首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

Here we report the existence of six putative Dicer-like genes in the Medicago truncatula genome. They are ubiquitously expressed throughout the plant and significantly induced in root nodules.

Abstract

Over the past decade, small noncoding RNAs (sncRNA) have emerged as widespread and important regulatory molecules influencing both the structure and expression of plant genomes. One of the key factors involved in sncRNA biogenesis in plants is a group of RNase III-type nucleases known as Dicer-like (DCL) proteins. Based on functional analysis of DCL proteins identified in Arabidopsis thaliana, four types of DCLs were distinguished (DCL1-4). DCL1 mainly produces 21 nt miRNAs. The products generated by DCL2, DCL3, and DCL4 belong to various classes of siRNAs that are 22, 24 and 21 nt in length, respectively. M. truncatula is a model legume plant closely related to many economically important cultivable species. By screening the recent M. truncatula genome assembly, we were able to identify three new DCL genes in addition to the MtDCL1-3 genes that had been earlier characterized. The newly found genes include MtDCL4 and two MtDCL2 homologs. We showed that all six M. truncatula DCL genes are expressed in plant cells. The first of the identified MtDCL2 paralogs encodes a truncated version of the DCL2 protein, while the second undergoes substantial and specific upregulation in the root nodules. Additionally, we identified an alternative splicing variant of MtDCL1 mRNA, similar to the one found in Arabidopsis. Our results indicate that DCL genes are differently activated during Medicago symbiosis with nitrogen fixing bacteria and upon pathogen infection. In addition, we hypothesize that the alternative splicing variant of MtDCL1 mRNA may be involved in tissue-specific regulation of the DCL1 level.
  相似文献   

2.
Rac.-p-(tris(2-aminoethyl)amine-2-(nitromethyl)ornithine)cobalt(III) trichloride (2d) was obtained by a simple three-step procedure from ornithine using cobalt template chemistry. p-(Tris(2-aminoethyl)amine-ornithine)cobalt(III) trichloride (2a) was obtained from tris(2-aminoethyl)amine (tren) and (S)-ornithine in the presence of cobalt(II), which was oxidised to cobalt(III) during the reaction. Complex 2a was selectively oxidised with thionyl chloride-dimethyl formamide to p-(tris(2-aminoethyl)amine-dehydro-ornithine)cobalt(III) trichloride 2b. Complex 2c, in which reaction of thionyl chloride-dimethyl formamide has also occurred at the δ-amine of ornithine, was obtained at longer reaction times. Complex 2b reacted with nitromethane anion to give rac.-p-(tris(2-aminoethyl)amino-2-(nitromethyl)ornithine)cobalt(III) trichloride (2d). The amino acid rac.-2-(nitromethyl)ornithine (1b) was released by reducing complex 2d with aqueous ammonium sulfide. Complex 2d was expected to release 2-(nitromethyl)ornithine (1b) in hypoxic cells, where the amino acid could act as an inhibitor of ornithine decarboxylase. Preliminary data indicated that complex 2d was weakly cytotoxic in one cell type studied.  相似文献   

3.
An efficient and environmentally benign simple fusion reaction of 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)pyridazine (1a) or 3-chloro-6-(3,5-dimethyl-4-nitro-1H-pyrazol-1-yl)pyridazine (2a) with different aliphatic/aromatic amines have produced a series of novel pyrazolylpyridazine amines (4a–4c & 5a–5m). All compounds exhibited moderate in vitro yeast α-glucosidase inhibition except m-chloro derivative 5g, which was found potent inhibitor of this enzyme with IC50 value of 19.27 ± 0.005 µM. The molecular docking further helped in understanding the structure activity relationship of these compounds including 5g.  相似文献   

4.
5.
A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50 >100 μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors.  相似文献   

