首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  相似文献   

2.
Cytokinesis is the last step of the M (mitosis) phase, yet it is crucial for the faithful division of one cell into two. Cytokinesis failure is often associated with cancer. Cytokinesis can be morphologically divided into four steps: cleavage furrow initiation, cleavage furrow ingression, midbody formation and abscission. Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis. At the same time, Polo-like kinase 1 (Plk1) is a...  相似文献   

3.
Cytokinesis is the final step of cell division which partitions genetic and cytosolic content into daughter cells. Failed cytokinesis causes polyploidy, genetic instability, and cancer. Kinases use phosphorylation to regulate the timing and location of the cytokinetic furrow. Polo-like kinase 1 (Plk1) is an essential mitotic kinase that triggers cytokinesis by phosphorylating MgcRacGAP to create a docking site for Ect2 at the central spindle. Ect2 binds to MgcRacGAP via its N-terminal BRCT domain (BRCA1 C-terminal), which docks at specific phosphorylated residues. Here we investigate the minimal Plk1-dependent phosphorylation sites required for cytokinesis onset. We demonstrate that phosphorylation of the major MgcRacGAP site, S157, is necessary but not sufficient to bind the Ect2 BRCT domain. Phosphorylation of an additional residue on MgcRacGAP at S164 is also required to elicit efficient binding. Surprisingly, BRCT binding additionally requires MKLP1 and its cognate interacting N-terminal domain of MgcRacGAP. Our findings indicate that central spindle assembly and 2 Plk1-dependent phosphorylations are required to establish efficient binding of the Ect2 BRCT in early cytokinesis. We propose that these requirements establish a high threshold to restrain premature or ectopic cytokinesis.  相似文献   

4.
Cytokinesis is the last step of the M (mitosis) phase,yet it is crucial for the faithful division of one cell into two.Cytokinesis failure is often associated with cancer.Cytokinesis can be morphologically divided into four steps:cleavage furrow initiation,cleavage furrow ingression,midbody formation and abscission.Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis.At the same time,Polo-like kinase 1 (Plk1) is an important kinase that can target many substrates and carry out different functions during mitosis,including cytokinesis.Recent studies are beginning to unveil a closer tie between Plk1 and RhoA networks.More specifically,Plk1 phosphorylates the centralspindlin complex Cyk4 and MKLP1/CHO1,thus recruiting RhoA guanine nucleotide-exchange factor (GEF) Ect2 through its phosphopeptide-binding BRCT domains.Ect2 itself can be phosphorylated by Plk1 in vitro.Plk1 can also phosphorylate another GEF MyoGEF to regulate RhoA activity.Once activated,RhoA-GTP will activate downstream effectors,including ROCK1 and ROCK2.ROCK2 is among the proteins that associate with Plk1 Polo-binding domain (PBD) in a large proteomic screen,and Plk1 can phosphorylate ROCK2 in vitro.We review current understandings of the interplay between Plk1,RhoA proteins and other proteins (e.g.,NudC,MKLP2,PRC1,CEP55) involved in cytokinesis,with partitular emphasis of its clinical implications in cancer.  相似文献   

5.
Background information. N‐cadherin, a member of the Ca2+‐dependent cell—cell adhesion molecule family, plays an essential role in the induction of the skeletal muscle differentiation programme. However, the molecular mechanisms which govern the formation of N‐cadherin‐dependent cell—cell contacts in myoblasts remain unexplored. Results. In the present study, we show that N‐cadherin‐dependent cell contact formation in myoblasts is defined by two stages. In the first phase, N‐cadherin is highly mobile in the lamellipodia extensions between the contacting cells. The second stage corresponds to the formation of mature N‐cadherin‐dependent cell contacts, characterized by the immobilization of a pool of N‐cadherin which appears to be clustered in the interdigitated membrane structures that are also membrane attachment sites for F‐actin filaments. We also demonstrated that the formation of N‐cadherin‐dependent cell—cell contacts requires a co‐ordinated and sequential activity of Rac1 and RhoA. Rac1 is involved in the first stage and facilitates N‐cadherin‐dependent cell—cell contact formation, but it is not absolutely required. Conversely, RhoA is necessary for N‐cadherin‐dependent cell contact formation, since, via ROCK (Rho‐associated kinase) signalling and myosin 2 activation, it allows the stabilization of N‐cadherin at the cell—cell contact sites. Conclusions. We have shown that Rac1 and RhoA have opposite effects on N‐cadherin‐dependent cell—cell contact formation in C2C12 myoblasts and act sequentially to allow its formation.  相似文献   

