首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abundance-occupancy and abundance-variance relationships are two of the most general macroecological patterns capturing essential fundamentals of the structuring of species distributions and are widely documented for free-living animal and plant species populations at different spatial scales. However, empirical data for parasites have been gathered using appropriate sampling designs only recently. We performed analyses across species of the variation in infection parameters and patterns of aggregation of the most widespread parasites in the marine sparid fish Boops boops across seven localities of two marine biogeographical regions, the North East Atlantic and the Mediterranean. We used a large dataset of multiple population samples replicated over time for 20 parasite species and carried out assessments both intraspecifically and interspecifically, across taxonomic and ecological groupings. This taxonomically diverse complex of species representing five major metazoan higher taxa with differing transmission ecologies allowed us to assess the effect of taxonomic and ecological determinants on the abundance-occupancy and abundance-variance relationships in the model marine host-parasite system. The results revealed that: (i) a power function, relating spatial variance to mean abundance, represents a suitable model for the spatial distribution of the species; (ii) prevalence, abundance and the degree of spatial heterogeneity are true species characteristics and differ consistently between higher level taxonomic groupings; (iii) infection parameters and abundance-variance relationship are dependent on host specificity and regional distribution patterns of the parasites; and (iv) the observed infection parameters agree well with predictions from the epidemiological negative binomial abundance-occupancy model built on parameters of Taylor's power law both within and across species.  相似文献   

2.
Heino J 《Oecologia》2008,157(2):337-347
The interspecific relationship between local abundance and regional distribution, as well as the occupancy frequency distribution, are widely studied topics in macroecology. A positive abundance-occupancy relationship has been found in a majority of studies, and satellite species modes are typically dominant in occupancy frequency distributions. However, there are a number of exceptions to these "general" findings, and only a few studies have examined these patterns and their temporal variability in stream organisms. I examined both abundance-occupancy relationships and occupancy frequency distributions in stream insects in a boreal drainage system over six consecutive years. I found that the positive interspecific abundance-occupancy relationship was highly stable temporally, with coefficients of determination ranging from 0.25 to 0.47 over the years. There were no strong differences in the strength and slope of the abundance-occupancy relationship between non-predatory and predatory insect species in each year. Temporally stable abundance-occupancy relationships were paralleled by among-year patterns in both abundance and occupancy, with locally abundant and widely distributed species remaining locally abundant and widely distributed over the years, while locally uncommon and regionally rare species showed the opposite. Occupancy frequency distributions were strongly right-skewed, mirroring the dominance of the left-most satellite mode of regionally rare species. That the abundance-occupancy relationship, species' abundances and distributions, as well as the dominance of satellite species in occupancy frequency distribution were temporally stable suggest that niche-based models are strong candidates for explaining these patterns in stream insects. By contrast, metapopulation-based models that predict clear temporal variability in species' abundance and occupancy, as well as bimodal occupancy frequency distributions, are less plausible candidates for explaining the observed patterns. The present findings are the opposite to those in some terrestrial studies, but they are in agreement with other terrestrial studies and with a few previous studies on stream organisms.  相似文献   

3.
Mesoplatys ochroptera St?l, Exosoma and Ootheca spp. seriously damage sesbania, Sesbania sesban (L.) Merril, a multipurpose leguminous tree widely used in tropical agroforestry. This is discouraging farmers from expanding the planting of sesbania in various agroforestry systems in eastern and south-central Africa. Rapid methods are needed for estimation of population densities of these beetles for decision making in pest management. A study was conducted with the objectives of determining the existence of any positive relationship between the occupancy and abundance of Mesoplatys, Exosoma and Ootheca and determining the model that best predicts abundance from occupancy for rapid estimation of population densities. The Poisson model assuming spatial randomness, the negative binomial distribution (NBD) model assuming spatial aggregation, the Nachman model without any distribution assumption, and a General model incorporating spatial variance-abundance and occupancy-abundance relationships were fitted to data on adult M. ochroptera, Exosoma and Ootheca from western Kenya, southern Malawi and eastern Zambia. Very strong variance to abundance relationships were observed in the spatial pattern of all three beetles. The occupancy-abundance relationships were also positive and strong in all beetles. The occupancy and abundance predicted by the four models were closest to the observed at lower densities compared with higher beetle densities. At higher population densities, the NBD and the General model gave better fit for M. ochroptera and Exosoma. For Ootheca populations, the Poisson and NBD models gave better fit at higher population densities. The relationships established here can be used as guide to estimate beetle densities for decision-making in pest management.  相似文献   

