首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
N-phenyl ureidobenzenesulfonates (PUB-SOs) is a new class of promising anticancer agents inducing replication stresses and cell cycle arrest in S-phase. However, the pharmacological target of PUB-SOs was still unidentified. Consequently, the objective of the present study was to identify and confirm the pharmacological target of the prototypical PUB-SO named 2-ethylphenyl 4-(3-ethylureido)benzenesulfonate (SFOM-0046) leading to the cell cycle arrest in S-phase. The antiproliferative and the cytotoxic activities of SFOM-0046 were characterized using the NCI-60 screening program and its fingerprint was analyzed by COMPARE algorithm. Then, human dihydroorotate dehydrogenase (hDHODH) colorimetric assay, uridine rescuing cell proliferation and molecular docking in the brequinar-binding site were performed. As a result, SFOM-0046 exhibited a mean antiproliferative activity of 3.5 μM in the NCI-60 screening program and evidenced that leukemia and colon cancer cell panels were more sensitive to SFOM-0046. COMPARE algorithm showed that the SFOM-0046 cytotoxic profile is equivalent to the ones of brequinar and dichloroallyl lawsone, two inhibitors of hDHODH. SFOM-0046 inhibited the hDHODH in the low nanomolar range (IC50 = 72 nM) and uridine rescued the cell proliferation of HT-29, HT-1080, M21 and MCF-7 cancer cell lines in the presence of SFOM-0046. Finally, molecular docking showed a binding pose of SFOM-0046 interacting with Met43 and Phe62 present in the brequinar-binding site. In conclusion, PUB-SOs and notably SFOM-0046 are new small molecules hDHODH inhibitors triggering replication stresses and S-phase arrest.  相似文献   

2.
3.
Sirtuins (SIRT1–SIRT7) are an evolutionary conserved family of NAD+-dependent protein deacylases regulating the acylation state of ε-N-lysine residues of proteins thereby controlling key biological processes. Numerous studies have found association of the aberrant enzymatic activity of SIRTs with various diseases like diabetes, cancer and neurodegenerative disorders. Previously, we have shown that substituted 2-alkyl-chroman-4-one/chromone derivatives can serve as selective inhibitors of SIRT2 possessing an antiproliferative effect in two human cancer cell lines. In this study, we have explored the bioisosteric replacement of the chroman-4-one/chromone core structure with different less lipophilic bicyclic scaffolds to overcome problems associated to poor physiochemical properties due to a highly lipophilic substitution pattern required for achieve a good inhibitory effect. Various new derivatives based on the quinolin-4(1H)-one scaffold, bicyclic secondary sulfonamides or saccharins were synthesized and evaluated for their SIRT inhibitory effect. Among the evaluated scaffolds, the benzothiadiazine-1,1-dioxide-based compounds showed the highest SIRT2 inhibitory activity. Molecular modeling studies gave insight into the binding mode of the new scaffold-replacement analogues.  相似文献   

4.
5.
Allostery in proteins plays an important role in regulating protein activities and influencing many biological processes such as gene expression, enzyme catalysis, and cell signaling. The process of allostery takes place when a signal detected at a site on a protein is transmitted via a mechanical pathway to a functional site and, thus, influences its activity. The pathway of allosteric communication consists of amino acids that form a network with covalent and non-covalent bonds. By mutating residues in this allosteric network, protein engineers have successfully established novel allosteric pathways to achieve desired properties in the target protein. In this review, we highlight the most recent and state-of-the-art techniques for allosteric communication engineering. We also discuss the challenges that need to be overcome and future directions for engineering protein allostery.  相似文献   

