首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
深部脑刺激(deep brain stimulation,DBS)在许多神经系统疾病的临床治疗上都展现出良好的应用前景,然而,其作用机制尚不明确.常规DBS采用高频刺激(high frequency stimulation,HFS)的脉冲序列,这种窄脉冲最容易激活神经元结构中的轴突部分,通过轴突的投射,将HFS的作用传播至下游神经元.因此,为了探讨DBS的作用机制,并鉴于海马脑区是治疗癫痫和痴呆症等疾病的重要靶点,我们研究了海马区轴突HFS对于下游神经元的作用.对麻醉大鼠的海马CA1区传入神经通路Schaffer侧支施加1 min的100 Hz高频刺激,记录并提取下游CA1区锥体神经元和中间神经元的单元锋电位.计算锋电位的发放率,以及它们与刺激脉冲之间的锁相值(phase-locking value,PLV)和潜伏期,以定量分析HFS期间神经元动作电位发放的变化趋势.结果显示,在传入轴突上施加HFS时,初期会诱发下游神经元群体同步产生动作电位(即群峰电位).在HFS后期(群峰电位消失之后),两类神经元的单元锋电位发放仍然持续,并且发放率较稳定.但是,锋电位与刺激脉冲之间的锁相性逐渐减弱、潜伏期逐渐延长.而且,与中间神经元相比较,锥体神经元锋电位的锁相性更弱、潜伏期更长.这些结果表明,持续的轴突HFS可以诱导下游神经元产生非同步的活动,高频脉冲刺激引起的不完全轴突传导阻滞可能是导致该现象产生的主要原因.本文的研究为揭示脑刺激的作用机制提供了重要信息.  相似文献   

2.
Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson’s disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.  相似文献   

3.
Suppression of excessively synchronous beta-band oscillatory activity in the brain is believed to suppress hypokinetic motor symptoms of Parkinson’s disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS). This type of synchrony control was shown to destabilize the synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson’s disease exhibits complex intermittent synchronous patterns, far from the idealized synchronous dynamics used to study the delayed feedback stimulation. This study explores the action of delayed feedback stimulation on partially synchronized oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces experimentally observed fine temporal structure of the synchronous dynamics. When the parameters of our model are such that the synchrony is unphysiologically strong, the feedback exerts a desynchronizing action. However, when the network is tuned to reproduce the highly variable temporal patterns observed experimentally, the same kind of delayed feedback may actually increase the synchrony. As network parameters are changed from the range which produces complete synchrony to those favoring less synchronous dynamics, desynchronizing delayed feedback may gradually turn into synchronizing stimulation. This suggests that delayed feedback DBS in Parkinson’s disease may boost rather than suppress synchronization and is unlikely to be clinically successful. The study also indicates that delayed feedback stimulation may not necessarily exhibit a desynchronization effect when acting on a physiologically realistic partially synchronous dynamics, and provides an example of how to estimate the stimulation effect.  相似文献   

4.
Thalamic deep brain stimulation (DBS) is an effective treatment for tremor, but the mechanisms of action remain unclear. Previous studies of human thalamic neurons to noted transient rebound bursting activity followed by prolonged inhibition after cessation of high frequency extracellular stimulation, and the present study sought to identify the mechanisms underlying this response. Recordings from 13 thalamic neurons exhibiting low threshold spike (LTS) bursting to brief periods of extracellular stimulation were made during surgeries to implant DBS leads in 6 subjects with Parkinson''s disease. The response immediately after cessation of stimulation included a short epoch of burst activity, followed by a prolonged period of silence before a return to LTS bursting. A computational model of a population of thalamocortical relay neurons and presynaptic axons terminating on the neurons was used to identify cellular mechanisms of the observed responses. The model included the actions of neuromodulators through inhibition of a non-pertussis toxin sensitive K+ current (IKL), activation of a pertussis toxin sensitive K+ current (IKG), and a shift in the activation curve of the hyperpolarization-activated cation current (Ih). The model replicated well the measured responses, and the prolonged inhibition was associated most strongly with changes in IKG while modulation of IKL or Ih had minimal effects on post-stimulus inhibition suggesting that neuromodulators released in response to high frequency stimulation are responsible for mediating the post-stimulation bursting and subsequent long duration silence of thalamic neurons. The modeling also indicated that the axons of the model neurons responded robustly to suprathreshold stimulation despite the inhibitory effects on the soma. The findings suggest that during DBS the axons of thalamocortical neurons are activated while the cell bodies are inhibited thus blocking the transmission of pathological signals through the network and replacing them with high frequency regular firing.  相似文献   

