首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To avoid production of a phospholipidosis-inducing metabolite, we replaced the amide structure of SUN13837 (1) with a 1,2,3-triazole. The resulting 1,2,3-triazole analog of 1 (compound 2) displayed greater neuroprotective activity than 1. Structural modification of 2 yielded compound 10, which showed improved neuroprotective activity and negligible mechanism-based inactivation against CYP3A4. In addition, installation of a methyl group at the 5-position of 1,2,3-triazole of 10 significantly boosted the neuroprotective activity. These 1,2,3-triazole derivatives displayed reduced phospholipidosis risk, sufficient systemic exposure, and high central nervous system penetration, and therefore may be potentially useful agents for the treatment of neurodegenerative diseases.  相似文献   

2.
New oxazolinyl derivatives of [17(20)E]-pregna-5,17(20)-diene: 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,5′-dihydro-1′,3′-oxazole 1 and 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,4′-dimethyl-4′,5′-dihydro-1′,3′-oxazole 2 were evaluated as potential CYP17A1 inhibitors in comparison with 17-(pyridin-3-yl)androsta-5,16-dien-3β-ol 3 (abiraterone). Differential absorption spectra of human recombinant CYP17A1 in the presence of compound 1 (λmax = 422 nm, λmin = 386 nm) and compound 2 (λmax = 416 nm) indicated significant differences in enzyme/inhibitors complexes. CYP17A1 activity was measured using electrochemical methods. Inhibitory activity of compound 1 was comparable with abiraterone 3 (IC50 = 0.9 ± 0.1 μM, and IC50 = 1.3 ± 0.1 μM, for compounds 1 and 3, respectively), while compound 2 was found to be weaker inhibitor (IC50 = 13 ± 1 μM). Docking of aforementioned compounds to CYP17A1 revealed that steroid fragments of compound 1 and abiraterone 3 occupied close positions; oxazoline cycle of compound 1 was coordinated with heme iron similarly to pyridine cycle of abiraterone 3. Configuration of substituents at 17(20) double bond in preferred docked position corresponded to Z-isomers of compounds 1 and 2. Presence of 4′-substituents in oxazoline ring of compound 2 prevents coordination of oxazoline nitrogen with heme iron and worsens its docking score in comparison with compound 1. These data indicate that oxazolinyl derivative of [17(20)E]-pregna-5,17(20)-diene 1 (rather than 4′,4′-dimethyl derivative 2) may be considered as potential CYP17A1 inhibitor and template for development of new compounds affecting growth and proliferation of prostate cancer cells.  相似文献   

3.
A novel 17-allylamino-17-demethoxygeldanamycin (17-AAG) glucoside (1) was obtained from in vitro enzymatic glycosylation using a UDP-glycosyltransferase (YjiC). The water-solubility of compound 1 was approximately 10.5 times higher than that of the substrate, 17-AAG. Compound 1 showed potential anti-proliferative activities against five human cancer cell lines, with IC50 values ranging from 5.26 to 28.52 μM. Further studies also indicated that compound 1 could inhibit the growth of CNE-2Z cells by inducing the degradation of Hsp90 client proteins (Akt, c-Raf, Bcl-2, and HIF-1α). In addition, compound 1 showed greater potential anti-tumor efficacy than 17-AAG in nude mice xenografted with CNE-2Z cells. Therefore, we suggest that in vitro enzymatic glycosylation is a powerful approach for the structural optimization of 17-AAG.  相似文献   

4.
Two new metabolites were obtained by microbial transformation of the triterpene nigranoic acid (3,4-secocyloarta-4 (28), 24 (Z)-diene-3,26-dioic acid), (1) in the culture of Trichoderma sp. JY-1, a fungus obtained from the branches of Kadsura angustifolia. Their structures were established as 15α, 16α-dihydroxy-3,4-secocyloarta-4 (28), 17 (20), 17 (E), 24 (E)-triene-3,26-dioic acid (2) and 16α, 20α-dihydroxy-18 (13  17β) abeo-3,4-secocyloarta-4 (28), 12 (13), 24 (Z)-triene-3,26-dioic acid (3) by analysis of NMR and MS data and by analogy with the data for the substrate nigranoic acid (1). Compound 2 was found to possess an unusual 17(20), 17 (E)-ene structure while compound 3 featured an unprecedented 18(13  17β)-abeo-secocyloarta skeleton. Additionally, compounds 13 showed weak anti-HIV activity with EC50 values of 10.5, 8.8 and 7.6 μg/mL, therapeutic index values (CC50/EC50) of 8.48, 9.12 and 10.1, respectively.  相似文献   