6.
Helicobacter pylori is associated with various diseases of the upper gastrointestinal tract, such as gastric inflammation and duodenal and gastric ulcers. The aim of the study was to assess anti-H. pylori effects of the sesquiterpene lactone dehydrocostus lactone (DCL) from Magnolia sieboldii leaves, compared to commercial pure DCL, two previously known sesquiterpene lactones (costunolide and parthenolide), (–)-epigallocatechin gallate, and four antibiotics. The antibacterial activity of natural DCL toward antibiotic-susceptible H. pylori ATCC 700392 and H. pylori ATCC 700824 strains (MIC, 4.9 and 4.4 mg/L) was similar to that of commercial DCL and was more effective than costunolide, parthenolide, and EGCG. The activity of DCL was slightly lower than that of metronidazole (MIC, 1.10 and 1.07 mg/L). The antibacterial activity of DCL was virtually identical toward susceptible and resistant strains, even though resistance to amoxicillin (MIC, 11.1 mg/L for PED 503G strain), clarithromycin (49.8 mg/L for PED 3582GA strain), metronidazole (21.6 mg/L for H. pylori ATCC 43504 strain; 71.1 mg/L for 221 strain), or tetracycline (14.2 mg/L for B strain) was observed. This finding indicates that DCL and the antibiotics do not share a common mode of action. The bactericidal activity of DCL toward H. pylori ATCC 43504 was not affected by pH values examined (4.0–7.0). DCL caused considerable conversion to coccoid form (94 versus 49% at 8 and 4 mg/L of DCL for 48 h). The Western blot analysis revealed that urease subunits (UreA and UreB) of H. pylori ATCC 43504 were not affected by 10 mM of DCL, whereas UreA monomer band completely disappeared at 0.1 mM of (–)-epigallocatechin gallate. Global efforts to reduce the level of antibiotics justify further studies on M. sieboldii leaf-derived materials containing DCL as potential antibacterial products or a lead molecule for the prevention or eradication of drug-resistant H. pylori.  相似文献   

7.
To date, the development of photoaffinity ligands targeting the human serotonin transporter (hSERT), a key protein involved in disease states such as depression and anxiety, have been radioisotope-based (i.e., 3H or 125I). This letter instead highlights three derivatives of the selective serotonin reuptake inhibitor (SSRI) (S)-citalopram that were rationally designed and synthesized to contain a photoreactive benzophenone or an aryl azide for protein target capture via photoaffinity labeling and a terminal alkyne or an aliphatic azide for click chemistry-based proteomics. Specifically, clickable benzophenone-based (S)-citalopram photoprobe 6 (hSERT Ki?=?0.16?nM) displayed 11-fold higher binding affinity at hSERT when compared to (S)-citalopram (hSERT Ki?=?1.77?nM), and was subsequently shown to successfully undergo tandem photoaffinity labeling-biorthogonal conjugation using purified hSERT. Given clickable photoprobes can be used for various applications depending on which reporter is attached by click chemistry subsequent to photoaffinity labeling, photoprobe 6 is expected to find value in structure-function studies and other research applications involving hSERT (e.g., imaging).  相似文献   

8.
Acetylcholinesterase (AChE) is the key enzyme targeted in Alzheimer's disease (AD) therapy, nevertheless butyrylcholinesterase (BuChE) has been drawing attention due to its role in the disease progression. Thus, we aimed to synthesize novel cholinesterases inhibitors considering structural differences in their peripheral site, exploiting a moiety replacement approach based on the potent and selective hAChE drug donepezil. Hence, two small series of N-benzylpiperidine based compounds have successfully been synthesized as novel potent and selective hBuChE inhibitors. The most promising compounds (9 and 11) were not cytotoxic and their kinetic study accounted for dual binding site mode of interaction, which is in agreement with further docking and molecular dynamics studies. Therefore, this study demonstrates how our strategy enabled the discovery of novel promising and privileged structures. Remarkably, compound 11 proved to be one of the most potent (0.17?nM) and selective (>58,000-fold) hBuChE inhibitor ever reported.  相似文献   

9.
A series of novel 1,2,3-triazole-adamantylacetamide hybrids 5au, designed by combining bioactive fragments from antitubercular I-A09 and substituted adamantyl urea, were synthesized using copper catalyzed click chemistry. N-(1-Adamantyl)-2-azido acetamide 3 prepared from 1-adamantylamine was reacted with a series of alkyl/aryl acetylenes in the presence of copper sulfate and sodium ascorbate to give new analogues 5au in very good yields. Evaluation of all new compounds for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv (ATCC27294), resulted N-(1-adamantan-1-yl)-2-(4-(phenanthren-2-yl)-1H-1,2,3-triazol-1-yl)acetamide (5t) as most promising lead MIC: 3.12 μg/mL) with selectivity index >15.  相似文献   

