首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background & Aims

The gut microbiota significantly influences hepatic immunity. Little is known on the precise mechanism by which liver cells mediate recognition of gut microbes at steady state. Here we tested the hypothesis that a specific liver cell population was the sensor and we aimed at deciphering the mechanism by which the activation of TLR4 pathway would mediate liver response to gut microbiota.

Methods

Using microarrays, we compared total liver gene expression in WT versus TLR4 deficient mice. We performed in situ localization of the major candidate protein, CXCL1. With an innovative technique based on cell sorting, we harvested enriched fractions of KCs, LSECs and HSCs from the same liver. The cytokine secretion profile was quantified in response to low levels of LPS (1ng/mL). Chemotactic activity of stellate cell-derived CXCL1 was assayed in vitro on neutrophils upon TLR4 activation.

Results

TLR4 deficient liver had reduced levels of one unique chemokine, CXCL1 and subsequent decreased of neutrophil counts. Depletion of gut microbiota mimicked TLR4 deficient phenotype, i.e., decreased neutrophils counts in the liver. All liver cells were responsive to low levels of LPS, but hepatic stellate cells were the major source of chemotactic levels of CXCL1. Neutrophil migration towards secretory hepatic stellate cells required the TLR4 dependent secretion of CXCL1.

Conclusions

Showing the specific activation of TLR4 and the secretion of one major functional chemokine—CXCL1, the homolog of human IL-8-, we elucidate a new mechanism in which Hepatic Stellate Cells play a central role in the recognition of gut microbes by the liver at steady state.  相似文献   

2.
Liver fibrosis is a chronic disease that results from hepatitis B and C infections, alcohol abuse or metabolic and genetic disorders. Ultimately, progression of fibrosis leads to cirrhosis, a stage of the disease characterized by failure of the normal liver functions. Currently, the treatment of liver fibrosis is mainly based on the removal of the underlying cause of the disease and liver transplantation, which is the only treatment for patients with advanced fibrosis. Hepatic stellate cells (HSC) are considered to be key players in the development of liver fibrosis. Chronically activated HSC produces large amounts of extracellular matrix and enhance fibrosis by secreting a broad spectrum of cytokines that exert pro-fibrotic actions in other cells, and in an autocrine manner perpetuate their own activation. Therefore, therapeutic interventions that inhibit activation of HSC and its pro-fibrotic activities are currently under investigation worldwide. In the present study we applied targeted liposomes as drug carriers to HSC in the fibrotic liver and explored the potential of these liposomes in antifibrotic therapies. Moreover, we investigated effects of bioactive compounds delivered by these liposomes on the progression of liver fibrosis. To our knowledge, this is the first study demonstrating that lipid-based drug carriers can be selectively delivered to HSC in the fibrotic liver. By incorporating the bioactive lipid DLPC, these liposomes can modulate different processes such as inflammation and fibrogenesis in the fibrotic liver. This dual functionality of liposomes as a drug carrier system with intrinsic biological effects may be exploited in new approaches to treat liver fibrosis.  相似文献   

3.
4.

Aim

To evaluate the anti-inflammatory, anti-oxidant and antifibrotic effects of carvedilol (CARV) in rats with ethanol-induced liver injury.

Methods

Liver injury was induced by gavage administration of alcohol (7 g/kg) for 28 consecutive days. Eighty Wistar rats were pretreated with oral CARV at 1, 3, or 5 mg/kg or with saline 1 h before exposure to alcohol. Liver homogenates were assayed for interleukin (IL)-1β, IL-10, and tumor necrosis factor (TNF)-α level as well as for myeloperoxidase (MPO) activity and malonyldialdehyde (MDA) and glutathione (GSH) levels. Serum aspartate aminotransferase (AST) activity and liver triglyceride (TG) levels were also assayed. Immunohistochemical analyses of cyclooxygenase 2 (COX-2), receptor activator of nuclear factor kappa-B/ligand (RANK/RANKL), suppressor of cytokine signalling (SOCS1), the Kupffer cell marker IBA-1 (ionized calcium-binding adaptor molecule 1), intercellular adhesion molecule 1 (ICAM-1), superoxide dismutase (SOD-1), and glutathione peroxidase (GPx-1) expression were performed. Confocal microscopy analysis of IL-1β and NF-κB expression and real-time quantitative PCR analysis for TNFα, PCI, PCIII, and NF-κB were performed.