4.
One of the most studied macroecological patterns is the interspecific abundance-occupancy relationship, which relates species distribution and abundance across space. Interspecific relationships between temporal distribution and abundance, however, remain largely unexplored. Using data for a natural assemblage of tabanid flies measured daily during spring and summer in Nova Scotia, we found that temporal occurrence (proportion of sampling dates in which a species occurred in an experimental trap) was positively related to temporal mean abundance (number of individuals collected for a species during the study period divided by the total number of sampling dates). Moreover, two models that often describe spatial abundance-occupancy relationships well, the He-Gaston and negative binomial models, explained a high amount of the variation in our temporal data. As for the spatial abundance-occupancy relationship, the (temporal) aggregation parameter, k, emerged as an important component of the hereby named interspecific temporal abundance-occurrence relationship. This may be another case in which a macroecological pattern shows similarities across space and time, and it deserves further research because it may improve our ability to forecast colonization dynamics and biological impacts.  相似文献   

5.
Positive abundance-occupancy relationships (a relationship between the number of sites a species occupies and the average density of individuals in occupied sites) are widespread through a range of taxa. The simplest model for this is the "vital rates" model, which proposes that habitat suitability varies spatially; increasing average habitat quality thus leads to simultaneous increases in average densities within occupied areas, as well as the total area that is habitable. This model has not been tested. We develop a general analytical version of this model and show that it predicts that the skewness of population size or aggregation of individuals within sites should vary systematically with density and occupancy, depending on the distribution of habitat suitability, and that the variance in occupancy should be highest at low densities. We compare these predictions with data from the British Trust for Ornithology's Common Birds Census, and we find systematic changes in both variance and skewness of density, both intra- and interspecifically.  相似文献   

6.
We studied the relationship between abundance and extent of occupancy of 158 species of macrofauna inhabiting 66 sandy beaches around the coast of Great Britain. We also used these data to test the predictions of two hypotheses proposed to explain positive abundance-occupancy relationships. We found a strong positive relationship between abundance and extent of occupancy; this pattern was apparent in taxonomic subsets of organisms which have contrasting reproductive and dispersal traits such as planktotrophic/lecithotrophic development in the plankton vs brood development under parental care. Moreover, the abundance-occupancy relationships in these taxonomic subsets had statistically indistinguishable slopes, and elevation. We propose that this lends support to the notion that differences in population structure such as the tendency to form metapopulations may not be primary determinants of the abundance-occupancy pattern in these taxa as proposed by the rescue/metapopulation hypothesis. To test the predictions of the niche-breadth hypothesis we derived values describing the range of sediment grain-sizes exploited by members of two taxonomic subgroups: amphipods and bivalves. We found a weak, statistically non-significant relationship between this niche-breadth measure and occupancy in bivalves which have been shown to respond to grain-size in previous studies, however this was negated after correction for possible artefacts of sampling effort. All other relationships between abundance or occupancy and grain-size range were non-significant. The consistency of the demonstrated abundance-occupancy relationship with those demonstrated in other studies of primarily terrestrial fauna indicates some shared mechanistic explanation, but our data fail to provide support for the two mechanistic hypotheses investigated.  相似文献   

7.
1. Range size, population size and body size, the key macroecological variables, vary temporally both within and across species in response to anthropogenic and natural environmental change. However, resulting temporal trends in the relationships between these variables (i.e. macroecological patterns) have received little attention. 2. Positive relationships between the local abundance and regional occupancy of species (abundance-occupancy relationships) are among the most pervasive of all macroecological patterns. In the absence of formal predictions of how abundance-occupancy relationships may vary temporally, we outline several scenarios of how changes in abundance within species might affect interspecific patterns. 3. We use data on the distribution and abundance of 73 farmland and 55 woodland bird species in Britain over a 32-year period encompassing substantial habitat modification to assess the likelihood of these scenarios. 4. In both farmland and woodland habitats, the interspecific abundance-occupancy relationship changed markedly over the period 1968-99, with a significant decline in the strength of the relationship. 5. Consideration of intraspecific dynamics shows that this has been due to a decoupling of abundance and occupancy particularly in rare and declining species. Insights into the intraspecific processes responsible for the interspecific trend are obtained by analysis of temporal trends in the distribution of individuals between sites, which show patterns consistent with habitat quality declines. 6. This study shows that a profitable approach to ascertaining the nature of human impacts is to link intra- and interspecific processes. In the case of British farmland and woodland birds, changes to the environment lead to species-specific responses in large-scale distributions. These species-specific changes are the driver of the observed changes in the form and strength of the interspecific relationship.  相似文献   