6.
Nanoscale design and construction of affinity-based drug delivery systems (ADDS) is an active research area with enormous potential for the improvement of cancer treatment. For the therapeutic load of these ADDS, a promising strategy is the design of pH-sensitive prodrugs based on the construction of conjugates between adamantane and doxorubicin (Ad-Dox), which stands out as an excellent model system to obtain novel supramolecular materials. Construction of these prodrugs involves a modification of three zones of doxorubicin which in principle does not affect the action mechanism: the carbonyl group C13 (hydrazone linker), the primary alcohol neighboring the carbonyl (ester linker) and the 3′ amino group of daunosamine sugar (amide linker). These modifications are aimed to improve the efficacy and reduce the systemic toxicity of the drug chemotherapy by controlling its release in cancer cells. In this work, we performed 2D NMR experiments and molecular dynamics simulations to characterize the conformational changes of three constructed prodrugs. Our results demonstrated that ring A and the daunsamine sugar of the hydrazone and amide linkers conserve the half-chair state 9H8, while the ester linker disrupts this conformation. Our study also showed that the hydrazone-linked compound (Ad-h-Dox) does not modify the conformation of the original drug and maintains cytotoxic activity. Moreover, the inclusion complex (IC) of Ad-h-Dox with β-cyclodextrin (βCD) generated a highly soluble platform in water, whereas the ester-linked compound (Ad-e-Dox) causes the loss of biological activity. This study proves that Ad-h-Dox prodrug can be an optimum prodrug and act as a building block for a more complex drug transport system.  相似文献   

7.
Myeloperoxidase (MPO) is a heme peroxidase found in neutrophils, monocytes and macrophages that efficiently catalyzes the oxidation of endogenous chloride into hypochlorous acid for antimicrobial activity. Chronic MPO activation can lead to indiscriminate protein modification causing tissue damage, and has been associated with chronic inflammatory diseases, atherosclerosis, and acute cardiovascular events. Triazolopyrimidine 5 is a reversible MPO inhibitor; however it suffers from poor stability in acid, and is an irreversible inhibitor of the DNA repair protein methyl guanine methyl transferase (MGMT). Structure-based drug design was employed to discover benzyl triazolopyridines with improved MPO potency, as well as acid stability, no reactivity with MGMT, and selectivity against thyroid peroxidase (TPO). Structure-activity relationships, a crystal structure of the MPO-inhibitor complex, and acute in vivo pharmacodynamic data are described herein.  相似文献   

8.
SARS-CoV-2, previously named 2019 novel coronavirus (2019-nCoV), has been associated with the global pandemic of acute respiratory distress syndrome. First reported in December 2019 in the Wuhan province of China, this new RNA virus has several folds higher transmission among humans than its other family member (SARS-CoV and MERS-CoV). The SARS-CoV-2 spike receptor-binding domain (RBD) is the region mediating the binding of the virus to host cells via Angiotensin-converting enzyme 2 (ACE2), a critical step of viral. Here in this study, we have utilized in silico approach for the virtual screening of antiviral library extracted from the Asinex database against the Receptor binding domain (RBD) of the S1 subunit of the SARS-CoV-2 spike glycoprotein. Further, the molecules were ranked based on their binding affinity against RBD, and the top 15 molecules were selected. The affinity of these selected molecules to interrupt the ACE2-Spike interaction was also studied. It was found that the chosen molecules were demonstrating excellent binding affinity against spike protein, and these molecules were also very effectively interrupting the ACE2-RBD interaction.Furthermore, molecular dynamics (MD) simulation studies were utilized to investigate the top 3 selected molecules' stability in the ACE2-RBD complexes. To the best of our knowledge, this is the first study where molecules' inhibitory potential against the Receptor binding domain (RBD) of the S1 subunit of the SARS-CoV-2 spike glycoprotein and their inhibitory potential against the ACE2-Spike has been studied. We believe that these compounds can be further tested as a potential therapeutic option against COVID-19.  相似文献   

9.
Aberrant hedgehog (Hh) pathway signaling is implicated in multiple cancer types and targeting the Smoothened (SMO) receptor, a key protein of the Hh pathway, has proven effective in treating metastasized basal cell carcinoma. Our lead optimization effort focused on a series of heteroarylamides. We observed that a methyl substitution ortho to the heteroaryl groups on an aniline core significantly improved the potency of this series of compounds. These findings predated the availability of SMO crystal structure in 2013. Here we retrospectively applied quantum mechanics calculations to demonstrate the o-Me substitution favors the bioactive conformation by inducing a dihedral twist between the heteroaryl rings and the core aniline. The o-Me also makes favorable hydrophobic interactions with key residue side chains in the binding pocket. From this effort, two compounds (AZD8542 and AZD7254) showed excellent pharmacokinetics across multiple preclinical species and demonstrated in vivo activity in abrogating the Hh paracrine pathway as well as anti- tumor effects.  相似文献   

