首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following previous validation in baboons, we have studied the characteristics of [18F]setoperone as a radioligand for investigating serotonergic 5-hydroxytryptamine2 (5-HT2) receptors in the normal, unmedicated human brain with positron emission tomography (PET); subjects orally pretreated with therapeutic amounts of ketanserin, sulpiride, or prazosin were also studied to evaluate the specificity and sensitivity of [18F]setoperone brain specific binding. In controls (n = 10), the tracer showed a clear-cut retention in both frontal cortex and striatum (known to contain a high density of 5-HT2 receptors) relative to cerebellum (known to be devoid of 5-HT2 receptors). In the seven young controls (20-39 years old), the frontal cortex/cerebellum and striatum/cerebellum ratios increased during the first hour to reach similar values of 2.53 +/- 0.12 and 2.38 +/- 0.11 (mean +/- SEM), respectively, and were essentially stable during the second hour. Pretreatment with ketanserin (a 5-HT2 blocker) significantly reduced the frontal cortex/cerebellum ratio to 0.7-1.0 at 65 min, whereas the striatum/cerebellum ratio was significantly, but only partially, reduced. During sulpiride treatment (a D2 blocker), the frontal cortex/cerebellum ratio was not altered, whereas the striatum/cerebellum ratio was significantly, but only partially, reduced. With prazosin pretreatment (an alpha 1-adrenergic blocker), neither the frontal cortex/cerebellum nor the striatum/cerebellum ratio was modified. These data in humans with PET demonstrate that [18F]setoperone labels with high sensitivity and selectivity 5-HT2 receptors in the frontal cortex; in striata, however, binding is to both 5-HT2 and D2 receptors. The deproteinated-to-whole plasma radio-activity concentration ratio increased with time following injection. The mean percentage of intact [18F]setoperone, in deproteinated plasma, was 82, 74, 53, 45, 30, and 22% at 5, 10, 20, 30, 60, and 110 min following injection, respectively. These data indicate that [18F]setoperone (a) is significantly bound to plasma proteins and (b) is significantly metabolized into several labeled metabolites that are much more hydrophilic than setoperone and, hence, presumably do not cross the blood-brain barrier. These results suggest the suitability of [18F]setoperone data for modeling of 5-HT2 receptor binding in brain.  相似文献   

2.
Inhibition of acetylcholinesterase (AChE), the key enzyme in the breakdown of acetylcholine, is considered as a promising strategy for the treatment of neurological disorders such as Alzheimer's disease, senile dementia, ataxia and myasthenia gravis. A potential source of AChE inhibitors is certainly provided by the abundance of plants in nature. This article aims to provide a comprehensive literature survey of plants that have been tested for AChE inhibitory activity. Numerous phytoconstituents and promising plant species as AChE inhibitors are being reported in this communication.  相似文献   

3.
The distribution of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) molecular forms and their solubility characteristics were examined, using density gradient centrifugation, in various regions of the postmortem human CNS. Total AChE activity varied extensively (50-fold) among the regions investigated, being highest in the telencephalic subcortical structures (caudate nucleus and nucleus of Meynert); intermediate in the substantia nigra, cerebellum, and spinal cord; and least in the fornix and cortical regions (hippocampus and temporal and parietal cortex). Total BChE activity was, in contrast, much more evenly distributed, with only a threefold variation between the regions studied. Although the patterns of molecular forms of each enzyme were broadly similar among the different areas, regional variations in the distribution and abundance of the various forms of AChE were much greater than those of BChE. Thus, although the tetrameric G4 form of AChE constituted the majority of the total AChE activity in all regions examined, the ratio of the G4 form to the monomeric G1 form, the latter of which constituted the majority of the remaining activity, varied markedly, ranging from 21 in the caudate nucleus to 1.7 in the temporal cortex. In addition to the G4 and G1 forms of AChE, the dimeric G2 form was observed in the nucleus of Meynert and a fast-sedimenting (16S) species was found in samples of both the parietal cortex and spinal cord. In contrast, the G4 and G1 forms of BChE were the only molecular species observed in the different areas and the G4:G1 ratio varied from 3.3 in the substantia nigra to 0.9 in the temporal cortex. Regarding the solubility characteristics of the individual AChE and BChE molecular forms, the majority of the G4 form of AChE was extractable only in the presence of detergent, indicating a predominantly membrane-bound localization of this species. The smaller AChE forms (G1 and G2) and both the G1 and G4 forms of BChE were all relatively evenly distributed between soluble and membrane-bound species. These findings are discussed in relation to neurochemical and neuroanatomical, particularly cholinergic, features of the regions examined.  相似文献   