Results

CARV treatment (5 mg/kg) during the alcohol exposure protocol was associated with reduced steatosis, hepatic cord degeneration, fibrosis and necrosis, as well as reduced levels of AST (p < 0.01), ALT (p < 0.01), TG (p < 0.001), MPO (p < 0.001), MDA (p < 0.05), and proinflammatory cytokines (IL-1β and TNF-α, both p < 0.05), and increased levels of the anti-inflammatory cytokine IL-10 (p < 0.001) and GSH (p < 0.05), compared to the alcohol-only group. Treatment with CARV 5 mg/kg also reduced expression levels of COX-2, RANK, RANKL, IBA-1, and ICAM-1 (all p < 0.05), while increasing expression of SOCS1, SOD-1, and GPx-1 (all p < 0.05) and decreasing expression of IL-1β and NF-κB (both, p < 0.05). Real-time quantitative PCR analysis showed that mRNA production of TNF-α, procollagen type I (PCI), procollagen type III (PCIII), and NF-κB were decreased in the alcohol-CARV 5 mg/kg group relative to the alcohol-only group.

Conclusions

CARV can reduce the stress oxidative, inflammatory response and fibrosis in ethanol-induced liver injury in a rat model by downregulating signalling of Kuppfer cells and hepatic stellate cells (HSCs) through suppression of inflammatory cytokines.  相似文献   

5.
Adult-derived human liver stem/progenitor cells (ADHLSC) are obtained after primary culture of the liver parenchymal fraction. The cells are of fibroblastic morphology and exhibit a hepato-mesenchymal phenotype. Hepatic stellate cells (HSC) derived from the liver non-parenchymal fraction, present a comparable morphology as ADHLSC. Because both ADHLSC and HSC are described as liver stem/progenitor cells, we strived to extensively compare both cell populations at different levels and to propose tools demonstrating their singularity.ADHLSC and HSC were isolated from the liver of four different donors, expanded in vitro and followed from passage 5 until passage 11. Cell characterization was performed using immunocytochemistry, western blotting, flow cytometry, and gene microarray analyses. The secretion profile of the cells was evaluated using Elisa and multiplex Luminex assays.Both cell types expressed α-smooth muscle actin, vimentin, fibronectin, CD73 and CD90 in accordance with their mesenchymal origin. Microarray analysis revealed significant differences in gene expression profiles. HSC present high expression levels of neuronal markers as well as cytokeratins. Such differences were confirmed using immunocytochemistry and western blotting assays. Furthermore, both cell types displayed distinct secretion profiles as ADHLSC highly secreted cytokines of therapeutic and immuno-modulatory importance, like HGF, interferon-γ and IL-10.Our study demonstrates that ADHLSC and HSC are distinct liver fibroblastic cell populations exhibiting significant different expression and secretion profiles.  相似文献   

6.
7.
With their location in the perisinusoidal space of Disse, hepatic stellate cells (HSCs) communicate with all of the liver cell types both by physical association (cell body as well as cytosolic processes penetrating into sinusoids through the endothelial fenestrations) and by producing several cytokines and chemokines. Bacterial lipopolysaccharide (LPS), circulating levels of which are elevated in liver diseases and transplantation, stimulates HSCs to produce increased amounts of cytokines and chemokines. Although recent research provides strong evidence for the role of HSCs in hepatic inflammation and immune regulation, the number of HSC-elaborated inflammatory and immune regulatory molecules may be much greater then known at the present time. Here we report time-dependent changes in the gene expression profile of inflammatory and immune-regulatory molecules in LPS-stimulated rat HSCs, and their validation by biochemical analyses. LPS strongly up-regulated LPS-response elements (TLR2 and TLR7) but did not affect TLR4 and down-regulated TLR9. LPS also up-regulated genes in the MAPK, NFκB, STAT, SOCS, IRAK and interferon signaling pathways, numerous CC and CXC chemokines and IL17F. Interestingly, LPS modulated genes related to TGFβ and HSC activation in a manner that would limit their activation and fibrogenic activity. The data indicate that LPS-stimulated HSCs become a major cell type in regulating hepatic inflammatory and immunological responses by altering expression of numerous relevant genes, and thus play a prominent role in hepatic pathophysiology including liver diseases and transplantation.  相似文献   