5.
目的 深部脑刺激(deep brain stimulation,DBS)利用持续的电脉冲高频刺激(high-frequency stimulation,HFS)调控神经元的活动,可望用于治疗更多脑疾病。为了深入了解HFS的作用机制,促进DBS的发展,本文研究轴突HFS在引起轴突阻滞期间神经元胞体的改变。方法 在麻醉大鼠海马CA1区的锥体神经元轴突上施加脉冲频率为100 Hz的1 min逆向高频刺激(antidromic high-frequency stimulation,A-HFS)。为了研究胞体的响应,利用线性垂直排列的多通道微电极阵列,记录刺激位点上游CA1区锥体神经元胞体附近各结构分层上的诱发电位,包括A-HFS脉冲诱发的逆向群峰电位(antidromic population spike,APS)以及A-HFS期间施加的顺向测试脉冲诱发的顺向群峰电位(orthodromic population spike,OPS),并计算诱发电位的电流源密度(current-source density,CSD),用于分析A-HFS期间锥体神经元胞体附近动作电位的生成和传导。结果 锥体神经...  相似文献   

6.
深部脑刺激(deep brain stimulation,DBS)已成为治疗帕金森病等运动障碍疾病的常规方法之一,并且在许多其他神经和精神疾病的治疗中也具有良好的应用前景.但是,目前常规DBS采用单通道恒定脉冲间隔的高频刺激(high frequency stimulation,HFS),刺激模式缺少多样化,限制了DBS在临床上的推广应用.为了开发更多DBS刺激模式,用于改善疗效、拓展应用范围、并节省刺激器的电能,近年来研究人员基于去同步调控机制,在脉冲序列的时间模式和空间排布两方面开发了DBS新模式.主要包括:变频序列(包括规则变频和随机变频)、不同空间位点上的多通道异步刺激以及变频和多通道两者的结合.这些新刺激模式能够提高DBS的临床疗效、降低刺激能耗,在帕金森病以及癫痫、强迫症和微意识障碍等其他脑疾病的治疗中都展现了良好的应用前景.更值得关注的是,多通道异步刺激不仅在刺激期间具有更好的即时疗效,而且刺激结束后还能长时间保持疗效,具有刺激后效应.这个特性突破了常规DBS主要为即时效应的局限性,展现了DBS新前景.本文在概述常规DBS模式及其去同步调控机制的基础上,综述变频脉冲刺激和...  相似文献   

7.
While high-frequency deep brain stimulation is a well established treatment for Parkinson’s disease, its underlying mechanisms remain elusive. Here, we show that two competing hypotheses, desynchronization and entrainment in a population of model neurons, may not be mutually exclusive. We find that in a noisy group of phase oscillators, high frequency perturbations can separate the population into multiple clusters, each with a nearly identical proportion of the overall population. This phenomenon can be understood by studying maps of the underlying deterministic system and is guaranteed to be observed for small noise strengths. When we apply this framework to populations of Type I and Type II neurons, we observe clustered desynchronization at many pulsing frequencies.  相似文献   

8.
Deep brain stimulation (DBS) has been shown to be clinically effective for some forms of treatment-resistant chronic pain, but the precise mechanisms of action are not well understood. Here, we present an analysis of magnetoencephalography (MEG) data from a patient with whole-body chronic pain, in order to investigate changes in neural activity induced by DBS for pain relief over both short- and long-term. This patient is one of the few cases treated using DBS of the anterior cingulate cortex (ACC). We demonstrate that a novel method, null-beamforming, can be used to localise accurately brain activity despite the artefacts caused by the presence of DBS electrodes and stimulus pulses. The accuracy of our source localisation was verified by correlating the predicted DBS electrode positions with their actual positions. Using this beamforming method, we examined changes in whole-brain activity comparing pain relief achieved with deep brain stimulation (DBS ON) and compared with pain experienced with no stimulation (DBS OFF). We found significant changes in activity in pain-related regions including the pre-supplementary motor area, brainstem (periaqueductal gray) and dissociable parts of caudal and rostral ACC. In particular, when the patient reported experiencing pain, there was increased activity in different regions of ACC compared to when he experienced pain relief. We were also able to demonstrate long-term functional brain changes as a result of continuous DBS over one year, leading to specific changes in the activity in dissociable regions of caudal and rostral ACC. These results broaden our understanding of the underlying mechanisms of DBS in the human brain.  相似文献   