10.
A novel series of triazol-N-ethyl-tetrahydroisoquinoline based compounds were designed and synthesized via click chemistry. Most of the synthesized compounds showed P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) reversal activities. Among them, compound 7 with little cytotoxicity towards GES-1 cells (IC50 >80 μM) and K562/A02 cells (IC50 >80 μM) exhibited more potency than verapamil (VRP) on increasing anticancer drug accumulation in K562/A02 cells. Moreover, compound 7 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 7 in reversing MDR revealed that it could remarkably increase the intracellular accumulation of both rhodamine-123 (Rh123) and adriamycin (ADM) in K562/A02 cells as well as inhibit their efflux from the cells. These results suggested that compound 7 showed more potency than the classical P-gp inhibitor VRP under the same conditions, which may be a promising P-gp-mediated MDR modulator for further development.  相似文献   

11.
The germination of the obligate root parasites of the Orobanchaceae depends on the perception of chemical stimuli from host roots. Several compounds, collectively termed strigolactones, stimulate the germination of the various Orobanche species, but do not significantly elicit germination of Orobanche cumana, a specific parasite of sunflower.Phosphate starvation markedly decreased the stimulatory activity of sunflower root exudates toward O. cumana, and fluridone - an inhibitor of the carotenoid biosynthesis pathway - did not inhibit the production of the germination stimulant in both shoots and roots of young sunflower plants, indicating that the stimulant is not a strigolactone.We identified the natural germination stimulant from sunflower root exudates by bioassay-driven purification. Its chemical structure was elucidated as the guaianolide sesquiterpene lactone dehydrocostus lactone (DCL). Low DCL concentrations effectively stimulate the germination of O. cumana seeds but not of Phelipanche aegyptiaca (syn. Orobanche aegyptiaca). DCL and other sesquiterpene lactones were found in various plant organs, but were previously not known to be exuded to the rhizosphere where they can interact with other organisms.  相似文献   

12.
Leishmania mexicana can cause both localized (LCL) and diffuse (DCL) cutaneous leishmaniasis, yet little is known about factors regulating disease severity in these patients. We analyzed if the disease was associated with single nucleotide polymorphisms (SNPs) in IL-1β (−511), CXCL8 (−251) and/or the inhibitor IL-1RA (+2018) in 58 Mexican mestizo patients with LCL, 6 with DCL and 123 control cases. Additionally, we analyzed the in vitro production of IL-1β by monocytes, the expression of this cytokine in sera of these patients, as well as the tissue distribution of IL-1β and the number of parasites in lesions of LCL and DCL patients. Our results show a significant difference in the distribution of IL-1β (−511 C/T) genotypes between patients and controls (heterozygous OR), with respect to the reference group CC, which was estimated with a value of 3.23, 95% CI = (1.2, 8.7) and p-value = 0.0167), indicating that IL-1β (−511 C/T) represents a variable influencing the risk to develop the disease in patients infected with Leishmania mexicana. Additionally, an increased in vitro production of IL-1β by monocytes and an increased serum expression of the cytokine correlated with the severity of the disease, since it was significantly higher in DCL patients heavily infected with Leishmania mexicana. The distribution of IL-1β in lesions also varied according to the number of parasites harbored in the tissues: in heavily infected LCL patients and in all DCL patients, the cytokine was scattered diffusely throughout the lesion. In contrast, in LCL patients with lower numbers of parasites in the lesions, IL-1β was confined to the cells. These data suggest that IL-1β possibly is a key player determining the severity of the disease in DCL patients. The analysis of polymorphisms in CXCL8 and IL-1RA showed no differences between patients with different disease severities or between patients and controls.  相似文献   

13.
14.
A novel protocol based on size-exclusion chromatography (SEC) and MS was established to accelerate dynamic combinatorial chemistry (DCC) in this study. By isolating ligand–target adducts from the dynamic combinatorial library (DCL), ligands could be identified directly by MS after denaturation. Three new inhibitors for lysozyme were discovered by this SEC–MS protocol in a case study. Km Data for these new inhibitors was also determined.  相似文献   

15.
Multi-target compounds where more than one functional activity is incorporated into the same molecule may have advantages in treating disease states. Selective serotonin re-uptake inhibitors (SSRIs)a (i.e., (R)- and (S)-norfluoxetine) were chemically linked to a PDE4 inhibitor via a five carbon bridge. The new dual PDE4 inhibitor/SSRIs (i.e., (R)-8 and (S)-8) showed moderately potent but highly selective serotonin re-uptake inhibition (IC50 values of 173 and 42 nM, respectively) in vitro. The dual PDE4 inhibitor/SSRIs (R)-8 and (S)-8 also inhibited PDE4D2 (i.e., Ki values of 106 and 253 nM, respectively). Due to the synergistic functional activity, PDE4 inhibitor/SSRIs may be effective in treating diseases such as depression.  相似文献   