10.
The LAGLIDADG family of homing endonucleases (LHEs) bind to and cleave their DNA recognition sequences with high specificity. Much of our understanding for how these proteins evolve their specificities has come from studying LHE homologues. To gain insight into the molecular basis of LHE specificity, we characterized I-WcaI, the homologue of the Saccharomyces cerevisiae I-SceI LHE found in Wickerhamomyces canadensis. Although I-WcaI and I-SceI cleave the same recognition sequence, expression of I-WcaI, but not I-SceI, is toxic in bacteria. Toxicity suppressing mutations frequently occur at I-WcaI residues critical for activity and I-WcaI cleaves many more non-cognate sequences in the Escherichia coli genome than I-SceI, suggesting I-WcaI endonuclease activity is the basis of toxicity. In vitro, I-WcaI is a more active and a less specific endonuclease than I-SceI, again accounting for the observed toxicity in vivo. We determined the X-ray crystal structure of I-WcaI bound to its cognate target site and found that I-WcaI and I-SceI use residues at different positions to make similar base-specific contacts. Furthermore, in some regions of the DNA interface where I-WcaI specificity is lower, the protein makes fewer DNA contacts than I-SceI. Taken together, these findings demonstrate the plastic nature of LHE site recognition and suggest that I-WcaI and I-SceI are situated at different points in their evolutionary pathways towards acquiring target site specificity.  相似文献   

11.
Aging is a naturally biological process with adverse effects. The continuous accumulation of reactive oxygen species (ROS) trigger cellular and tissue damage by activating several aging enzymes. The antioxidant properties of traditional medicinal plants used by Jakun aborigine’s community are a promising approach to alleviate aging process and prevent Alzheimer. The aim of the current investigation was to optimize a novel anti-aging formulation from traditional plants (Cnestis palala stem, Urceola micrantha stem, Marantodes pumilum stem and Microporus xanthopus fruiting bodies) using simplex centroid mixture design (SCMD). After selecting the optimal formulations based on desirability function of antioxidant activity (DPPḢ, ABTṠ+ and FRAP), they were further examined against the activity of aging-related-enzymes (collagenase, tyrosinase, acetyl- and butyrylcholinesterase). The single extracts of C. palala, U. micrantha and the binary mixture of C. palala and U. micrantha were the optimal formulations with high antioxidant activities. Single extract of U. micrantha showed the highest inhibition towards matrix metalloproteinase-1 (49.44 ± 4.11 %), while C. palala water extract showed highest inhibitions towards tyrosinase (14.06 ± 0.31%), acetylcholinesterase (32.92 ± 2.13%) and butyrylcholinesterase (34.89 ± 2.84%) enzymes. The single extracts of C. palala and U. micrantha displayed better activity as compared to the binary mixture formulation. In conclusion, these findings could be a baseline for further exploration of novel anti-aging agents from natural resources.  相似文献   