9.
We employ optimal control theory to design an event-based, minimum energy, desynchronizing control stimulus for a network of pathologically synchronized, heterogeneously coupled neurons. This works by optimally driving the neurons to their phaseless sets, switching the control off, and letting the phases of the neurons randomize under intrinsic background noise. An event-based minimum energy input may be clinically desirable for deep brain stimulation treatment of neurological diseases, like Parkinson’s disease. The event-based nature of the input results in its administration only when it is necessary, which, in general, amounts to fewer applications, and hence, less charge transfer to and from the tissue. The minimum energy nature of the input may also help prolong battery life for implanted stimulus generators. For the example considered, it is shown that the proposed control causes a considerable amount of randomization in the timing of each neuron’s next spike, leading to desynchronization for the network.  相似文献   

10.
The medial septum-diagonal band (MSDB) complex is considered as a pacemaker for the hippocampal theta rhythm. Identification of the different cell types, their electro-physiological properties and their possible function in the generation of a synchronized activity in the MSDB is a hot topic. A recent electro-physiological study showed the presence of two antiphasically firing populations of parvalbumin containing GABAergic neurons in the MSDB. Other papers described a network of cluster-firing glutamatergic neurons, which is able to generate synchronized activity in the MSDB. We propose two different computer models for the generation of synchronized population theta oscillation in the MSDB and compare their properties. In the first model GABAergic neurons are intrinsically theta periodic cluster-firing cells; while in the second model GABAergic cells are fast-firing cells and receive periodic input from local glutamatergic neurons simulated as cluster-firing cells. Using computer simulations we show that the GABAergic neurons in both models are capable of generating antiphasic theta periodic population oscillation relying on local, septal mechanisms. In the first model antiphasic theta synchrony could emerge if GABAergic neurons form two populations preferentially innervate each other. In the second model in-phase synchronization of glutamatergic neurons does not require specific network structure, and the network of these cells are able to act as a theta pacemaker for the local fast-firing GABAergic circuit. Our simulations also suggest that neurons being non-cluster-firing in vitro might exhibit clustering properties when connected into a network in vivo. Action Editor: David Golomb  相似文献   

11.
通常采用恒定电脉冲间隔的高频刺激(high-frequency stimulation,HFS),进行深部脑刺激治疗帕金森氏症等运动障碍疾病.为了开发适用于不同脑疾病治疗的新刺激模式,近年来脉冲间隔(inter-pulse-interval,IPI)变化的变频刺激模式受到关注.已有研究表明,即使具有相同的平均电脉冲频率,变频刺激与恒频刺激的治疗效果也不同.我们推测,变频刺激的短小IPI变化就足以改变HFS对于神经元的作用.为了验证此推测,本文在大鼠海马CA1区锥体神经元的输入轴突纤维上交替施加恒频刺激(100或133 Hz,即IPI=10 ms或7.5 ms)和随机变频刺激(100~200 Hz,即IPI=5~10 ms,平均频率为133 Hz),记录并分析刺激下游神经元群体的诱发电位,用于定量评价神经元对于恒频和变频刺激的响应.实验结果表明,持续的恒频刺激使得神经元的响应从最初的同步发放形成的群峰电位(population spike,PS)转变为非同步的动作电位发放(即单元锋电位).但是,当刺激切换为变频模式时,却又可以诱发神经元群体同步产生动作电位,重新形成PS波.并且,变频刺激诱发的PS幅值和神经元发放的同步程度可达基线的单脉冲刺激诱发波的水平.但是,PS的发生率只有脉冲刺激频率的7%左右,表明在持续的变频刺激时,多个脉冲累积的作用才能诱发这种同步的神经元发放.而且PS的出现与前导IPI的长度之间存在一定关系.神经元的轴突和突触等结构对于高频刺激的非线性响应可能是变频刺激诱发同步活动的原因.这些结果表明,变频刺激序列中短小的间隔变化可以产生与恒定间隔不同的调控作用.本文的结果对于揭示脑刺激的作用机制,促进新型刺激模式的开发及其在不同类型脑疾病治疗中的应用具有重要意义.  相似文献   