8.
9.
miR-199a-5p是miRNAs家族的一员.为探讨对人肝星状细胞活化增殖和迁移的影响,为临床肝纤维化治疗提供新的思路,本研究构建miR-199a-5p过表达载体、合成miR-199a-5p反义寡聚核苷酸(anti-sense oligonucleotide,ASO)经脂质体转染LX-2细胞.采用CCK-8法和Transwell分别检测细胞增殖和迁移能力;集落形成实验检测LX-2细胞的集落形成能力;实时荧光定量PCR技术检测细胞中转染miR-199a-5p后纤维化相关基因α-SMA和Collagen Ⅰ的mRNA表达水平;Western blot检测各组细胞中α-SMA表达水平.结果 表明miR-199a-5p可以促进LX-2细胞增殖(P<0.01)、迁移(P<0.01)和集落形成(P<0.01);而ASO-199a-5p-5p组细胞增殖(P<0.01)、迁移能力(P<0.01)和集落形成能力(P<0.01)受到抑制.RT-qPCR结果显示miR-199a-5p在受TGF-β1刺激后的LX-2细胞中的miRNA表达水平高于未受刺激组的(P<0.05),转染miR-199a组细胞中α-SMA的mRNA(P<0.01)和蛋白(P<0.05)表达水平升高.以上结论表明miR-199a-5p过表达能促进肝星状细胞活化、增殖.  相似文献   

10.
Sepsis is defined as a systemic inflammatory response syndrome that disorders the functions of host immune system, including the imbalance between pro- and anti-inflammatory responses mediated by immune macrophages. Sepsis could also induce acute hyperglycemia. Studies have shown that the silent mating type information regulation 2 homolog 1 (SIRT1), an NAD+-dependent deacetylase, mediates NF-κb deacetylation and inhibits its function. Therefore, SIRT1 is likely to play an important role in high glucose-mediated inflammatory signalings. Here we demonstrate that high glucose significantly downregulates both the mRNA and protein levels of SIRT1 and upregulates the mRNA level and the release of two pro-inflammatory cytokines, IL-1β and TNF-α, in RAW264.7 macrophages. Interestingly, the reduced level of SIRT1 by high glucose is remarkably upregulated by SIRT1 activator SRT1720, while the level and the release of IL-1β and TNF-α significantly decrease with the use of SRT1720. However, when the function of SIRT1 is inhibited by EX527 or its expression is suppressed by RNAi, the upregulated level and release of IL-1β and TNF-α by high glucose are further increased. Taken together, these findings collectively suggest that SIRT1 is an important regulator in many high glucose-related inflammatory diseases such as sepsis.  相似文献   

11.
TGFβ-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, is considered a key intermediate in a multitude of innate immune signaling pathways. Yet, the specific role of TAK1 in the myeloid compartment during inflammatory challenges has not been revealed. To address this question, we generated myeloid-specific kinase-dead TAK1 mutant mice. TAK1 deficiency in macrophages results in impaired NF-κB and JNK activation upon stimulation with lipopolysaccharide (LPS). Moreover, TAK1-deficient macrophages and neutrophils show an enhanced inflammatory cytokine profile in response to LPS stimulation. Myeloid-specific TAK1 deficiency in mice leads to increased levels of circulating IL-1β, TNF and reduced IL-10 after LPS challenge and sensitizes them to LPS-induced endotoxemia. These results highlight an antiinflammatory role for myeloid TAK1, which is essential for balanced innate immune responses and host survival during endotoxemia.  相似文献   