4.
The present chapter reviews PET imaging in basal ganglia disorders; Parkinson's disease is used as a model of these disorders because the neurochemical pathobiology of this disease is well known and great advances in the imaging area have been achieved. Other basal ganglia disorders including Tourette's syndrome, dystonia, Huntington's chorea and Wilson's disease are also dealt with. With PET and SPECT techniques, the whole integrative dopaminergic network of neurons can be studied, which plays an important role in differential diagnostics. Furthermore, pharmacological effects of medication can be visualized and the role of stereotaxic neurosurgery can be evaluated. Finally, functional imaging gives clues about the prognosis and rehabilitation aspects of the basal ganglia disorders.  相似文献   

5.
A newly developed enzyme-linked immunosorbent assay for acetylcholinesterase (AChE) protein was combined with conventional measures of enzyme activity in a study of 15 brain regions from six control cases (non-neurological deaths), six cases of Alzheimer's disease, and six cases of Huntington's disease. In the control brains, the mean AChE activity varied 100-fold from region to region (cortex lowest, striatum highest). The variation in enzyme activity was exactly paralleled by a variation in protein immunoreactivity. Overall, the homospecific activity of AChE averaged 0.26 +/- 0.007 mU/pg, close to the value for electrophoretically homogeneous enzyme isolated from red blood cells. Similar homospecific activities were observed in samples from Huntington's and Alzheimer's brains. Evidently, AChE that is immunoreactive but enzymatically inactive does not accumulate in any of the three conditions examined. Huntington's brain samples showed normal total contents of AChE, but Alzheimer's brains showed significant decreases of both enzyme activity and immunoreactivity in all seven cortical regions and in two out of the eight subcortical structures examined, hippocampus and nucleus accumbens.  相似文献   

6.
In the present study we investigated the effect of chronic hypermethioninemia on rat performance in the Morris water maze task, as well as on acetylcholinesterase (AChE) activity in rat cerebral cortex. For chronic treatment, rats received subcutaneous injections of methionine (1.34–2.68 μmol/g of body weight), twice a day, from the 6th to the 28th day of age; control rats received the same volume of saline solution. Groups of rats were killed 3 h, 12 h or 30 days after the last injection of methionine to AChE assay and another group was left to recover until the 60th day of life to assess the effect of early methionine administration on reference and working spatial memory of rats. AChE activity was also determined after behavioral task. Results showed that chronic treatment with methionine did not alter reference memory when compared to saline-treated animals. In the working memory task, we observed a significant days effect with significant differences between control and methionine-treated animals. Chronic hypermethioninemia significantly increased AChE activity at 3 h, 12 h or 30 days after the last injection of methionine, as well as before or after behavioral test. The effect of acute hypermethioninemia on AChE was also evaluated. For acute treatment, 29-day-old rats received one single injection of methionine (2.68 μmol/g of body weight) or saline and were killed 1, 3 or 12 h later. Results showed that acute administration of methionine did not alter cerebral cortex AChE activity. Our findings suggest that chronic experimental hypermethioninemia caused cognitive dysfunction and an increase of AChE activity that might be related, at least in part, to the neurological problems presented by hypermethioninemic patients.  相似文献   