8.
1. Abundance-occupancy relationships comprise some of the most general and well-explored patterns in macro-ecology. The theory governing these relationships predicts that species will exhibit a positive interspecific and intraspecific relationship between regional occupancy and local abundance. Abundance-occupancy relationships have important implications in using distributional surveys, such as atlases, to understand and document large-scale population dynamics and the consequences of environmental change. A basic need for interpreting such data bases is a better understanding of whether changes in regional occupancy reflect changes in local abundance across species of varying life-history characteristics. 2. Our objective was to test the predictions of the abundance-occupancy rule using two independent data sets, the New York State Breeding Bird Atlas and the North American Breeding Bird Survey. The New York State Breeding Bird Atlas consists of 5332 25-km(2) survey blocks and is one of the first atlases in the USA to be completed for two time periods (1980-85 and 2000-05). The North American Breeding Survey is a large-scale annual survey intended to document the relative abundance and population change of songbirds throughout the USA. 3. We found that regional occupancy was positively correlated with relative abundance across 98 (beta = 0.60 +/- 0.11 SE, P < 0.001, R(2) = 0.60) and 85 species (beta = 0.67 +/- 0.06 SE, P < 0.001, R(2) = 0.57) in two separate time periods. This relationship proved stable over time and was notably consistent between breeding habitat groups and migratory guilds. 4. Between 1980 and 2005, changes in regional occupancy were highly correlated with long-term abundance trend estimates for 75 species (beta = 5.73 +/- 0.24 SE, P < 0.001, R(2) = 0.88). Over a 20-year period, woodland and resident birds showed an increase in occupancy while grassland species showed the greatest decline; these patterns were mirrored by changes in local abundance. 5. Although exceptions existed, we found most changes in occupancy parallel changes in local abundance. These findings support the basic predictions of the abundance-occupancy rule and demonstrate its consistency and stability in species and groups of varying life-history characteristics.  相似文献   

9.
The effects of disturbance on interspecific relationships between abundance and occupancy are tested using the results of a factorial experiment carried out with microcosm communities of protists. A positive relationship was documented whether marked disturbance was present or not; the pattern was neither a product of disturbance, nor was it destroyed by disturbance. Coefficients of determination, and the slopes and intercepts of abundance-occupancy relationships did not appear to change systematically with treatment. This robustness of the relationship may reflect the tendency for species to maintain approximately the same relative abundances and levels of occupancy in a broad range of circumstances. Received: 4 October 1996 / Accepted: 29 April 1997  相似文献   

10.
The regional occupancy and local abundance of species are affected by various species traits, but their relative effects are poorly understood. We studied the relationships between species traits and occupancy (i.e., proportion of sites occupied) or abundance (i.e., mean local abundance at occupied sites) of stream invertebrates using small‐grained data (i.e., local stream sites) across a large spatial extent (i.e., three drainage basins). We found a significant, yet rather weak, linear relationship between occupancy and abundance. However, occupancy was strongly related to niche position (NP), but it showed a weaker relationship with niche breadth (NB). Abundance was at best weakly related to these explanatory niche‐based variables. Biological traits, including feeding modes, habit traits, dispersal modes and body size classes, were generally less important in accounting for variation in occupancy and abundance. Our findings showed that the regional occupancy of stream invertebrate species is mostly related to niche characteristics, in particular, NP. However, the effects of NB on occupancy were affected by the measure itself. We conclude that niche characteristics determine the regional occupancy of species at relatively large spatial extents, suggesting that species distributions are determined by environmental variation among sites.  相似文献   