5.
In recent years, dipeptidyl peptidase IV inhibitors have been noted as valuable agents for treatment of type 2 diabetes. Herein, we report the discovery of a novel potent DPP-4 inhibitor with 3H-imidazo[4,5-c]quinolin-4(5H)-one as skeleton. After efficient optimization of the lead compound 2a at the 7- and 8-positions using a docking study, we found 28 as a novel DPP-4 inhibitor with excellent selectivity against various DPP-4 homologues. Compound 28 showed strong DPP-4 inhibitory activity compared to marketed DPP-4 inhibitors. We also found that a carboxyl group at the 7-position could interact with the residue of Lys554 to form a salt bridge. Additionally, introduction of a carboxyl group to 7-position led to both activity enhancement and reduced risk for hERG channel inhibition and induced phospholipidosis. In our synthesis of compounds with 7-carboxyl group, we achieved efficient regioselective synthesis using bulky ester in the intramolecular palladium coupling reaction.  相似文献   

6.
The discovery, synthesis and preliminary structure–activity relationships (SARs) of a novel class of CB1 antagonists is described. Initial optimization of benzimidazole-based screening hit 4 led to the identification of ‘inverted’ indole-based lead compound 18c with improved properties versus compound 4 including reduced A log P, improved microsomal stability and improved aqueous solubility. Compound 18c demonstrates in vivo CB1 antagonist efficacy (CB1 agonist induced hypothermia model) and is orally bioavailable in rat.  相似文献   

7.
With the aim to address an undesired cardiac issue observed with our related compound in the recently disclosed novel series of renin inhibitors, further chemical modifications of this series were performed. Extensive structure–activity relationships studies as well as in vivo cardiac studies using the electrophysiology rat model led to the discovery of clinical candidate trans-adamantan-1-ol analogue 56 (DS-8108b) as a potent renin inhibitor with reduced potential cardiac risk. Oral administration of single doses of 3 and 10 mg/kg of 56 in cynomolgus monkeys pre-treated with furosemide led to significant reduction of mean arterial blood pressure for more than 12 h.  相似文献   

8.
Natural products are very important sources for the development of new pesticides. Osthole, derived from many medical plants such as Cnidium, Angelica and Citrus plants, is a naturally occurring coumarin compound. To discover the new natural products-based insecticides, thirty-one osthole-based esters containing O-acyl-hydroxylamine groups were prepared, and their structures were identified by different spectral analysis methods. Derivatives A7, A17, A20 and A25 displayed more potent growth inhibitory (GI) activity than the botanical insecticide, toosendanin. Over half of target osthole derivatives had more effective larvicidal effect on P. xylostella than toosendanin. Among all title derivatives, compound A18 displayed more pronounced larvicidal activity (LC50 = 0.64 μmol mL−1) when compared with toosendanin (LC50 = 0.94 μmol mL−1). Some interesting results of structure–activity relationships (SARs) of these osthole derivatives were also discussed. In addition, the hemolysis and cytotoxicity assays indicated that these osthole derivatives showed very low toxicity toward normal mammalian cells.  相似文献   

