首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby strains isolated from different seafood were genotyped by PCR-ribotyping and ERIC-PCR assays. This study has ascertained the genetic relatedness among serovars prevalent in tropical seafood. PCR-ribotyping exhibited genetic variation in both Salmonella serovars, and ribotype profile (II) was most predominant, which was observed in 10/18 of Salmonella enterica subsp. enterica Typhimurium and 7/17 Salmonella enterica subsp. enterica Derby isolates. Cluster analysis of ERIC-PCR for Salmonella enterica subsp. enterica Typhimurium strains exhibited nine different banding patterns and four strains showed >95% genetic homology within the cluster pairs. ERIC-PCR produced more genetic variations in Salmonella enterica subsp. enterica Typhimurium; nevertheless, both methods were found to be comparable for Salmonella enterica subsp. enterica Derby isolates. Discrimination index of PCR-ribotyping for Salmonella enterica subsp. enterica Typhimurium isolates was obtained at 0.674 and index value 0.714 was observed for Salmonella enterica subsp. enterica Derby strains. Molecular fingerprinting investigation highlighted the hypothesis of diverse routes of Salmonella contamination in seafood as multiple clones of Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby were detected in same or different seafood throughout the study period.  相似文献   

2.
The methylation of DNA bases plays an important role in numerous biological processes including development, gene expression, and DNA replication. Salmonella is an important foodborne pathogen, and methylation in Salmonella is implicated in virulence. Using single molecule real-time (SMRT) DNA-sequencing, we sequenced and assembled the complete genomes of eleven Salmonella enterica isolates from nine different serovars, and analysed the whole-genome methylation patterns of each genome. We describe 16 distinct N6-methyladenine (m6A) methylated motifs, one N4-methylcytosine (m4C) motif, and one combined m6A-m4C motif. Eight of these motifs are novel, i.e., they have not been previously described. We also identified the methyltransferases (MTases) associated with 13 of the motifs. Some motifs are conserved across all Salmonella serovars tested, while others were found only in a subset of serovars. Eight of the nine serovars contained a unique methylated motif that was not found in any other serovar (most of these motifs were part of Type I restriction modification systems), indicating the high diversity of methylation patterns present in Salmonella.  相似文献   

3.
Haemolysins of Salmonella are important due to their probable role in pathogenesis of systemic salmonellosis and use in sub-serovar level typing. The present study was undertaken to determine haemolytic potential of Salmonella Gallinarum strains through phenotypic and genotypic methods. Amplification of haemolysin gene (clyA) and cytolysin gene (slyA) was attempted in order to determine their role in haemolysin production. Study on 94 strains of S. Gallinarum revealed the production of two types of haemolysis viz., beneath the colony haemolysis (BCH) or contact haemolysis and clear zone haemolysis (CZH). Haemolysis was observed on blood agar prepared with blood of cattle, buffalo, sheep, goat, horse, rabbit, guinea pig, fowl, and human blood group A, B, AB and O. Although, haemolysis was also observed on blood agar prepared with whole blood, clarity of zone was more evident on blood agar made from washed erythrocytes. Clear zone haemolysis was best observed on blood agar prepared with washed erythrocytes of goat and a total of 12% (11 of 94) S. Gallinarum strains under study produced CZH on it. The clyA gene could not be detected in any of the 94 strains under study, while slyA gene could be amplified uniformly irrespective of haemolytic potential (CZH) and haemolytic pattern (BCH) of the strains. The study suggested that the two types of haemolysis (CZH and BCH) observed among S. Gallinarum strains may not be due to either slyA or clyA gene products and thus there may be some other gene responsible for haemolytic trait in Gallinarum serovar. Different haemolytic patterns of strains under study indicated multiplicity of haemolysins in S. Gallinarum.  相似文献   

4.
The selective pressure imposed by the use of antimicrobials in both human and veterinary medicine promotes the spread of multiple antimicrobial resistance. The dissemination of antimicrobial resistance in Salmonella enterica strains, causing severe enteritis in human, has been reported worldwide and is largely attributed to conjugative DNA exchange. In the present review, the relevance of plasmids to the dissemination of antimicrobial resistance in S. enterica is discussed. Recent examples of plasmid-mediated resistance to expanded-spectrum cephalosporins are reported to illustrate the severity of current situation in enteric pathogens. The exchanges between plasmid(s) and the bacterial chromosome and the integration of resistance genes into specialised genetic elements, called integrons, play a major role in acquisition and dissemination of resistance genes. The evolution of a plasmid through the acquisition of integrons is reported, describing novel mechanisms for short-term accumulation of resistance determinants in plasmids circulating in Salmonella.  相似文献   