12.
The incidence of Alzheimer’s disease (AD) has risen exponentially worldwide over the past decade. A growing body of research indicates that AD is linked to diabetes mellitus (DM) and suggests that impaired insulin signaling acts as a crucial risk factor in determining the progression of this devastating disease. Many studies suggest people with diabetes, especially type 2 diabetes, are at higher risk of eventually developing Alzheimer's dementia or other dementias. Despite nationwide efforts to increase awareness, the prevalence of Diabetes Mellitus (DM) has risen significantly in the Middle East and North African (MENA) region which might be due to rapid urbanization, lifestyle changes, lack of physical activity and rise in obesity. Growing body of evidence indicates that DM and AD are linked because both conditions involve impaired glucose homeostasis and altered brain function. Current theories and hypothesis clearly implicate that defective insulin signaling in the brain contributes to synaptic dysfunction and cognitive deficits in AD. In the periphery, low-grade chronic inflammation leads to insulin resistance followed by tissue deterioration. Thus insulin resistance acts as a bridge between DM and AD. There is pressing need to understand on how DM increases the risk of AD as well as the underlying mechanisms, due to the projected increase in age related disorders. Here we aim to review the incidence of AD and DM in the Middle East and the possible link between insulin signaling and ApoE carrier status on Aβ aggregation, tau hyperphosphorylation, inflammation, oxidative stress and mitochondrial dysfunction in AD. We also critically reviewed mutation studies in Arab population which might influence DM induced AD. In addition, recent clinical trials and animal studies conducted to evaluate the efficiency of anti-diabetic drugs have been reviewed.  相似文献   

13.
Membranes form the first line of defence of bacteria against potentially harmful molecules in the surrounding environment. Understanding the protective properties of these membranes represents an important step towards development of targeted anti-bacterial agents such as sanitizers. Use of propanol, isopropanol and chlorhexidine can significantly decrease the threat imposed by bacteria in the face of growing anti-bacterial resistance via mechanisms that include membrane disruption. Here we have employed molecular dynamics simulations and nuclear magnetic resonance to explore the impact of chlorhexidine and alcohol on the S. aureus cell membrane, as well as the E. coli inner and outer membranes. We identify how sanitizer components partition into these bacterial membranes, and show that chlorhexidine is instrumental in this process.  相似文献   

14.
Much of our understanding of the homologous recombination (HR) machinery hinges on studies using Escherichia coli as a model organism. Interestingly enough, studies on the HR machinery in different bacterial species casts doubt on the universality of the E. coli paradigm. The human pathogen Mycobacterium tuberculosis encodes two Holliday junction (HJ)‐resolvase paralogues, namely RuvC and RuvX; however, insights into their structural features and functional relevance is still limited. Here, we report on structure-guided functional studies of the M. tuberculosis RuvX HJ resolvase (MtRuvX). The crystalline MtRuvX is a dimer in the asymmetric unit, and each monomer has a RNAse H fold vis-à-vis RuvC-like nucleases. Interestingly, MtRuvX also contains some unique features, including the residues essential for ATP binding/coordination of Mg2+ ions. Indeed, MtRuvX exhibited an intrinsic, robust ATPase activity, which was further accentuated by DNA cofactors. Structure-guided substitutions of single residues at the ATP binding/Mg2+coordination sites while markedly attenuating the ATPase activity completely abrogated HJ cleavage, indicating an unanticipated relationship between ATP hydrolysis and DNA cleavage. However, the affinity of ATPase-deficient mutants for the HJ was not impaired. Contrary to RuvC, MtRuvX exhibits relaxed substrate specificity, cleaving a variety of branched DNA/RNA substrates. Notably, ATP hydrolysis plays a regulatory role, rendering MtRuvX from a canonical HJ resolvase to a DNA/RNA non-sequence specific endonuclease, indicating a link between HJ resolvase and nucleic acid metabolism. These findings provide novel insights into the structure and dual-functional activities of MtRuvX, and suggest that it may play an important role in DNA/RNA metabolism.  相似文献   