9.
Antimalarial candidates possessing novel mechanisms of action are needed to control drug resistant Plasmodium falciparum. We were drawn to Malaria Box compound 1 (MMV665831) by virtue of its excellent in vitro potency, and twelve analogs were prepared to probe its structure–activity relationship. Modulation of the diethyl amino group was fruitful, producing compound 25, which was twice as potent as 1 against cultured parasites. Efforts were made to modify the phenolic Mannich base functionality of 1, to prevent formation of a reactive quinone methide. Homologated analog 28 had reduced potency relative to 1, but still inhibited growth with EC50 ≤ 200 nM. Thus, the antimalarial activity of 1 does not derive from quinone methide formation. Chemical stability studies on dimethyl analog 2 showed remarkable hydrolytic stability of both the phenolic Mannich base and ethyl ester moieties, and 1 was evaluated for in vivo efficacy in P. berghei-infected mice (40 mg/kg, oral). Unfortunately, no reduction in parasitemia was seen relative to control. These results are discussed in the context of measured plasma and hepatocyte stabilities, with reference to structurally-related, orally-efficacious antimalarials.  相似文献   

10.
A series of novel schiff base derivatives (H1H20) containing pyrazine and triazole moiety have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of β-ketoacyl-acyl carrier protein synthase III (FabH). These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Bacillus amyloliquefaciens and selected compounds among them were tested for their Escherichia coli FabH inhibitory activity. Based on the biological data, compound H17 showed the most potent antibacterial activity with MIC values of 0.39–1.56 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC50 of 5.2 μM, being better than the positive control Kanamycin B with IC50 of 6.3 μM. Furthermore, docking simulation was performed to position compound H17 into the E. coli FabH active site to determine the probable binding conformation. This study indicated that compound H17 has demonstrated significant E. coli FabH inhibitory activity as a potential antibacterial agent and provides valuable information for the design of E. coli FabH inhibitors.  相似文献   

11.
A library of benzimidazole derivatives 120 were synthesized, and studied for their α-chymotrypsin (α-CT) inhibitory activity in vitro. Kinetics and molecular docking studies were performed to identify the type of inhibition. Compound 1 was found to be a good inhibitor of α-chymotrypsin enzyme (IC50 = 14.8 ± 0.1 μM, Ki = 16.4 μM), when compared with standard chymostatin (IC50 = 5.7 ± 0.13 μM). Compounds 28, 15, 17, and 18 showed significant inhibitory activities. All the inhibitors were found to be competitive inhibitors, except compound 17, which was a mixed type inhibitor. The substituents (R) in para and ortho positions of phenyl ring B, apparently played a key role in the inhibitory potential of the series. Compounds 120 were also studied for their cytotoxicity profile by using 3T3 mouse fibroblast cells and compounds 3, 5, 6, 8, 1214, 16, 17, 19, and 20 were found to be cytotoxic. Molecular docking was performed on the most active members of the series in comparison to the standard compound, chymostatin, to identify the most likely binding modes. The compounds reported here can serve as templates for further studies for new inhibitors of α-chymotrypsin and other chymotrypsin-like serine proteases enzymes.
  1. Download : Download full-size image
  相似文献   

12.
In the present study, a series of steroidal tetrazole derivatives of androstane and pregnane have been prepared in which the tetrazole moiety was appended at C-3 and 17a-aza locations. 3-Tetrazolo-3,5-androstadien-17-one (6), 3-tetrazolo-19-nor-3,5-androstadien-17-one (10), 3-tetrazolo-3,5-pregnadien-20-one (14), 17a-substituted 3-tetrazolo-17a-aza-d-homo-3,5-androstadien-17-one (2631) and 3-(2-acetyltetrazolo)-17a-aza-d-homo-3,5-androstadien-17-one (32) were synthesized from dehydroepiandrosterone acetate (1) through multiple synthetic steps. Some of the synthesized compounds were evaluated for their in vitro 5α-reductase (5AR) inhibitory activity by measuring the conversion of [3H] androstenedione in human embryonic kidney (HEK) cells. In vivo 5α-reductase inhibitory activity also showed a significant reduction (p <0.05) in rat prostate weight. The most potent compound 14 showed 5AR-2 inhibition with IC50 being 15.6 nM as compared to clinically used drug finasteride (40 nM). There was also a significant inhibition of 5AR-1 with IC50 547 nM compared to finasteride (453 nM).  相似文献   