11.
12.
1. Dispersal is a crucial process in maintaining population structures in many organisms, and is hypothesized as a process underlying the interspecific relationship between abundance and distribution. Here we examined whether there was a link between the dispersal and developmental modes of marine macroinvertebrates and the slopes and elevations of interspecific abundance-occupancy relationships. We predicted that if within-site retention of larvae ranks in the order brooders > lecithotrophs > planktotrophs, for any given level of mean abundance, occupancy should increase in the order brooders < lecithotrophs < planktotrophs. We also predicted that propensity to form metapopulations should be greater for planktonic dispersers (i.e. lecithotrophs and planktotrophs combined) than for non-planktonic (i.e. brooders), resulting in steeper abundance-occupancy relationships for the former. 2. Predictions were tested using a data set for 362 subtidal marine macroinvertebrates occurring across 446 1-km(2) grid squares around the British Isles; analyses were performed on the data set as a whole and for separate phyla. 3. The total data set had a Z-transformed effect size of 0.79, within the confidence intervals described by Blackburn et al. (2006; Journal of Animal Ecology, 75, 1426-1439), and was consistently present with relatively homogeneous effect size in separate analyses of polychaetes, crustaceans, molluscs and echinoderms. 4. In all cases, planktonic dispersing organisms showed an abundance-occupancy relationship with greater elevation than that for non-planktonic organisms; in polychaetes the elevation of slopes was in the rank order planktotrophs > lecithotrophs > brooders. No differences between the slopes of the abundance-occupancy relationship were apparent for different dispersal modes either within, or across phyla. 5. We conclude that dispersal capacity may play an important part in determining the elevation of the abundance-occupancy relationship, the corollary of low dispersal in the marine realm being greater local retention of larvae and greater local population abundance at low extents of geographical distribution.  相似文献   

13.
Occupancy-abundance relationships and sampling scales   总被引:4,自引:0,他引:4  
The area of occupancy of a species and its abundance are dependent on the spatial scale at which they are measured. However, it is less obvious how the scale of sampling affects their correlation. This study investigated and modeled the effects of sampling unit size and a real extent on the interspecific occupancy-abundance relationships for a tropical tree species assemblage at a local scale and a temperate bird species assemblage at a regional scale. The results showed that both sampling unit size and study extent had profound quantitative effects on the occupancy-abundance relationship, although it remained positive. Several properties of the occupancy-abundance relationship can result from the effects of scale: 1) the linearity of the relationship decreases with the increase of sampling unit size; 2) for a given abundance, the area of occupancy increases with sampling unit size; and 3) variation in the area of occupancy increases with the increase of both sampling unit size and extent, and if the extent is large enough may be sufficient that no occupancy-abundance relationship is observed. Although the occupancy-abundance relationship can be satisfactorily modeled, the parameters depend on the scale used. This suggests that a model derived from one scale cannot be applied to another. In other words, to estimate the rarity or commonness of species using such a model, the estimation must be strictly done using the same sampling scale for all the species.  相似文献   

14.
We investigate the patterns of abundance‐spatial occupancy relationships of adult parasite nematodes in mammal host populations (828 populations of nematodes from 66 different species of terrestrial mammals). A positive relationship between mean parasite abundance and host occupancy, i.e. prevalence, is found which suggests that local abundance is linked to spatial distribution across species. Moreover, the frequency distribution of the parasite prevalence is bimodal, which is consistent with a core‐satellite species distribution. In addition, a strong positive relationship between the abundance (log‐transformed) and its variance (log‐transformed) is observed, the distribution of worm abundance being lognormally distributed when abundance values have been corrected for host body size.
Hanski et al. proposed three distinct hypotheses, which might account for the positive relationship between abundance and prevalence in free and associated organisms: 1) ecological specialisation, 2) sampling artefact, and 3) metapopulation dynamics. In addition, Gaston and co‐workers listed five additional hypotheses. Four solutions were not applicable to our parasitological data due to the lack of relevant information in most host‐parasite studies. The fifth hypothesis, i.e. the confounded effects exerted by common history on observed patterns of parasite distributions, was considered using a phylogeny‐based comparison method. Testing the four possible hypotheses, we obtained the following results: 1) the variation of parasite distribution across host species is not due to phylogenetic confounding effects; 2) the positive relationship between mean abundance and prevalence of nematodes may not result from an ecological specialisation, i.e. host specificity, of these parasites; 3) both a positive abundance‐prevalence relationship and a negative coefficient of variation of abundance‐prevalence relationship are likely to occur which corroborates the sampling model developed by Hanski et al. We argue that demographic explanations may be of particular importance to explain the patterns of bimodality of prevalence when testing Monte‐Carlo simulations using epidemiological modelling frameworks, and when considering empirical findings. We conclude that both the bimodal distribution of parasite prevalence and the mean‐variance power function simply result from demographic and stochastic patterns (highlighted by the sampling model), which present compelling evidence that nematode parasite species might adjust their spatial distribution and burden in mammal hosts for simple epidemiological reasons.  相似文献   