6.
Wei H  Fang L  Song J  Chatterjee S 《FEBS letters》2005,579(5):1272-1278
The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are known to inhibit leukocyte recruitment to endothelium but the mechanism is less understood. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is an endothelial junction protein involved in leukocyte diapedesis. We hypothesize that in endothelial cells, statins may well recruit PECAM-1 to exert their inhibitory effect on leukocyte trans-endothelial migration (TEM). In lovastatin-treated resting human umbilical vein endothelial cells (HUVECs), increased levels of mRNA and protein of PECAM-1 as well as its bio-synthesis (all approximately 2-fold) were observed by real-time PCR, Western blotting and 35S-labeled methionine incorporation assay, respectively. Moreover, in lovastatin treated resting cells as well as TNF-alpha activated endothelial cells, unanimously decreased Triton X-100 insoluble and soluble PECAM-1 ratio was observed. Such changes were accompanied by decreased TEM of U-937 cells (a promonocyte cell line). All lovastatin's effects were abrogated by mevalonic acid. In resting HUVECs, geranylgeranyl pyrophosphate (GGPP), but not farnesyl pyrophosphate (FPP) (both are isoprenoid intermediates in the cholesterol biosynthesis pathway) compromised the effect of lovastatin on PECAM-1 expression, whereas C3 toxin, an inhibitor of small G proteins, exerted statin-like effect. CONCLUSION: Statin-reduced endothelial permeability could be attributed to altered intracellular distribution of PECAM-1 in endothelial cells. We speculate that lovastatin regulates PECAM-1 expression in HUVECs through the mevalonate-GGPP pathway by inhibiting of Rho small GTPase.  相似文献   

7.
β‐Catenin is a multifunctional protein and participates in numerous processes required for embryonic development, cell proliferation, and homeostasis through various molecular interactions and signaling pathways. To date, however, there is no direct evidence that β‐catenin contributes to cytokinesis. Here, we identify a novel p‐S60 epitope on β‐catenin generated by Plk1 kinase activity, which can be found at the actomyosin contractile ring of early telophase cells and at the midbody of late telophase cells. Depletion of β‐catenin leads to cytokinesis‐defective phenotypes, which eventually result in apoptotic cell death. In addition, phosphorylation of β‐catenin Ser60 by Plk1 is essential for the recruitment of Ect2 to the midbody, activation of RhoA, and interaction between β‐catenin, Plk1, and Ect2. Time‐lapse image analysis confirmed the importance of β‐catenin phospho‐Ser60 in furrow ingression and the completion of cytokinesis. Taken together, we propose that phosphorylation of β‐catenin Ser60 by Plk1 in cooperation with Ect2 is essential for the completion of cytokinesis. These findings may provide fundamental knowledge for the research of cytokinesis failure‐derived human diseases.  相似文献   

8.
9.
10.
G-protein-coupled receptors signal through Rho to induce actin cytoskeletal rearrangement. We previously demonstrated that thrombin stimulates Rho-dependent process retraction and rounding of 1321N1 astrocytoma cells. Surprisingly, while lysophosphatidic acid (LPA) activated RhoA in 1321N1 cells, it failed to produce cell rounding. Thrombin, unlike LPA, decreased Rac1 activity, and activated (GTPase-deficient) Rac1 inhibited thrombin-stimulated cell rounding, while expression of dominant-negative Rac1 promoted LPA-induced rounding. LPA and thrombin receptors appear to differ in coupling to Gi, as LPA but not thrombin-stimulated 1321N1 cell proliferation was pertussis toxin-sensitive. Blocking Gi with pertussis toxin enabled LPA to induce cell rounding and to decrease activated Rac1. These data support the hypothesis that Rac1 and Gi activation antagonize cell rounding. Thrombin and LPA receptors also differentially activated Gq pathways as thrombin but not LPA increased InsP3 formation and reduced phosphatidylinositol 4,5-bisphosphate (PIP2) levels. Microinjection of the plekstrin homology domain of phospholipase C (PLC)delta1, which binds PIP2, enabled LPA to elicit cell rounding, consistent with a requirement for PIP2 reduction. We suggest that Rho-mediated cytoskeletal responses are enhanced by concomitant reductions in cellular levels of PIP2 and Rac1 activation and thus effected only by G-protein-coupled receptors with appropriate subsets of G protein activation.  相似文献   