13.
Novel thiazole derivatives were synthesized and evaluated as vascular adhesion protein-1 (VAP-1) inhibitors. Although we previously identified a compound (2) with potent VAP-1 inhibitory activity in rats, the human activity was relatively weak. Here, to improve the human VAP-1 inhibitory activity of compound 2, we first evaluated the structure–activity relationships of guanidine bioisosteres as simple small molecules and identified a 1H-benzimidazol-2-amine (5) with potent activity compared to phenylguanidine (1). Based on the structure of compound 5, we synthesized a highly potent VAP-1 inhibitor (37b; human IC50 = 0.019 μM, rat IC50 = 0.0051 μM). Orally administered compound 37b also markedly inhibited ocular permeability in streptozotocin-induced diabetic rats after oral administration, suggesting it is a promising compound for the treatment of diabetic macular edema.  相似文献   

14.
The dried leaves and stems of Ampelopsis grossedentata have been used as a health tea and herbal medicine for hundreds of years in China. The study was aimed at searching for novel α-glucosidase inhibitors among the richest components of A. grossedentata and their derivatives. Three known major components (13) were isolated by recrystallization process and six new derivatives (49) were obtained by etherification of the bioactive flavonoid. All compounds were evaluated for their inhibitory activities against α-glucosidase (from Saccharomyces cerevisiae). As a result, compound 9 showed a significant α-glucosidase inhibitory activity with IC50 value of 9.3 μM and acted as a competitive inhibitor with the value of the inhibition constant (Ki) being 10.3 μM. The oral administration of compound 9 at a dose of 50 mg/kg significantly reduced the post prandial blood glucose levels of normal and streptozotocin (STZ)-induced diabetic mice. Furthermore, compound 9 significantly decreased the fasting blood glucose levels in STZ-induced diabetic mice.  相似文献   

15.
The diterpenoids (+)-ferruginol (1), ent-kaur-16-en-15-one (2), ent-8(14),15-sandaracopimaradiene-2α,18-diol (3), 8(14),15-sandaracopimaradiene-2α,18,19-triol (4), and (+)-sugiol (5) and the triterpenoids 3β-methoxycycloartan-24(241)-ene (6), 3β,23β-dimethoxycycloartan-24(241)-ene (7), 3β,23β-dimethoxy-5α-lanosta-24(241)-ene (8), and 23(S)-23-methoxy-24-methylenelanosta-8-en-3-one (9), isolated from Amentotaxus formosana, showed inhibitory effects on xanthine oxidase (XO). Of the compounds tested, compound 5 was a potent inhibitor of XO activity, with an IC50 value of 6.8 ± 0.4 μM, while displaying weak ABTS radical cation scavenging activity. Treatment of the bladder cancer cell line, NTUB1, with 3–10 μM of compound 5 and 10 μM cisplatin, and immortalized normal human urothelial cell line, SV-HUC1, with 0.3–1 μM and 10–50 μM of compound 5 and 10 μM cisplatin, respectively, resulted in increased viability of cells compared with cytotoxicity induced by cisplatin. Treatment of NTUB1 with 20 μM cisplatin and 10 or 30 μM of compound 5 resulted in decreased ROS production compared with ROS production induced by cisplatin. These results indicate that 10 or 30 μM of compound 5 in NTUB1 cells may mediate through the suppression of XO activity and reduction of reactive oxygen species (ROS) induced by compound 5 cotreated with 20 μM cisplatin and protection of subsequent cell death.  相似文献   

16.
Sixteen new C-terminally modified analogues of 2, a previously described potent and selective AT2R ligand, were designed, synthesized and evaluated for their affinity to the AT2R receptor. The introduction of large, hydrophobic substituents was shown to be beneficial and the most active compound (17, Ki = 8.5 μM) was over 12-times more potent than the lead compound 2.  相似文献   