16.
Organometallic analogs of chloroquine (CQ) are of interest as drug candidates that may be able to overcome the widespread chloroquine resistance developed by malaria parasites. Two new chromium arene CQ-analogs: [η6-N-(7-chloroquinolin-4-yl)-N′-(2-dimethylamino-methylbenzyl)-ethane-1,2-diamine]tricarbonylchromium 4 and [η6-N-(7-chloroquinolin-4-yl)-N′-(2-dimethylaminobenzyl)-ethane-1,2-diamine]tricarbonylchromium 9 have been synthesized and characterized. In addition, X-ray crystal structures of the intermediates (η6-benzyldimethylamine)tricarbonylchromium 2, [η6-2-((dimethylamino)methyl) benzaldehyde]tricarbonylchromium 3 and p-6-dimethylaminobenzaldehyde)tricarbonyl chromium 8 are reported. Compound 4 was more active than chloroquine against both CQ-sensitive and CQ-resistant strains of Plasmodium falciparum when antimalarial activity was tested in vitro. The activity of 4 against the CQ-resistant parasite strain was twice as high as for the organic ligand alone (IC50 values of 33.9 nM versus 63.1 nM).  相似文献   

17.
A structure-activity/structure-property relationship study based on the physicochemical as well as in vitro pharmacokinetic properties of a first generation matrix metalloproteinase (MMP)-13 inhibitor (2) was undertaken. After systematic variation of inhibitor 2, compound 31 was identified which exhibited microsomal half-life higher than 20?min, kinetic solubility higher than 20?μM, and a permeability coefficient greater than 20?×?10?6?cm/s. Compound 31 also showed excellent in vivo PK properties after IV dosing (Cmax?=?56.8?μM, T1/2 (plasma)?=?3.0?h, Cl?=?0.23?mL/min/kg) and thus is a suitable candidate for in vivo efficacy studies in an OA animal model.  相似文献   

18.
Plants respond to virus infections by activation of RNA-based silencing, which limits infection at both the single-cell and system levels. Viruses encode RNA silencing suppressor proteins that interfere with this response. Wild-type Arabidopsis thaliana is immune to silencing suppressor (HC-Pro)-deficient Turnip mosaic virus, but immunity was lost in the absence of DICER-LIKE proteins DCL4 and DCL2. Systematic analysis of susceptibility and small RNA formation in Arabidopsis mutants lacking combinations of RNA-dependent RNA polymerase (RDR) and DCL proteins revealed that the vast majority of virus-derived small interfering RNAs (siRNAs) were dependent on DCL4 and RDR1, although full antiviral defense also required DCL2 and RDR6. Among the DCLs, DCL4 was sufficient for antiviral silencing in inoculated leaves, but DCL2 and DCL4 were both involved in silencing in systemic tissues (inflorescences). Basal levels of antiviral RNA silencing and siRNA biogenesis were detected in mutants lacking RDR1, RDR2, and RDR6, indicating an alternate route to form double-stranded RNA that does not depend on the three previously characterized RDR proteins.  相似文献   

19.
Prostate-specific membrane antigen (PSMA) is an important biological target for therapy and diagnosis of prostate cancer. In this study, novel multivalent PSMA inhibitors with glutamate-urea-lysine structures were designed to improve inhibition characteristics. Precursors of the novel inhibitors were prepared from glutamic acid with di-tert-butyl ester. A near-infrared molecular dye, sulfo-Cy5.5, was introduced into the precursors to generate the final PSMA fluorescent inhibitors, compounds 1214, to visualize prostate cancer. Biological behaviors of the inhibitors were evaluated using in vitro inhibition assays, in vivo fluorescent imaging, and ex vivo biodistribution assays. Ki values from inhibition studies indicated that dimeric inhibitor 13 with a glutamine linker showed approximately 3-fold more inhibitory activity than monomeric inhibitor 12. According to other biological studies using a mouse model of prostate cancer, dimeric inhibitor compounds 13 and 14 had higher tumor accumulation than the monomer. However, glutamine-based dimeric inhibitor 13 showed lower liver uptake than dimeric inhibitor 14, which had a benzene structure. Thus, these studies suggest that glutamine-based dimeric inhibitor 13 can be a promising optical inhibitor of prostate cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号