12.
The identity of pancreatic stem/progenitor cells is still under discussion. They were suggested to derive from the pancreatic ductal epithelium and/or islets. Here we report that rat pancreatic stellate cells (PSC), which are thought to contribute to pancreatic fibrosis, have stem cell characteristics. PSC reside in islets and between acini and display a gene expression pattern similar to umbilical cord blood stem cells and mesenchymal stem cells. Cytokine treatment of isolated PSC induced the expression of typical hepatocyte markers. The PSC-derived hepatocyte-like cells expressed endodermal proteins such as bile salt export pump along with the mesodermal protein vimentin. The transplantation of culture-activated PSC from enhanced green fluorescent protein-expressing rats into wild type rats after partial hepatectomy in the presence of 2-acetylaminofluorene revealed that PSC were able to reconstitute large areas of the host liver through differentiation into hepatocytes and cholangiocytes. This developmental fate of transplanted PSC was confirmed by fluorescence in situ hybridization of chromosome Y after gender-mismatched transplantation of male PSC into female rats. Transplanted PSC displayed long-lasting survival, whereas muscle fibroblasts were unable to integrate into the host liver. The differentiation potential of PSC was further verified by the transplantation of clonally expanded PSC. PSC clones maintained the expression of stellate cell and stem cell markers and preserved their differentiation potential, which indicated self-renewal potential of PSC. These findings demonstrate that PSC have stem cell characteristics and can contribute to the regeneration of injured organs through differentiation across tissue boundaries.  相似文献   

13.
肿瘤微环境中肝星状细胞能够影响肝癌细胞的生物学行为.在肝脏发育过程中,肝星状细胞通过表皮形态发生素(epimorphin,EPM,syntaxin2)与肝干细胞接触而促进肝干细胞的功能性分化.EPM在溃疡性结肠炎、间质性肺炎以及结肠癌中也发挥了重要的作用.发现肝细胞癌(HCC)细胞能够促使星状细胞EPM表达上调.为了研究肝星状细胞的EPM对于肝癌可能的作用,构建了针对EPM基因表达的shRNA干扰载体,并将质粒转染肝星状细胞,获得了两株携带该干扰片段的细胞系.RT-PCR与Westernblot检测结果表明,转基因干扰星状细胞系EPMmRNA和蛋白质表达量明显降低.之后,使用转基因细胞系的条件培养基对于肿瘤细胞进行侵袭能力的检测,并对星状细胞与肝癌细胞三维共培养,证明EPM干涉后肝星状细胞促进肿瘤细胞迁移的能力降低.结果表明通过RNAi可稳定干扰人肝星状细胞EPM基因的表达,并且EPM能够促进肝癌细胞的转移.  相似文献   

14.
Hepatic stellate cells (HSCs) are known as initiator cells that induce liver fibrosis upon intoxication or other noxes. Deactivation of this ongoing remodeling process of liver parenchyma into fibrotic tissue induced by HSCs is an interesting goal to be achieved by targeted genetic modification of HSCs. The most widely applied approach in gene therapy is the utilization of specifically targeted vectors based on Adenovirus (Ad) serotype 5. To narrow down the otherwise ubiquitous tropism of parental Ad, two modifications are required: a) ablating the native tropism and b) redirecting the vector particles towards a specific entity solely present on the cells of interest. Therefore, we designed a peptide of the nerve growth factor (NGFp) with specific affinity for the p75 neurotrophin receptor (p75NTR) present on HSCs. Coupling of this NGFp to vector particles was done either via chemical conjugation using bifunctional polyethylene glycol (PEG) or, alternatively, by molecular bridging with a fusion protein specific for viral fiber knob and p75NTR. Both Ad vectors transmit the gene for the green fluorescent protein (GFP). GFP expression was monitored in vitro on primary murine HSCs as well as after systemic administration in mice with healthy and fibrotic livers using intravital fluorescence microscopy. Coupling of NGFp to Ad via S11 and/or PEGylation resulted in markedly reduced liver tropism and an enhanced adenoviral-mediated gene transfer to HSCs. Transduction efficiency of both specific Ads was uniformly higher in fibrotic livers, whereas Ad.GFP-S11-NGFp transduce activated HSCs better than Ad.GFP-PEG-NGFp. These experiments contribute to the development of a targeted gene transfer system to specifically deliver antifibrotic compounds into activated HSCs by systemically applied adenoviral vector modified with NGFp.  相似文献   

15.