5.
Bile-induced DNA damage in Salmonella enterica   总被引:4,自引:0,他引:4  
In the absence of DNA adenine methylase, growth of Salmonella enterica serovar Typhimurium is inhibited by bile. Mutations in any of the mutH, mutL, and mutS genes suppress bile sensitivity in a Dam background, indicating that an active MutHLS system renders Dam mutants bile sensitive. However, inactivation of the MutHLS system does not cause bile sensitivity. An analogy with Escherichia coli, in which the MutHLS system sensitizes Dam mutants to DNA-injuring agents, suggested that bile might cause DNA damage. In support of this hypothesis, we show that bile induces the SOS response in S. enterica and increases the frequency of point mutations and chromosomal rearrangements. Mutations in mutH, mutL, or mutS cause partial relief of virulence attenuation in a Dam background (50- to 100-fold by the oral route and 10-fold intraperitoneally), suggesting that an active MutHLS system reduces the ability of Salmonella Dam mutants to cope with DNA-damaging agents (bile and others) encountered during the infection process. The DNA-damaging ability of bile under laboratory conditions raises the possibility that the phenomenon may be relevant in vivo, since high bile concentrations are found in the gallbladder, the niche for chronic Salmonella infections.  相似文献   

6.
Multilocus sequence typing of 56 Salmonella enterica subsp. enterica strains isolated from Australian wildlife hosts was performed. The results of population assignment algorithms revealed that the 56 strains could be subdivided into two distinct clades. Strains belonging to the two clades were further distinguished phenotypically, genotypically, and with respect to host distribution.  相似文献   

7.
hilA gene promoter, component of the Salmonella Pathogenicity Island 1, has been found in Salmonella serovar Typhimurium, being important for the regulation of type III secretion apparatus genes. We detected hilA gene sequences in Salmonella serovars Typhi, Enteritidis, Choleraesuis, Paratyphi A and B, and Pullorum, by polymerase chain reaction (PCR) and hybridization techniques. The primers to carry out PCR were designed according to hilA sequence. A low stringency hybridization with the probe pVV441 (hilA open-reading-frame plasmid) was carried out. To find hilA gene sequences in other Salmonella sp. suggest that these serovars could have similar sequences of this kind of virulence genes.  相似文献   

8.
This study was designed to develop a multiplex PCR method with five specific primer pairs for the detection of Salmonella spp., Salmonella subspecies I, Salmonella enterica serovars Typhimurium, Typhi and Enteritidis. A multiplex PCR was constructed with five primer pairs for the detection of Salmonella and pathogenic Salmonella serovars, including a specific primer pair for Salmonella Typhi, based on the sequence comparison between genomic DNA sequences of 12 Salmonella strains. Each primer pair was specifically targeted to Salmonella spp., Salmonella subspecies I, Salmonella Typhimurium, Typhi and Enteritidis. This multiplex PCR was evaluated with various DNAs of Salmonella serovars that yielded high specificity for amplifying the expected PCR products of Salmonella serovars. Using this primer pair, a set of multiplex PCR was performed for the rapid identification of salmonellae and major pathogenic Salmonella serovars. Although this multiplex PCR method will need to be evaluated for a wide range of Salmonella serovars among multilaboratories, it should be useful for identifying clinically significant strains of Salmonella serovars rapidly and accurately without the need for serological testing.  相似文献   

9.
10.
Salmonella enterica is a bacterial pathogen that causes enteric fever and gastroenteritis in humans and animals. Although its population structure was long described as clonal, based on high linkage disequilibrium between loci typed by enzyme electrophoresis, recent examination of gene sequences has revealed that recombination plays an important evolutionary role. We sequenced around 10% of the core genome of 114 isolates of enterica using a resequencing microarray. Application of two different analysis methods (Structure and ClonalFrame) to our genomic data allowed us to define five clear lineages within S. enterica subspecies enterica, one of which is five times older than the other four and two thirds of the age of the whole subspecies. We show that some of these lineages display more evidence of recombination than others. We also demonstrate that some level of sexual isolation exists between the lineages, so that recombination has occurred predominantly between members of the same lineage. This pattern of recombination is compatible with expectations from the previously described ecological structuring of the enterica population as well as mechanistic barriers to recombination observed in laboratory experiments. In spite of their relatively low level of genetic differentiation, these lineages might therefore represent incipient species.  相似文献   