15.
Introduction and aimBlastocystis is a common enteric parasite, having a worldwide distribution. Many antimicrobial agents are effective against it, yet side effects and drug resistance have been reported. Thus, ongoing trials are being conducted for exploring anti-Blastocystis alternatives. Proteases are attractive anti-protozoal drug targets, having documented roles in Blastocystis. Serine proteases are present in both hepatitis C virus and Blastocystis. Since drug repositioning is quite trendy, the in vitro efficacy of simeprevir (SMV), an anti-hepatitis serine protease inhibitor, against Blastocystis was investigated in the current study.MethodsStool samples were collected from patients, Alexandria, Egypt. Concentrated stools were screened using direct smears, trichrome, and modified Ziehl-Neelsen stains to exclude parasitic co-infections. Positive stool isolates were cultivated, molecularly subtyped for assessing the efficacy of three SMV doses (100,150, and 200 μg/ml) along 72 hours (h), on the most common subtype, through monitoring parasite growth, viability, re-culture, and also via ultrastructure verification. The most efficient dose and duration were later tested on other subtypes.ResultsResults revealed that Blastocystis was detected in 54.17% of examined samples. Molecularly, ST3 predominated (62%), followed by ST1 (8.6%) and ST2 (3.4%). Ascending concentrations of SMV progressively inhibited growth, viability, and re-culture of treated Blastocystis, with a non-statistically significant difference when compared to the therapeutic control metronidazole (MTZ). The most efficient dose and duration against ST3 was 150 µg/ml for 72 h. This dose inhibited the growth of ST3, ST1, and ST2 with percentages of 95.19%, 94.83%, and 94.74%, successively and viability with percentages of 98.30%, 98.09%, and 97.96%, successively. This dose abolished Blastocystis upon re-culturing. Ultra-structurally, SMV induced rupture of Blastocystis cell membrane leading to necrotic death, versus the reported apoptotic death caused by MTZ. In conclusion, 150 µg/ml SMV for 72 h proved its efficacy against ST1, ST2, and ST3 Blastocystis, thus sparing the need for pre-treatment molecular subtyping in developing countries.  相似文献   

16.
Asthma as chronic airway disease has high prevalence in children and imbalance of Th1/Th2 is a critical mechanism in pathogenesis of the asthma. Baicalein as a cell protective and anti-inflammatory flavonoid may have anti-asthma effect. Therefore, for better using lung, baicalein was used in chitosan-nanoparticle as anti-asthma treatment.Baicalein was loaded and encapsulated in chitosan nanoparticle. The morphology, physical characters (particle size, zeta potential and FT-IR) were analyzed. Drug encapsulation and loading capacity, accumulative release-time were studied. After asthma model producing, the mice were treated with L-B-NP and E-B-NP. At least, MCh challenge test, Cytokines measurement and Lung Histopathology were done.Nanoparticles had average size 285 ± 25 nm with negative charge ?2.5 mV. The L-B-NP decreased penh value and E-B-NP decreased inflammation. Both nanoparticles increased IL-12 and decreased IL-5. Also, L-B-NP decreased mucus secretion in bronchi.L-B-NP and E-B-NP control immune-allergo-inflammatory response of asthma. L-B-NP controlled AHR and E-B-NP controlled inflammation that can be used as controlling anti-asthma drug.  相似文献   

17.
Glycogen synthase kinase-3 plays an essential role in multiple biochemical pathways in the cell, particularly in regards to energy regulation. As such, Glycogen synthase kinase-3 is an attractive target for pharmacological intervention in a variety of disease states, particularly non-insulin dependent diabetes mellitus. However, due to homology with other crucial kinases, such as the cyclin-dependent protein kinase CDC2, developing compounds that are both potent and selective is challenging. A novel series of derivatives of 5-nitro-N2-(2-(pyridine-2ylamino)ethyl)pyridine-2,6-diamine were synthesized and have been shown to potently inhibit glycogen synthase kinase-3 (GSK3). Potency in the low nanomolar range was obtained along with remarkable selectivity. The compounds activate glycogen synthase in insulin receptor-expressing CHO-IR cells and in primary rat hepatocytes, and have acceptable pharmacokinetics and pharmacodynamics to allow for oral dosing. The X-ray co-crystal structure of human GSK3-β in complex with compound 2 is reported and provides insights into the structural determinants of the series responsible for its potency and selectivity.  相似文献   