11.
Prokaryotic plasmids encode partitioning (par) loci involved in segregation of DNA to daughter cells at cell division. A functional fusion protein consisting of Walker-type ParA ATPase and green fluorescent protein (Gfp) oscillates back and forth within nucleoid regions with a wave period of about 20 minutes. A model is discussed which is based on cooperative non-specific binding of ParA to the nucleoid, and local ParB initiated generation of ParA oligomer degradation products, which act autocatalytically on the degradation reaction. The model yields self-initiated spontaneous pattern formation, based on Turing's mechanism, and these patterns are destroyed by the degradation products, only to initiate a new pattern at the opposite nucleoid region. A recurrent wave thus emerges. This may be a particular example of a more general class of pattern forming mechanisms, based on protein oligomerization upon a template (membranes, DNA a.o.) with resulting enhanced NTPase function in the oligomer state, which may bring the oligomer into an unstable internal state. An effector initializes destabilization of the oligomer to yield degradation products, which act as seeds for further degradation in an autocatalytic process. We discuss this mechanism in relation to recent models for MinDE oscillations in E.coli and to microtubule degradation in mitosis. The study points to an ancestral role for the presented pattern types in generating bipolarity in prokaryotes and eukaryotes.  相似文献   

12.
Rab35 is one of the first discovered members of the large Rab GTPase family, yet it received little attention for 10 years being considered merely as a Rab1‐like GTPase. In 2006, Rab35 was recognized as a unique Rab GTPase localized both at the plasma membrane and on endosomes, playing essential roles in endocytic recycling and cytokinesis. Since then, Rab35 has become one of the most studied Rabs involved in a growing number of cellular functions, including endosomal trafficking, exosome release, phagocytosis, cell migration, immunological synapse formation and neurite outgrowth. Recently, Rab35 has been acknowledged as an oncogenic GTPase with activating mutations being found in cancer patients. In this review, we provide a comprehensive summary of known Rab35‐dependent cellular functions and detail the few Rab35 effectors characterized so far. We also review how the Rab35 GTP/GDP cycle is regulated, and emphasize a newly discovered mechanism that controls its tight activation on newborn endosomes. We propose that the involvement of Rab35 in such diverse and apparently unrelated cellular functions can be explained by the central role of this GTPase in regulating phosphoinositides and F‐actin, both on endosomes and at the plasma membrane.   相似文献   

13.
A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis   总被引:1,自引:0,他引:1  
Salicylic acid (SA) plays a key role in activating defenses and cell death during plant-pathogen interactions. In response to some pathogens, SA also limits the extent of cell death, indicating that it acts positively or negatively depending on the host-pathogen interaction. In addition, we previously showed that SA affects cell growth in the Arabidopsis defense-related mutants accelerated cell death 6-1 (acd6-1) and aberrant growth and death 2 (agd2). Using acd6-1, agd2 and two other defense-related mutants, lesion simulating disease 6 (lsd6), suppressor of SA-insensitivity (ssi1), we show here in detail that SA regulates cell growth by specifically affecting cell enlargement, endoreduplication and/or cell division. We find that SA can act either positively or negatively to regulate cell growth depending on the context in which signaling occurs. Additionally, Nonexpressor of PR 1 (NPR1), a key SA signaling protein important for regulating defenses and cell death, also acts to promote cell division and/or suppress endoreduplication during leaf development. We propose that SA interacts with multiple receptors or signaling pathways to control cellular alterations during normal development, pathogen attack and/or stress situations. We suggest that SA and NPR1 play broader roles in cell fate control than has previously been understood.  相似文献   

14.
为探讨痘苗病毒表达的Eoskein-Barr病毒(EBV)核抗原1、4(EBNA1、4)和潜伏膜蛋白1、2(LMP1、2),在不同人群的特异性T细胞杀伤9CTL)中的作用,采集EBV阴性正常人、未经治疗的鼻咽癌(NPC)病人的EBV-IgA/VCA阳性者各10人的周围血淋巴单核细胞(PBMC),用EBV转化B淋巴细胞,建立类淋巴母细胞(LCL),用LCL刺激自休的T淋巴细胞作为效应细胞,以LCL感染重组痘苗病毒表达的EBNA1、4和LMP1、2为靶细胞,以^51Cr释放法检测EBV特异性CTL所识别的靶抗原。结果表明,EBV-LMP1、2可能既是EBV特异性T细胞的刺激抗原,又是其识别的靶抗原。将采集的30例试验者的各5 单克隆T细胞株分别检测HLA-Ⅰ型(A、B、C),按照不同型别寻找相对应的EBNA1、4和LMP1、2的不同合成肽,应用酶免疫吸附斑点法(Elispot)检测EBV特异性CD8^ 的CTL应答。结果显示:10例正常人中9人有特异的LMP2应答,4人有特异的EBNA4应答;10例未治疗的NPC病人中3人有特异的LMP2,2人有特异的EBNA1,3个有特异的EBNA4应答;10例未治疗的NPC病人中3人有特异的EBNA1,3人有特异的EBNA4应答,在10例EBV-IgA/VCAbj ntg k ,6人有特异的LMP2,5人有特异的EBNA4应答。所有的试验者均未发现LMP1的特异性应答。  相似文献   

