microtubule organizing center important for the establishment of the mitotic spindle in animal cells. In mitosis, cells normally contain two centrosomes, one for each pole of the bipolar spindle. If a cell acquires additional centrosomes, it has the potential to build a multi-polar spindle which could lead to catastrophic errors in chromosome segregation. Although such an event is unlikely to produce viable daughter cells, an increase in centrosome number has been shown to cause chromosome instability and produce anneuploid daughter cells 1-3. Accordingly, supernumerary centrosomes have been found in a variety of human cancers and accumulation of additional centrosomes has been associated with the process of tumorigenesis 1, 4-9. Despite the obvious importance of regulating centrosome number, relatively little is known about how centrosome duplication is regulated. Perhaps surprisingly, several recent studies, including three articles in this issue of Cell Cycle, implicate proteins involved in the regulation of chromosome cohesion in the maintenance of centrosome number during mitosis 10-14. Here we will discuss these findings and what they may tell us about the regulation of centrosome number.  相似文献   

19.
Classical anti-mitotic drugs have failed to translate their preclinical efficacy into clinical response in human trials. Their clinical failure has challenged the notion that tumor cells divide frequently at rates comparable to those of cancer cells in vitro and in xenograft models. Given the preponderance of interphase cells in clinical tumors, we asked whether targeting amplified centrosomes, which cancer cells carefully preserve in a tightly clustered conformation throughout interphase, presents a superior chemotherapeutic strategy that sabotages interphase-specific cellular activities, such as migration. Herein we have utilized supercentrosomal N1E-115 murine neuroblastoma cells as a test-bed to study interphase centrosome declustering induced by putative declustering agents, such as Reduced-9-bromonoscapine (RedBr-Nos), Griseofulvin and PJ-34. We found tight ‘supercentrosomal'' clusters in the interphase and mitosis of ~80% of patients'' tumor cells with excess centrosomes. RedBr-Nos was the strongest declustering agent with a declustering index of 0.36 and completely dispersed interphase centrosome clusters in N1E-115 cells. Interphase centrosome declustering caused inhibition of neurite formation, impairment of cell polarization and Golgi organization, disrupted cellular protrusions and focal adhesion contacts—factors that are crucial prerequisites for directional migration. Thus our data illustrate an interphase-specific potential anti-migratory role of centrosome-declustering agents in addition to their previously acknowledged ability to induce spindle multipolarity and mitotic catastrophe. Centrosome-declustering agents counter centrosome clustering to inhibit directional cell migration in interphase cells and set up multipolar mitotic catastrophe, suggesting that disbanding the nuclear–centrosome–Golgi axis is a potential anti-metastasis strategy.Unlike in vitro cell cultures, cancer cells in patients'' tumor tissues have low mitotic indices and proliferation rates.1 Consequently, drugs targeting mitosis demonstrate limited clinical efficacy, which exposes a fundamental weakness in the rationale underlying their clinical development. By contrast, classical microtubule-targeting agents (MTAs), largely believed to act by perturbing mitosis, remain the mainstay of chemotherapy in the clinic. Given the miniscule population of mitotic cells in patient tumors,2, 3 it stands to reason that MTAs must target interphase.4 This paradigm shift has spurred an intense search for novel interphase targets that combine the ‘ideal'' attributes of cancer-cell selectivity and the ability to confer vulnerability on a large proportion of tumor cells.Centrosomes, the major microtubule-organizing centers (MTOCs) of cells, are required for accurate cell division, cell motility and cilia formation.5 The number of centrosomes within a cell is strictly controlled, and their duplication occurs only once per cell cycle. Nearly all types of cancer cells have abnormal numbers of centrosomes,6, 7, 8 which correlates with chromosomal instability during tumorigenesis.9, 10, 11 Supernumerary centrosomes in cancer cells can cause spindle multipolarity and thus non-viable progeny. Cancer cells avoid this outcome by clustering centrosomes to assemble a pseudo-bipolar mitotic spindle, which yields viable daughter cells.12 Thus disrupting centrosome clustering may selectively drive cancer cells with amplified centrosomes to mitotic catastrophe and apoptosis without affecting normal cells.The fate and interphase role of the supercentrosomal cluster inherited by each daughter cell at the end of a pseudobipolar mitosis is unknown. This is an important research question, because a majority of cells within tumors are in interphase and the centrosomes'' command over microtubule nucleation is crucial for the cellular organization and motility in interphase. If cancer cells cluster centrosomes in interphase, then disrupting the cluster could impact interphase-specific processes, opening up a vital therapeutic avenue. We envision that centrosome declustering would (a) derail interphase-specific polarization and migration processes and (b) precipitate multipolar mitosis culminating in apoptosis. This two-pronged strategy would impact a significantly larger proportion of tumor cells and consign them to death. Our study herein establishes that centrosome-declustering drugs (RedBr-Nos, Griseofulvin and PJ-34) achieve this two-pronged attack as a unique class of agents that exhibit multiple cellular activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号