7.
Abstract: The distinctive pharmacological activity of zolpidem in rats compared with classical benzodiazepines has been related to its differential affinity for benzodiazepine receptor (BZR) subtypes. By contrast, in nonhuman primates the pharmacological activity of zolpidem was found to be quite similar to that of classical BZR agonists. In an attempt to explain this discrepancy, we examined the ability of zolpidem to differentiate BZR subtypes in vivo in primate brain using positron emission tomography. The BZRs were specifically labeled with [11C]flumazenil. Radiotracer displacement by zolpidem was monophasic in cerebellum and neocortex, with in vivo Hill coefficients close to 1. Conversely, displacement of [11C]flumazenil was biphasic in hippocampus, amygdala, septum, insula, striatum, and pons, with Hill coefficients significantly smaller than 1, suggesting two different binding sites for zolpidem. In these cerebral regions, the half-maximal inhibitory doses for the high-affinity binding site were similar to those found in cerebellum and neocortex and ~100-fold higher for the low-affinity binding site. The low-affinity binding site accounted for <32% of the specific [11C]-flumazenil binding. Such zolpidem binding characteristics contrast with those reported for rodents, where three different binding sites were found. Species differences in binding characteristics may explain why zolpidem has a distinctive pharmacological activity in rodents, whereas its pharmacological activity in primates is quite similar to that of classical BZR agonists, except for the absence of severe effects on memory functions, which may be due to the lack of substantial zolpidem affinity for a distinct BZR subtype in cerebral structures belonging to the limbic system.  相似文献   

8.
[3H]Glycine binding and glycine modulation of [3H]MK-801 binding have been used to study the glycine allosteric site associated with the N-methyl-D-aspartate receptor complex in postmortem human brain. The effect of glycine on [3H]MK-801 binding appeared sensitive to duration of terminal coma, and possibly postmortem delay. Thirty percent of the binding occurred in a subfraction of brain tissue and did not show enhancement by glycine and glutamic acid. [3H]Glycine binding to a subfraction free from this component was studied and showed high specific binding. KD and Bmax values showed considerable intersubject variability which did not appear to be due to demographic features or to tissue content of amino acids with an affinity for this site. The pharmacological characteristics of binding in this subfraction and a correlation between Bmax values and the maximal enhancement of [3H]MK-801 binding by glycine are consistent with [3H]glycine binding occurring to an N-methyl-D-aspartate receptor complex associated site. Further support for this is provided by a significantly lower Bmax value for [3H]glycine binding in subjects with Alzheimer's disease and reduced glycine enhancement of [3H]MK-801 binding. However, the effect of perimortem factors makes it difficult to confidently attribute this solely to a disease-related change in the receptor. The possible role of the glycine allosteric site in the treatment of neuropsychiatric disorders is discussed.  相似文献   

9.
We have studied the characteristics of carbon-11 labeled pyrilamine as a radioligand for investigating histamine H1 receptors in human brain with positron emission tomography (PET). [11C]Pyrilamine is distributed evenly in proportion to cerebral blood flow at initial PET images. Later (after 45-60 min), 11C radioactivity was observed at high concentrations in the frontal and temporal cortex, hippocampus, and thalamus, and at low concentrations in the cerebellum and pons. The regional distribution of the carbon-11 labeled compound in the brain corresponded well with that of the histamine H1 receptors determined in vitro in autopsied materials. In six controls, the frontal and temporal cortices/cerebellum ratio increased during the first 60 min to reach a value of 1.22 +/- 0.071. Intravenous administration of d-chlorpheniramine (5 mg) completely abolished the specific binding in vivo in the frontal cortex and temporal cortex (cortex/cerebellum ratio, 0.955 +/- 0.015). The availability of this method for measuring histamine H1 receptors in vivo in humans will facilitate studies on neurological and psychiatric disorders in which histamine H1 receptors are thought to be abnormal.  相似文献   