18.
The aim of this research is to analyze the potential impact of the COVID-19 infection on the serum biochemical concentration of children 6 months after recovery from the infection.The study included 72 children with a median age of 11 years. The case group consisted of 37 children who had contracted COVID-19 6 months prior to the analysis. They reported no other pre- or post-covid chronic or systemic diseases. The control group consisted of 35 children who had no prior record of COVID-19 infection.The analysis showed a substantial variation (P = 0.026) in the mean urea values (mmol/L) between the case group (4.513 ± 0.839) and the control group (5.425 ± 1.173). However, both groups' urea levels were within the normal range of their age group. No statistical differences were found analyzing the variations between the two groups in the levels of LDH, AST, ALT, BiliT, GGT, AlbBCG2, CRP, CK, AlKP, UA, Phos, Crea2, Gluc, Ca, Na, K, Cl, TP, TC, TG, and HDL (P > 0.05). The DMFT score was substantially greater (P < 0.002) in the infected team (5.38 ± 2.841) in comparison to the non-infected group (2.6 ± 2.257).The study indicates that COVID-19 infection does not leave biochemical alterations among children who did not have pre-existing conditions. The biochemical analysis suggests that children recover better than adults from COVID-19. Furthermore, it calls for investigating non-lethal COVID-19 infection as a tool to discover underlying conditions. The DMFT score shows a correlation between COVID-19 infection and caries. However, the nature of the correlation is yet to be investigated.  相似文献   

19.
Type 2 diabetes mellitus (T2D) is a metabolic disorder characterized by inappropriate insulin function. Despite wide progress in genome studies, defects in gene expression for diabetes prognosis still incompletely identified. Prolonged hyperglycemia activates NF-κB, which is a main player in vascular dysfunctions of diabetes. Activated NF-κB, triggers expression of various genes that promote inflammation and cell adhesion process. Alteration of pro-inflammatory and profibrotic gene expression contribute to the irreversible functional and structural changes in the kidney resulting in diabetic nephropathy (DN). To identify the effect of some important NF-κB related genes on mediation of DN progression, we divided our candidate genes on the basis of their function exerted in bloodstream into three categories (Proinflammatory; NF-κB, IL-1B, IL-6, TNF-α and VEGF); (Profibrotic; FN, ICAM-1, VCAM-1) and (Proliferative; MAPK-1 and EGF). We analyzed their expression profile in leukocytes of patients and explored their correlation to diabetic kidney injury features. Our data revealed the overexpression of both proinflammatory and profibrotic genes in DN group when compared to T2D group and were associated positively with each other in DN group indicating their possible role in DN progression. In DN patients, increased expression of proinflammatory genes correlated positively with glycemic control and inflammatory markers indicating their role in DN progression. Our data revealed that the persistent activation NF-κB and its related genes observed in hyperglycemia might contribute to DN progression and might be a good diagnostic and therapeutic target for DN progression. Large-scale studies are needed to evaluate the potential of these molecules to serve as disease biomarkers.  相似文献   

20.
A 105-day experimental trial was conducted to assess different levels of dietary Aleo vera extract supplementation on water quality parameters, proximate composition, growth performance and haematological parameters of fry Oreochromis niloticus. Four different percentages of dietary leaf extract powder of Aleo vera (ALE) with a basal feed, designated as, i.e., T0 (Control group; without ALE), T1 (1% ALE), T2 (2% ALE), and T3 (3% ALE). Fish fry was reared in concrete tanks (7.0 m, 1.6 m, 1.0: L, W, H; water volume 11.2 m3/tank), with an average initial weight 4.04 ± 0.03 g/ fry, and each treatment was triplicated. Fry was randomly distributed at a stocking rate of 450 individuals/ tanks. The water quality parameters revealed that temperature, pH, salinity, dissolved oxygen (DO) and nitrates were found in a promising range as given by FAO/WHO limits. However, the record values obtained for Electric Conductivity (EC), Total dissolved solids (TDS), and alkalinities were not found in all tanks' suitable range according to FAO/WHO limits. The results revealed a significant impact of different percentages of dietary ALE supplementation on fry's body composition and haematological parameters. Moreover, the final body weight, final body length, average daily weight gain (g), net weight gain (g) and specific growth rate (%) were significantly higher (p < 0.05) in T1 and T2 compared with T0 and T3 treatments. The poorest feed conversion ratio was recorded in the T2 group compared with other treatments. Thus, the current study provides information about the nutritional quality of Nile tilapia culturing in Pakistan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号