11.
Salmonella enterica subspecies enterica serovar Typhi is a rod-shaped, Gram-negative, facultatively anaerobic bacterium. It belongs to the family Enterobacteriaceae in the class Gammaproteobacteria, and has the capability of residing in the human gallbladder by forming a biofilm and hence causing the person to become a typhoid carrier. Here we present the complete genome of Salmonella enterica subspecies enterica serotype Typhi strain P-stx-12, which was isolated from a chronic carrier in Varanasi, India. The complete genome comprises a 4,768,352 bp chromosome with a total of 98 RNA genes, 4,691 protein-coding genes and a 181,431 bp plasmid. Genome analysis revealed that the organism is closely related to Salmonella enterica serovar Typhi strain Ty2 and Salmonella enterica serovar Typhi strain CT18, although their genome structure is slightly different.  相似文献   

12.
Aims:  To investigate the interactions of Salmonella enterica with abiotic and plant surfaces and their effect on the tolerance of the pathogen to various stressors.
Methods and Results:  Salmonella strains were tested for their ability to form biofilm in various growth media using a polystyrene plate model. Strong biofilm producers were found to attach better to intact Romaine lettuce leaf tissue compared to weak producers. Confocal microscopy and viable count studies revealed preferential attachment of Salmonella to cut-regions of the leaf after 2 h at 25°C, but not for 18 h at 4°C. Storage of intact lettuce pieces contaminated with Salmonella for 9 days at 4°C resulted only in small changes in population size. Exposure of lettuce-associated Salmonella cells to acidic conditions (pH 3·0) revealed increased tolerance of the attached vs planktonic bacteria.
Conclusions:  Biofilm formation on polystyrene may provide a suitable model to predict the initial interaction of Salmonella with cut Romaine lettuce leaves. Association of the pathogen with lettuce leaves facilitates its persistence during storage and enhances its acid tolerance.
Significance and Impact of the Study:  Understanding the interactions between foodborne pathogens and lettuce might be useful in developing new approaches to prevent fresh produce-associated outbreaks.  相似文献   

13.
Cell-to-cell differences in bacterial gene expression can merely reflect the occurrence of noise. In certain cases, however, heterogeneous gene expression is a programmed event that results in bistable expression. If bistability is heritable, bacterial lineages are formed. When programmed bistability is reversible, the phenomenon is known as phase variation. In certain cases, bistability is controlled by genetic mechanisms (e. g., DNA rearrangement). In other cases, bistability has epigenetic origin. A robust epigenetic mechanism for the formation of bacterial lineages is the formation of heritable DNA methylation patterns. However, bistability can also arise upon propagation of gene expression patterns by feedback loops that are stable upon cell division. This review describes examples of bistability and phase variation in Salmonella enterica and discusses their adaptive value, sometimes in a speculative manner.  相似文献   

14.
15.
We report here the complete genome sequence of Salmonella enterica subsp. enterica serovar Typhi P-stx-12, a clinical isolate obtained from a typhoid carrier in India.  相似文献   

16.
For more than 80 years, subtyping of Salmonella enterica has been routinely performed by serotyping, a method in which surface antigens are identified based on agglutination reactions with specific antibodies. The serotyping scheme, which is continuously updated as new serovars are discovered, has generated over time a data set of the utmost significance, allowing long-term epidemiological surveillance of Salmonella in the food chain and in public health control. Conceptually, serotyping provides no information regarding the phyletic relationships inside the different Salmonella enterica subspecies. In epidemiological investigations, identification and tracking of salmonellosis outbreaks require the use of methods that can fingerprint the causative strains at a taxonomic level far more specific than the one achieved by serotyping. During the last 2 decades, alternative methods that could successfully identify the serovar of a given strain by probing its DNA have emerged, and molecular biology-based methods have been made available to address phylogeny and fingerprinting issues. At the same time, accredited diagnostics have become increasingly generalized, imposing stringent methodological requirements in terms of traceability and measurability. In these new contexts, the hand-crafted character of classical serotyping is being challenged, although it is widely accepted that classification into serovars should be maintained. This review summarizes and discusses modern typing methods, with a particular focus on those having potential as alternatives for classical serotyping or for subtyping Salmonella strains at a deeper level.  相似文献   