17.
Acylhydrazones 1a-o, derived from isoniazid, were synthesized and evaluated for Myeloperoxidase (MPO) and Acetylcholinesterase (AChE) inhibition, as well as their antioxidant and metal chelating activities, with the purpose of investigating potential multi-target profiles for the treatment of Alzheimer’s disease. Synthesized compounds were tested using the 2,2-diphenyl-2-picrylhydrazyl (DPPH) method and 1i, 1j and 1 m showed radical scavenging ability. Compounds 1b, 1 h, 1i, 1 m and 1o inhibited MPO activity (10 μM) at 96.1 ± 5.5%, 90 ± 2.1%, 100.3 ± 1.7%, 80.1 ± 9.4% and 82.2 ± 10.6%, respectively, and only compound 1 m was able to inhibit 54.2 ± 1.7% of AChE activity (100 μM). Docking studies of the most potent compound 1 m were carried out, and the computational results provided the theoretical basis of enzyme inhibition. Furthermore, compound 1 m was able to form complexes with Fe2+ and Zn2+ ions in a 2:1 ligand:metal ratio according to the Job Plot method.  相似文献   

18.
A three-step synthetic pathway has been employed to synthesize a small library of 2-(4-arylpiperidin-1-yl)-1-(1H-indol-3-yl)ethanone and 2-(4-arylpiperidin-1-yl)-1-(1H-indol-3-yl)ethane-1,2-dione derivatives that have been screened in [3H]ifenprodil competition binding assay. Some compounds exhibited significant binding affinity at nanomolar concentration, the most active being ligand 35 (IC50 = 5.5 nM). Docking experiments suggested the main interactions between 35 and GluN2B-containing NMDA receptors. Notably, the compound 35 reduced NMDA-mediated excitatory post-synaptic currents recorded in mouse hippocampal slices indicating antagonistic effects (50 nM). Moreover, the compound 35 has shown antioxidant effects in a preliminary screening, thus suggesting that it might be considered prototype for future drug development of novel ‘dual target’ neuroprotective agents.  相似文献   

19.
A series of 23 novel bis-phosphonium salts based on pyridoxine were synthesized and their antibacterial activities were evaluated in vitro. All compounds were inactive against gram-negative bacteria and exhibited the structure-dependent activity against gram-positive bacteria. The antibacterial activity enhanced with the increase in chain length at acetal carbon atom in the order n-Pr > Et > Me. Further increasing of length and branching of alkyl chain leads to the reduction of antibacterial activity. Replacement of the phenyl substituents at the phosphorus atoms in 5,6-bis(triphenylphosphonio(methyl))-2,2,8-trimethyl-4H-[1,3]-dioxino[4,5-c]pyridine dichloride (compound 1) with n-butyl, m-tolyl or p-tolyl as well as chloride anions in the compound 1 with bromides (compound 14a) increased the activity against Staphylococcus aureus and Staphylococcus epidermidis up to 5 times (MICs = 1–1.25 μg/ml). But in practically all cases chemical modifications of compound 1 led to the increase of its toxicity for HEK-293 cells. The only exception is compound 5,6-bis[tributylphosphonio(methyl)]-2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridine dichloride (10a) which demonstrated lower MIC values against S. aureus and S. epidermidis (1 μg/ml) and lower cytotoxicity on HEK-293 cells (CC50 = 200 μg/ml). Compound 10a had no significant mutagenic and genotoxic effects and was selected for further evaluation. It should be noted that all bis-phosphonium salt based on pyridoxine were much more toxic than vancomycin.  相似文献   

20.
In the present study we have discovered compound 1, a benzo[1.3.2]dithiazolium ylide-based compound, as a new prototype dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (5-LOX). Compound 1 was initially discovered as a COX-2 inhibitor, resulting indirectly from the COX-2 structure-based virtual screening that identified compound 2 as a virtual hit. Compounds 1 and 2 inhibited COX-1 and COX-2 in mouse macrophages with IC50 in the range of 1.5–18.1 μM. Both compounds 1 and 2 were also found to be potent inhibitors of human 5-LOX (IC50 = 1.22 and 0.47 μM, respectively). Interestingly, compound 1 also had an inhibitory effect on tumor necrosis factor-α (TNF-α) production (IC50 = 0.44 μM), which was not observed with compound 2. Docking studies suggested the (S)-enantiomer of 1 as the biologically active isomer that binds to COX-2. Being a cytokine-suppressive dual COX/5-LOX inhibitor, compound 1 may represent a useful lead structure for the development of advantageous new anti-inflammatory agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号