10.
Improved radiopharmaceuticals for imaging cerebral acetylcholinesterase (AChE) are needed for the diagnosis of Alzheimer’s disease (AD). Thus, 11C-labeled (−)-galanthamine and its enantiomers were synthesized as novel agents for imaging the localization and activity of AChE by positron emission tomography (PET). C-11 was incorporated into (−)- and (+)-[11C]galanthamine by N-methylation of norgalanthamines with [11C]methyl triflate. Simple accumulation of 11C in the brain was measured in an in vivo biodistribution study using mice, whilst donepezil was used as a blocking agent in analogous in vivo blocking studies. In vitro autoradiography of rat brain tissue was performed to investigate the distribution of (−)-[11C]galanthamine, and confirmed the results of PET studies in mice. The radiochemical yields of N-methylation of (−)- and (+)-norgalanthamines were 13.7% and 14.4%, respectively. The highest level of accumulation of 11C in the brains of mice was observed at 10 min after administration (2.1% ID/g). Intravenous pretreatment with donepezil resulted in a 30% decrease in accumulation of (−)-[11C]galanthamine in the striatum; however, levels in the cerebellum were unchanged. In contrast, use of (+)-[11C]galanthamine led to accumulation of radioactivity in the striatum equal to that in the cerebellum, and these levels were unaffected by pretreatment with donepezil. In in vitro autoradiography of regional radioactive signals of brain sections showed that pretreatment with either (−)-galanthamine or donepezil blocked the binding of (−)-[11C]galanthamine to the striatum, while sagittal PET imaging revealed accumulation of (−)-[11C]galanthamine in the brain. These results indicate that (−)-[11C]galanthamine showed specific binding to AChE, whereas (+)-[11C]-galanthamine accumulated in brain tissue by non-specific binding. Thus, optically pure (−)-[11C]galanthamine could be a useful PET tracer for imaging cerebral AChE.  相似文献   

11.
Abstract: Acetylcholinesterase (AChE) expression is markedly affected in Alzheimer's disease (AD). AChE activity is lower in most regions of the AD brain, but it is increased within and around amyloid plaques. We have previously shown that AChE expression in P19 cells is increased by the amyloid β protein (Aβ). The aim of this study was to investigate AChE expression using a transgenic mouse model of Aβ overproduction. The β-actin promoter was used to drive expression of a transgene encoding the 100-amino acid C-terminal fragment of the human amyloid precursor protein (APP CT100). Analysis of extracts from transgenic mice revealed that the human sequences of full-length human APP CT100 and Aβ were overexpressed in the brain. Levels of salt-extractable AChE isoforms were increased in the brains of APP CT100 mice. There was also an increase in amphiphilic monomeric form (GA1) of AChE in the APP CT100 mice, whereas other isoforms were not changed. An increase in the proportion of GA1 AChE was also detected in samples of frontal cortex from AD patients. Analysis of AChE by lectin binding revealed differences in the glycosylation pattern in APP CT100 mice similar to those observed in frontal cortex samples from AD. The results are consistent with the possibility that changes in AChE isoform levels and glycosylation patterns in the AD brain may be a direct consequence of altered APP metabolism.  相似文献   

12.
Abstract: The triazolobenzodiazepine triazolam is a central-type benzodiazepine receptor (BZR) ligand that is widely prescribed as a hypnotic agent. Triazolam produces its effects through potentiation of γ-aminobutyric acid-mediated neurotransmission. Findings reported from in vitro binding studies showed some discrepancies concerning the pharmacological characteristics of triazolam. The present study aims to characterize in vivo the biochemical properties of triazolam, i.e., cerebral pharmacokinetics, interaction with BZR, potency, and intrinsic efficacy. Triazolam was studied in living nonhuman primates using positron emission tomography. Two different studies were carried out: (a) a direct study using [11C]triazolam and (b) an indirect competition study using the radiolabeled BZR antagonist [11C]flumazenil. Results showed that, in the brain in vivo, triazolam binds specifically and competitively to the BZR. Its rapid cerebral kinetics is consistent with a hypnotic profile (maximal binding after 23 min, elimination half-life of 202 min). Triazolam is very potent in displacing [11C]flumazenil (ID50= 28 ± 6 μg/kg). Hill analysis of the displacement curve does not show obvious binding-site heterogeneity. Triazolam is 20 times more potent in displacing [11C]flumazenil and 50 times more potent in inhibiting pentylenetetrazol-induced paroxysmal activity than the full benzodiazepine agonist diazepam. Interestingly, the simultaneous use of positron emission tomography and EEG recording allowed us to show that triazolam-positive intrinsic efficacy is slightly higher (20%) than that of diazepam. An attractive hypothesis proposes that the severity of side effects of BZR ligands is proportional to their intrinsic efficacy. Therefore, our study shows that triazolam side effects, as for other benzodiazepines, may be related to its high intrinsic efficacy in vivo.  相似文献   