17.
Australian isolates (79) of Salmonella enterica subsp. enterica serovar Virchow ( Salmonella Virchow) were characterized by phage typing. Thirteen phage types were identified, of which phage type (PT) 8, representing 54 of 79 isolates, was predominant, as it had been in England and Wales up to 1994 when it was replaced by PT26. Other phage types identified in Australia were distinct from those observed in England and Wales. This suggests that PT8 may be a global phage type, while others may be distinct to particular geographical regions.  相似文献   

18.
Salmonella enterica is one of the most important bacterial enteric pathogens worldwide. However, little is known about its distribution and diversity in the environment. The present study explored the diversity of 104 strains of Salmonella enterica isolated over 2 years from 12 coastal waterways in central California. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing were used to probe species diversity. Seventy-four PFGE patterns and 38 sequence types (STs) were found, including 18 newly described STs. Nineteen of 25 PFGE patterns were indistinguishable from those of clinical isolates in PulseNet. The most common ST was consistent with S. enterica serovar Typhimurium, and other frequently detected STs were associated with the serovars Heidelberg and Enteritidis; all of these serovars are important etiologies of salmonellosis. An investigation into S. enterica biogeography was conducted at the level of ST and subspecies. At the ST and subspecies level, we found a taxon-time relationship but no taxon-area or taxon-environmental distance relationships. STs collected during wet versus dry conditions tended to be more similar; however, STs collected from waterways adjacent to watersheds with similar land covers did not tend to be similar. The results suggest that the lack of dispersal limitation may be an important factor affecting the diversity of S. enterica in the region.  相似文献   

19.
Bile possesses antibacterial activity because bile salts disrupt membranes, denature proteins, and damage DNA. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile. Sublethal concentrations of the bile salt sodium deoxycholate (DOC) adapt Salmonella to survive lethal concentrations of bile. Adaptation seems to be associated to multiple changes in gene expression, which include upregulation of the RpoS-dependent general stress response and other stress responses. The crucial role of the general stress response in adaptation to bile is supported by the observation that RpoS(-) mutants are bile-sensitive. While adaptation to bile involves a response by the bacterial population, individual cells can become bile-resistant without adaptation: plating of a non-adapted S. enterica culture on medium containing a lethal concentration of bile yields bile-resistant colonies at frequencies between 10(-6) and 10(-7) per cell and generation. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. A fraction of such isolates are stable, indicating that bile resistance can be acquired by mutation. Full genome sequencing of bile-resistant mutants shows that alteration of the lipopolysaccharide transport machinery is a frequent cause of mutational bile resistance. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. We propose that such isolates derive from rare cells whose physiological state permitted survival upon encountering bile. This view is supported by single cell analysis of gene expression using a microscope fluidic system: batch cultures of Salmonella contain cells that activate stress response genes in the absence of DOC. This phenomenon underscores the existence of phenotypic heterogeneity in clonal populations of bacteria and may illustrate the adaptive value of gene expression fluctuations.  相似文献   