Background & Aims

Acute liver injury is a clinically important pathology and results in the release of Danger Associated Molecular Patterns, which initiate an immune response. Withdrawal of the injurious agent and curtailing any pathogenic secondary immune response may allow spontaneous resolution of injury. The role B cells and Immunoglobulin M (IgM) play in acute liver injury is largely unknown and it was proposed that B cells and/or IgM would play a significant role in its pathogenesis.

Methods

Tissue from 3 models of experimental liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury) and patients transplanted following paracetamol overdose were stained for evidence of IgM deposition. Mice deficient in B cells (and IgM) were used to dissect out the role B cells and/or IgM played in the development or resolution of injury. Serum transfer into mice lacking IgM was used to establish the role IgM plays in injury.

Results

Significant deposition of IgM was seen in the explanted livers of patients transplanted following paracetamol overdose as well as in 3 experimental models of acute liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury). Serum transfer into IgM-deficient mice failed to reconstitute injury (p = 0.66), despite successful engraftment of IgM. Mice deficient in both T and B cells (RAG1-/-) mice (p<0.001), but not B cell deficient (μMT) mice (p = 0.93), were significantly protected from injury. Further interrogation with T cell deficient (CD3εKO) mice confirmed that the T cell component is a key mediator of sterile liver injury. Mice deficient in B cells and IgM mice did not have a significant delay in resolution following acute liver injury.

Discussion

IgM deposition appears to be common feature of both human and murine sterile liver injury. However, neither IgM nor B cells, play a significant role in the development of or resolution from acute liver injury. T cells appear to be key mediators of injury. In conclusion, the therapeutic targeting of IgM or B cells (e.g. with Rituximab) would have limited benefit in protecting patients from acute liver injury.  相似文献   

16.
Probiotics and Antimicrobial Proteins - Hepatic stellate cell (HSC) activation is a key phenomenon in development of liver fibrosis. Recently, Akkermansia muciniphila has been introduced as a...  相似文献   

17.
目的:建立一种简便、经济、高产的同步分离培养肝细胞以及肝星状细胞的方法。方法:在参照国内外方法的基础上加以改良,首先采用肝脏原位胶原酶灌注消化的方法,获得总细胞悬液,经多次低速离心分离肝细胞;再用Nycodenz作为分离介质,通过密度梯度离心法从非实质细胞中得到肝星状细胞。通过台盼蓝染色方法鉴定细胞的活力,用倒置相差显微镜、立体显微镜、CK-18、白蛋白免疫荧光细胞化学染色对培养的肝细胞形态以及功能进行检测。使用Desmin、α-SMA免疫荧光细胞化学对肝星状细胞进行鉴定。结果:成功的在体外同步分离、培养肝细胞及肝星状细胞,肝细胞产率为5-6×107/只小鼠,两只小鼠肝星状细胞产率达1×106个。细胞存活率及纯度均可达90%。肝细胞在培养24h后呈不规则铺路石样形态,此为典型的肝细胞形态,其标志分子CK-18以及白蛋白免疫荧光染色阳性。倒置相差显微镜下可见贴壁后的肝星状细胞呈典型的星形细胞形态,且其标志分子Desmin、α-SMA免疫荧光染色阳性。结论:改良的原位灌注以及分离方法可以同时分离并且培养具有高活性和功能的肝细胞和肝星状细胞。  相似文献   

18.
19.
We provide evidence that human SLFN5, an interferon (IFN)-inducible member of the Schlafen (SLFN) family of proteins, exhibits key roles in controlling motility and invasiveness of renal cell carcinoma (RCC) cells. Our studies define the mechanism by which this occurs, demonstrating that SLFN5 negatively controls expression of the matrix metalloproteinase 1 gene (MMP-1), MMP-13, and several other genes involved in the control of malignant cell motility. Importantly, our data establish that SLFN5 expression correlates with a better overall survival in a large cohort of patients with RCC. The inverse relationship between SLFN5 expression and RCC aggressiveness raises the possibility of developing unique therapeutic approaches in the treatment of RCC, by modulating SLFN5 expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号