15.
Aim The majority of studies concerning positive interspecific abundance–occupancy relationships have used broad‐scale and microcosm data to test the occurrence and correlates of the relationship to determine which of the proposed mechanisms give rise to it. It has been argued recently that studying the residual variation about abundance–occupancy relationships is a more logical analysis and may yield faster progress in identifying the relative roles of the mechanisms. However, to date this approach has been largely unsuccessful. Here we test if fundamental species traits such as the status (native and introduced), habitat and trophic group of mammal and bird species may explain any of the residual variation about their respective abundance–occupancy relationships. Location The study used British mammal and bird species. Methods We tested if species traits explained any of the variation about abundance–occupancy relationships using linear regression techniques both treating species as independent data points for analysis and controlling for phylogenetic association. Results None of the species traits could explain any residual variation about the positive interspecific abundance–occupancy relationships of British mammals and birds. This applied both when treating species as independent data points and after controlling for phylogenetic association. Conclusions Given the lack of explanatory power of the species traits here and in other studies using this approach it seems that the variation about positive interspecific abundance–occupancy relationships is not explicable in a simple fashion. Predicting the likely influence of traits that are independent of phylogeny is also problematic. Therefore, the general utility of this approach and its future role in understanding the mechanisms causing positive interspecific abundance–occupancy relationships is doubtful.  相似文献   

16.
A general positive interspecific relationship between local abundance and geographic range size in animals has prompted speculation that a similar relationship might exist intraspecifically, such that a species is widespread at times when it is locally abundant, and more restricted in distribution when it is locally rare. Current evidence suggests that intraspecific relationships often are positive, but that there is considerable variation in the pattern exhibited by species. Here, we use data on British birds to test the hypotheses that species showing a high mean or wide spread of local densities or range sizes will be more likely to show strong intraspecific relationships between abundance and geographic range size. These data show only inconsistent support for an effect of the range of densities or of occupancies on intraspecific abundance-range size relationships. However, the strength of an intraspecific relationship does seem to be related to the mean occupancy of species, and whether or not a species exhibits temporal trends in density, with the strongest relationships found in species with simultaneous trends in both density and occupancy. We suggest that these results are explained by time lags in the loss or gain of species at occupied sites in response to reductions or increases in density.  相似文献   

17.
Many marine benthic invertebrates pass through a planktonic larval stage whereas others spend their entire lifetimes in benthic habitats. Recent studies indicate that non‐planktonic species show relatively greater fine‐scale patchiness than do planktonic species, but the underlying mechanisms remain unknown. One hypothesis for such a difference is that larval dispersal enhances the connectivity of populations and buffers population fluctuations and reduces local extinction risk, consequently increasing patch occupancy rate and decreasing spatial patchiness. If this mechanism does indeed play a significant role, then the distribution of non‐planktonic species should be more aggregated – both temporally and spatially – than the distribution of species with a planktonic larval stage. To test this prediction, we compared 1) both the spatial and the temporal abundance–occupancy relationships and 2) both the spatial and the temporal mean–variance relationships of population size across species of rocky intertidal gastropods with differing dispersive traits from the Pacific coast of Japan. We found that, compared to planktonic species, non‐planktonic species exhibited 1) a smaller occupancy rate for any given level of mean population size and 2) greater variations in population size, both spatially and temporally. This suggests that the macroecological patterns observed in this study (i.e. the abundance–occupancy relationships and mean–variance relationships of population size across species) were shaped by the effect of larval dispersal dampening population fluctuation, which works over both space and time. While it has been widely assumed that larval dispersal enhances population fluctuations, larval dispersal may in fact enhance the connectively of populations and buffer population fluctuations and reduce local extinction risks.  相似文献   