20.
Strains of Salmonella enterica serovar Typhimurium LT2 lacking a functional 2-methylcitric acid cycle (2-MCC) display increased sensitivity to propionate. Previous work from our group indicated that this sensitivity to propionate is in part due to the production of 2-methylcitrate (2-MC) by the Krebs cycle enzyme citrate synthase (GltA). Here we report in vivo and in vitro data which show that a target of the 2-MC isomer produced by GltA (2-MCGltA) is fructose-1,6-bisphosphatase (FBPase), a key enzyme in gluconeogenesis. Lack of growth due to inhibition of FBPase by 2-MCGltA was overcome by increasing the level of FBPase or by micromolar amounts of glucose in the medium. We isolated an fbp allele encoding a single amino acid substitution in FBPase (S123F), which allowed a strain lacking a functional 2-MCC to grow in the presence of propionate. We show that the 2-MCGltA and the 2-MC isomer synthesized by the 2-MC synthase (PrpC; 2-MCPrpC) are not equally toxic to the cell, with 2-MCGltA being significantly more toxic than 2-MCPrpC. This difference in 2-MC toxicity is likely due to the fact that as a si-citrate synthase, GltA may produce multiple isomers of 2-MC, which we propose are not substrates for the 2-MC dehydratase (PrpD) enzyme, accumulate inside the cell, and have deleterious effects on FBPase activity. Our findings may help explain human inborn errors in propionate metabolism.Humans have used fermentation as an effective method of preservation for a wide variety of foods (41). Today, the weak short-chain fatty acids (SCFAs) produced by fermentation, such as acetic, propionic, butyric, and lactic acids, are widely used as food preservatives and in pre- and postharvest agricultural processes (34, 38, 45). Propionate, one of the most abundant SCFAs found in the environment (12), is widely used as a preservative of baked goods in the food industry (38).While SCFAs such as propionate are extensively used as food preservatives, our understanding of how microbial growth is prevented by them is incomplete. Early studies argued that growth inhibition either was caused by dissipation of the proton motive force (4, 48) or was due to decreases in intracellular pH (15, 48) or the intracellular accumulation of the propionate anion (46, 47). More recently, the global affects of SCFAs on gene expression (1, 43, 44) and protein synthesis (8, 37, 52, 56) were reported, revealing wide-ranging effects on gene expression in response to propionate in the environment (43). Evidence also suggests that central metabolic processes may be inhibited by SCFAs or their catabolites. An overview of the effects of propionate on the cell can be seen in Fig. Fig.11.Open in a separate windowFIG. 1.Overview of propionate metabolism and toxicity in Salmonella.Propionyl coenzyme A (Pr-CoA), an intermediate in propionate metabolism, was shown to inhibit pyruvate dehydrogenase in Rhodobacter sphaeroides (40) and Aspergillus niger (10) and competitively inhibit citrate synthase in Escherichia coli (39). 2-Methylcitrate (2-MC), the product of the condensation of oxaloacetate (OAA) and Pr-CoA, was shown to inhibit growth of Salmonella enterica, but the mechanism of action remained unclear (28) (Fig. (Fig.1).1). With such broad negative effects exerted by propionate or its catabolites, the best strategy for microbes to deal with SCFAs such as propionate is to efficiently catabolize them into central metabolites (Fig. (Fig.11).S. enterica, like many other enteric bacteria, is exposed to high levels of propionate in human digestive tracts with total SCFA levels varying from 20 to 300 mM and propionate reaching levels as high as 23.1 mmol/kg (9, 17). To cope with such high concentrations of propionate, this bacterium and other enterobacteria like E. coli utilize the 2-methylcitric acid cycle (2-MCC) to convert propionate to pyruvate (31, 53). In S. enterica, the prpBCDE operon encodes most of the 2-MCC enzymes (30). These genes encode a 2-methylisocitrate lyase (PrpB), a 2-methylcitrate synthase (PrpC), a 2-methylcitrate dehydratase (PrpD), and a propionyl coenzyme A (CoA) synthetase (PrpE) (Fig. (Fig.1).1). Early work with S. enterica showed that insertion elements placed within the prpBCDE operon greatly increased the sensitivity of S. enterica to propionate (23). Strains carrying insertions in prpE, however, were still able to grow on propionate and were not sensitive to propionate because acetyl-CoA synthetase (Acs) compensates for the lack of PrpE (32).The goal of the studies reported here was to identify a target of 2-MC in S. enterica. Our in vivo and in vitro data support the conclusion that 2-MC inhibits fructose-1,6-bisphosphatase (FBPase), a key enzyme of gluconeogenesis. The inhibition of FBPase blocks the synthesis of glucose, with the concomitant broad negative effects on cell function. We show that while both the 2-MC synthase (PrpC) and citrate synthase (GltA) enzymes synthesize 2-MC, the 2-MC made by GltA (2-MCGltA) is more toxic to the cell than the 2-MC made by PrpC (2-MCPrpC), and we suggest that the reason for this toxicity is due to the difference in stereochemistry of the GltA and PrpC reaction products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号