12.
Deep brain stimulation (DBS) is a common method of combating pathological conditions associated with Parkinson’s disease, Tourette syndrome, essential tremor, and other disorders, but whose mechanisms are not fully understood. One hypothesis, supported experimentally, is that some symptoms of these disorders are associated with pathological synchronization of neurons in the basal ganglia and thalamus. For this reason, there has been interest in recent years in finding efficient ways to desynchronize neurons that are both fast-acting and low-power. Recent results on coordinated reset and periodically forced oscillators suggest that forming distinct clusters of neurons may prove to be more effective than achieving complete desynchronization, in particular by promoting plasticity effects that might persist after stimulation is turned off. Current proposed methods for achieving clustering frequently require either multiple input sources or precomputing the control signal. We propose here a control strategy for clustering, based on an analysis of the reduced phase model for a set of identical neurons, that allows for real-time, single-input control of a population of neurons with low-amplitude, low total energy signals. After demonstrating its effectiveness on phase models, we apply it to full state models to demonstrate its validity. We also discuss the effects of coupling on the efficacy of the strategy proposed and demonstrate that the clustering can still be accomplished in the presence of weak to moderate electrotonic coupling.  相似文献   

13.
Thalamic neurons receive inputs from cortex and their responses are modulated by the basal ganglia (BG). This modulation is necessary to properly relay cortical inputs back to cortex and downstream to the brain stem when movements are planned. In Parkinson's disease (PD), the BG input to thalamus becomes pathological and relay of motor-related cortical inputs is compromised, thereby impairing movements. However, high frequency (HF) deep brain stimulation (DBS) may be used to restore relay reliability, thereby restoring movements in PD patients. Although therapeutic, HF stimulation consumes significant power forcing surgical battery replacements, and may cause adverse side effects. Here, we used a biophysical-based model of the BG-Thalamus motor loop in both healthy and PD conditions to assess whether low frequency stimulation can suppress pathological activity in PD and enable the thalamus to reliably relay movement-related cortical inputs. We administered periodic pulse train DBS waveforms to the sub-thalamic nucleus (STN) with frequencies ranging from 0-140 Hz, and computed statistics that quantified pathological bursting, oscillations, and synchronization in the BG as well as thalamic relay of cortical inputs. We found that none of the frequencies suppressed all pathological activity in BG, though the HF waveforms recovered thalamic reliability. Our rigorous study, however, led us to a novel DBS strategy involving low frequency multi-input phase-shifted DBS, which successfully suppressed pathological symptoms in all BG nuclei and enabled reliable thalamic relay. The neural restoration remained robust to changes in the model parameters characterizing early to late PD stages.  相似文献   

14.
Deep brain stimulation (DBS) is a standard neurosurgical procedure used to treat motor symptoms in about 5% of patients with Parkinson's disease (PD). Despite the indisputable success of this procedure, the biological mechanisms underlying the clinical benefits of DBS have not yet been fully elucidated. The paper starts with a brief review on the use of DBS to treat PD symptoms. The second section introduces a computational model based on the population density approach and the Izhikevich neuron model. We explain why this model is appropriate for investigating macroscopic network effects and exploring the physiological mechanisms which respond to this treatment strategy (i.e., DBS). Finally, we present new insights into the ways this computational model may help to elucidate the dynamic network effects produced in a cerebral structure when DBS is applied.  相似文献   

15.
Deep brain stimulation (DBS) is a common therapy for treating movement disorders, such as Parkinson’s disease (PD), and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP) recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz) in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics). The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications.  相似文献   

16.
Deep brain stimulation (DBS) is a well-established treatment option for a variety of neurological disorders, including Parkinson’s disease and essential tremor. The symptoms of these disorders are known to be associated with pathological synchronous neural activity in the basal ganglia and thalamus. It is hypothesised that DBS acts to desynchronise this activity, leading to an overall reduction in symptoms. Electrodes with multiple independently controllable contacts are a recent development in DBS technology which have the potential to target one or more pathological regions with greater precision, reducing side effects and potentially increasing both the efficacy and efficiency of the treatment. The increased complexity of these systems, however, motivates the need to understand the effects of DBS when applied to multiple regions or neural populations within the brain. On the basis of a theoretical model, our paper addresses the question of how to best apply DBS to multiple neural populations to maximally desynchronise brain activity. Central to this are analytical expressions, which we derive, that predict how the symptom severity should change when stimulation is applied. Using these expressions, we construct a closed-loop DBS strategy describing how stimulation should be delivered to individual contacts using the phases and amplitudes of feedback signals. We simulate our method and compare it against two others found in the literature: coordinated reset and phase-locked stimulation. We also investigate the conditions for which our strategy is expected to yield the most benefit.  相似文献   