15.
HIV-1, the etiologic agent of human AIDS, causes cell death in host and non-host cells via HIV-1 Vpr, one of its auxiliary gene product. HIV-1 Vpr can also cause cell cycle arrest in several cell types. The cellular processes that link HIV-1 Vpr to the cell death machinery are not well characterized. Here, we show that the C terminal portion of HIV-1 Vpr which encompasses amino acid residues 71-96 (HIV-1 Vpr(71-96)), also termed HIV-1 Vpr cell death causing peptide, is an activator of protein phosphatase-2A(1) when applied extracellularly to CD(4+) T cells. HIV-1 Vpr(71-96) is a direct activator of protein phosphatase-2A(1) that has been purified from CD(4+) T cells. Full length HIV-1 Vpr by itself does not cause the activation of protein phosphatase-2A(1) in vitro. HIV-1 Vpr(71-96) also causes the activation of protein phosphatase-2A(0) and protein phosphatase-2A(1) from brain, liver, and adipose tissues. These results indicate that HIV-1 can cause cell death of infected cells and non-infected host and non-host cells via HIV-1 Vpr derived C terminal peptide(s) which act(s) by cell penetration and targeting of a key controller of the cell death machinery, namely, protein phosphatase-2A(1). The activation of other members of the protein phosphatase-2A subfamily of enzymes which are involved in the control of several metabolic pathways in brain, liver, and adipose tissues by HIV-1 Vpr derived C terminal peptide(s) may underlie various metabolic disturbances that are associated with HIV-1 infection.  相似文献   

16.
《Current biology : CB》2020,30(10):1855-1865.e4
  1. Download : Download high-res image (102KB)
  2. Download : Download full-size image
  相似文献   

17.
18.
Copine1 (CPNE1) has tandem C2 domains and an A domain and is known as a calcium-dependent membrane-binding protein that regulates signal transduction and membrane trafficking. We previously demonstrated that CPNE1 directly induces neuronal differentiation via Akt phosphorylation in the hippocampal progenitor cell line, HiB5. To determine which region of CPNE1 is related to HiB5 cell neurite outgrowth, we constructed several mutants. Our results show that over-expression of each C2 domain of CPNE1 increased neurite outgrowth and expression of the neuronal marker protein neurofilament (NF). Even though protein localization of the calcium binding-deficient mutant of CPNE1 was not affected by ionomycin, this mutant increased neurite outgrowth and NF expression in HiB5 cells. Furthermore, Akt phosphorylation was increased by over-expression of the calcium binding-deficient CPNE1 mutant. These results suggest that neither cellular calcium levels nor the localization of CPNE1 affect its function in neuronal differentiation. Collectively, our findings indicating that the C2 domains of CPNE1 play a calcium-independent role in regulating the neuronal differentiation of HiB5 cells.  相似文献   

19.
20.
目的:研究AFAP1在博来霉素诱导的A549细胞衰老模型中的作用及分子机制。方法:用50μg/m L的博来霉素处理A549细胞5天建立细胞衰老模型。用相同浓度的博来霉素处理细胞1-5天观察细胞从周期阻滞到衰老的过程,SA-β-Gal染色检测衰老细胞数目,用Western blot方法检测AFAP1、p21、c-Src等蛋白表达。过表达AFAP1后,观察细胞衰老状态及各蛋白表达水平变化。结果:50μg/m L的博来霉素处理A549细胞5天后可以建立细胞衰老模型,表现为BLM组SA-β-Gal阳性细胞数升高(P0.01)且细胞体积显著增大(P0.01),p21表达水平升高。在衰老的A549细胞中,AFAP1和激活型(Src p Y416)表达水平变化一致,从BLM处理后出现升高第4天开始明显下降在第5天最低,c-Src和Src p Y527表达水平不变。过表达AFAP1后再用博来霉素诱导,SA-β-Gal阳性细胞数及细胞体积、Src p Y416和p21表达与空载对照比较未发现有明显差异(P0.05)。结论:衰老的A549细胞中AFAP1表达下调,c-Src活性降低;过表达AFAP1不能减轻博来霉素诱导的A549细胞衰老,也不能抑制衰老细胞中的c-Src的活性下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号