18.
Species distribution models are the tool of choice for large-scale population monitoring, environmental association studies and predictions of range shifts under future environmental conditions. Available data and familiarity of the tools rather than the underlying population dynamics often dictate the choice of specific method – especially for the case of presence–absence data. Yet, for predictive purposes, the relationship between occupancy and abundance embodied in the models should reflect the actual population dynamics of the modelled species. To understand the relationship of occupancy and abundance in a heterogeneous landscape at the scale of local populations, we built a spatio-temporal regression model of populations of the Glanville fritillary butterfly Melitaea cinxia in a Baltic Sea archipelago. Our data comprised nineteen years of habitat surveys and snapshot data of land use in the region. We used variance partitioning to quantify relative contributions of land use, habitat quality and metapopulation covariates. The model revealed a consistent and positive, but noisy relationship between average occupancy and mean abundance in local populations. Patterns of abundance were highly variable across years, with large uncorrelated random variation and strong local population stochasticity. In contrast, the spatio-temporal random effect, habitat quality, population connectivity and patch size explained variation in occupancy, vindicating metapopulation theory as the basis for modelling occupancy patterns in fragmented landscapes. Previous abundance was an important predictor in the occupancy model, which points to a spillover of abundance into occupancy dynamics. While occupancy models can successfully model large-scale population structure and average occupancy, extinction probability estimates for local populations derived from occupancy-only models are overconfident, as extinction risk is dependent on actual, not average, abundance.  相似文献   

19.
Aims We have two aims: (1) to examine the relationship between local population persistence, local abundance and regional occupancy of stream diatoms and (2) to characterize the form of the species–occupancy frequency distribution of stream diatoms. Location Boreal streams in Finland. There were three spatial extents: (1) across ecoregions in Finland, (2) within ecoregions in Finland, and (3) within a single drainage system in southern Finland. Methods Diatoms were sampled from stones (epilithon), sediment (epipelon) and aquatic plants (epiphyton) in streams using standardized sampling methods. To assess population persistence, diatom sampling was conducted monthly at four stream sites from June to October. The relationships between local population persistence, local abundance and regional occupancy were examined using correlation analyses. Results There was a significant positive relationship between local persistence and abundance of diatoms in epilithon, epipelon and epiphyton. Furthermore, local abundance and regional occupancy showed a significant positive relationship at multiple spatial extents; that is, across ecoregions, within ecoregions and within a drainage system. The relationships between occupancy and abundance did not differ appreciably among impacted and near pristine‐reference sites. The occupancy–frequency distribution was characterized by a large number of satellite species which occurred at only a few sites, whereas core species that occurred at most sites were virtually absent. Main conclusions The positive relationship between local population persistence and abundance suggested that a high local abundance may prevent local extinction or that high persistence is facilitated by a high local cell density. High local persistence and local abundance may also positively affect the degree of regional occupancy in stream diatoms. The results further showed that anthropogenic effects were probably too weak to bias the relationship between occupancy and abundance, or that the effects have already modified the distribution patterns of stream diatoms. The small number of core species in the species–occupancy frequency distribution suggested that the regional distribution patterns of stream diatoms, or perhaps unicellular microbial organisms in general, may not be fundamentally different from those described previously for multicellular organisms, mainly in terrestrial environments, although average global range sizes may differ sharply between these two broad groups of organisms.  相似文献   

20.
Aim Although many factors undoubtedly affect species geographic distributions, can a single, simple model nonetheless capture most of the spatial variation in the probability of presence/absence in a large set of species? For 482 North American tree species that occur east of the Rocky Mountains, we investigated the shape(s) of the relationship between the probability of occupancy of a given location and macroclimate, and its consistency among species and regions. Location North America. Methods Using Little's tree range maps, we tested four hypothetical shapes of response relating occupancy to climate: (1) high occupancy of all suitable climates; (2) threshold response (i.e. unsuitable climates exclude species, but within the thresholds, species presence is independent of climate); (3) occupancy is a bivariate normal function of annual temperature and precipitation; and (4) asymmetric limitation (i.e. abiotic factors set abrupt range limits in stressful climates only). Finally, we compared observed climatic niches with the occupancy of similar climates on off‐shore islands as well as west of the Rockies. Results (a) Species' distributions in climatic space do not have strong thresholds, nor are they systematically skewed towards less stressful climates. (b) Occupancy can generally be described by a bivariate normal function of temperature and precipitation, with little or no interaction between the two variables. This model, averaged over all species, accounts for 82% of the spatial variation in the probability of occupancy of a given area. (c) Occupied geographic ranges are typically ringed by unoccupied, but climatically suitable areas. (d) Observed climatic niche positions are largely conserved between regions. Main conclusions We conclude that, despite the complexities of species histories and biologies, to a first approximation most of the variation in their geographic distributions relates to climate, in similar ways for nearly all species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号