17.
深部脑刺激器(deep brain stimulator),也经常被称为脑起搏器,是可植入人体设备,并连续不断地传送刺激脉冲到深部脑组织的特定区域,即所谓的深部脑刺激(deep brain stimulation,DBS).迄今为止,深部脑刺激是治疗严重顽固抗药性运动障碍疾病(如帕金森病,原发性震颤及肌张力异常等)的最有效的外科治疗手段之一.此外,广大的科研工作者也不断地探索应用DBS治疗其他神经及精神异常(如,癫痫和强迫症)的新的临床应用.尽管应用DBS治疗运动障碍非常有效,并也迅速被探索性地应用到其他神经障碍治疗中,但其作用机制仍然不是十分清楚,成为学者们争论的热点.DBS治疗效果的作用机制通常有两种基本的观点:高频刺激抑制学说及高频刺激兴奋学说.基于最近发表的关于中枢神经系统内的高频刺激效应的资料、数据及相关评论,两种机制共存并发挥作用的DBS作用假说被提出,认为DBS通过施加高频刺激干扰并控制了核团病理性紊乱随机活动,同时施加兴奋性刺激到其他基底节的网络,以实现对帕金森病的治疗.  相似文献   

18.
Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD. Application of pallidal closed-loop stimulation leads to dissociation between changes in basal ganglia (BG) discharge rates and patterns, providing insights into PD pathophysiology. Furthermore, cortico-pallidal closed-loop stimulation has a significantly greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-loop DBS and matched control stimulation paradigms. Thus, closed-loop DBS paradigms, by modulating pathological oscillatory activity rather than the discharge rate of the BG-cortical networks, may afford more effective management of advanced PD. Such strategies have the potential to be effective in additional brain disorders in which a pathological neuronal discharge pattern can be recognized.  相似文献   

19.
Reverberating spontaneous synchronized brain activity is believed to play an important role in neural information processing. Whether and how external stimuli can influence this spontaneous activity is poorly understood. Because periodic synchronized network activity is also prominent in in vitro neuronal cultures, we used cortical cultures grown on multielectrode arrays to examine how spontaneous activity is affected by external stimuli. Spontaneous network activity before and after low-frequency electrical stimulation was quantified in several ways. Our results show that the initially stable pattern of stereotypical spontaneous activity was transformed into another activity pattern that remained stable for at least 1 h. The transformations consisted of changes in single site and culture-wide network activity as well as in the spatiotemporal dynamics of network bursting. We show for the first time that low-frequency electrical stimulation can induce long-lasting alterations in spontaneous activity of cortical neuronal networks. We discuss whether the observed transformations in network activity could represent a switch in attractor state.  相似文献   

20.
Deep brain stimulation (DBS) and lesioning are two surgical techniques used in the treatment of advanced Parkinson’s disease (PD) in patients whose symptoms are not well controlled by drugs, or who experience dyskinesias as a side effect of medications. Although these treatments have been widely practiced, the mechanisms behind DBS and lesioning are still not well understood. The subthalamic nucleus (STN) and globus pallidus pars interna (GPi) are two common targets for both DBS and lesioning. Previous studies have indicated that DBS not only affects local cells within the target, but also passing axons within neighboring regions. Using a computational model of the basal ganglia-thalamic network, we studied the relative contributions of activation and silencing of local cells (LCs) and fibers of passage (FOPs) to changes in the accuracy of information transmission through the thalamus (thalamic fidelity), which is correlated with the effectiveness of DBS. Activation of both LCs and FOPs during STN and GPi-DBS were beneficial to the outcome of stimulation. During STN and GPi lesioning, effects of silencing LCs and FOPs were different between the two types of lesioning. For STN lesioning, silencing GPi FOPs mainly contributed to its effectiveness, while silencing only STN LCs did not improve thalamic fidelity. In contrast, silencing both GPi LCs and GPe FOPs during GPi lesioning contributed to improvements in thalamic fidelity. Thus, two distinct mechanisms produced comparable improvements in thalamic function: driving the output of the basal ganglia to produce tonic inhibition and silencing the output of the basal ganglia to produce tonic disinhibition. These results show the importance of considering effects of activating or silencing fibers passing close to the nucleus when deciding upon a target location for DBS or lesioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号