13.
The molecular forms and membrane association of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) and pseudocholinesterase (acylcholine acylhydrolase, EC 3.1.1.8) were determined in the presence of protease inhibitors in dissected regions of developing human fetal brain, as compared with parallel areas from mature brain. All areas contained substantial cholinesterase activities, of which acetylcholinesterase accounted for almost all the activity. Two major forms of acetylcholinesterase activity, sedimenting at 10-11S and 4-5S, respectively, were detected on sucrose gradients and possessed similar catalytic properties, as judged by their individual Km values toward [3H]acetylcholine (ca. 4 X 10(-4) M). The ratio between these forms varied by up to four- to fivefold, both between different areas and within particular areas at various developmental stages, but reached similar values (about 5:2) in all areas of mature brain. Acetylcholinesterase activity was ca. 35-50% low-salt-soluble and 45-65% detergent-soluble in various developmental stages and brain areas, with an increase during development of the detergent-soluble fraction of the light form. In contrast, pseudocholinesterase activity was mostly low-salt-soluble and sedimented as one component of 10-11S in all areas and developmental stages. Our findings suggest noncoordinate regulation of brain acetylcholinesterase and pseudocholinesterase, and indicate that the expression of acetylcholinesterase forms within embryonic brain areas depends both on cell type composition and on development.  相似文献   

14.
Involvement of Free Radicals in Excitotoxicity In Vivo   总被引:6,自引:1,他引:6  
Abstract: Recent evidence has linked excitotoxicity with the generation of free radicals. We examined whether free radical spin traps can attenuate excitotoxic lesions in vivo. Pretreatment with N-tert -butyl-α-(2-sulfophenyl)-nitrone (S-PBN) significantly attenuated striatal excitotoxic lesions in rats produced by N -methyl- d -aspartate (NMDA), kainic acid, and α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA). In a similar manner, striatal lesions produced by 1-methyl-4-phenylpyridinium (MPP+), malonate, and 3-acetylpyridine were significantly attenuated by either S-PBN or α-phenyl- N-tert -butylnitrone (PBN) treatment. Administration of S-PBN in combination with the NMDA antagonist MK-801 produced additive effects against malonate and 3-acetylpyridine toxicity. Malonate injections resulted in increased production of hydroxyl free radicals (OH) as assessed by the conversion of salicylate to 2,3- and 2,5-dihydroxybenzoic acid (DHBA). This increase was significantly attenuated by S-PBN, consistent with a free radical scavenging effect. S-PBN had no effects on malonate-induced ATP depletions and had no significant effect on spontaneous striatal electrophysiologic activity. These results provide the first direct in vivo evidence for the involvement of free radicals in excitotoxicity and suggest that antioxidants may be useful in treating neurologic illnesses in which excitotoxic mechanisms have been implicated.  相似文献   

15.
目的:探讨不同大小病灶18F-FDG PET-CT的显像特点与同层面CT引导下穿刺活检结果的关系.方法:回顾性研究经过18F-FDG PET-CT及CT引导下穿刺活检两种检查的病例,通过统计病灶的大小、病理、穿刺取材部位的放射性浓聚程度、SUVmax 来分析不同大小病灶18F-FDG PET-CT的显像特点与同层面CT引导下穿刺活检结果的关系.结果:69例患者,共穿刺74个痛灶,71个病灶测得SUVmax,放射性浓聚程度不同的病灶其穿刺敏感性、病灶大小的分布情况有显著性差异(P<0.05),≤ 3cm组病灶放射性均匀浓聚率高,≥5cm组放射性均匀浓聚率低(P<0.05),≤ 3cm的均匀浓聚的恶性病灶其SUVmax低于>3 cm组(P<0.05),良恶性病灶SUVmax无显著性差异(P>0.05).结论:不同大小的病灶在18F-FDG PET-CT上放射性浓聚程度不同,反映了病灶生物学特性的空间差异,进而影响穿刺活检的准确率.  相似文献   

16.
Abstract: Malonate is a reversible inhibitor of succinate dehydrogenase (SDH) that produces neurotoxicity by an N -methyl- d -aspartate (NMDA) receptor-dependent mechanism. We have examined the influence of pharmacological manipulation of membrane potential on striatal malonate toxicity in rats in vivo by analysis of lesion volume. Depolarization caused by coinjection of the Na+,K+-ATPase inhibitor ouabain or a high concentration of potassium greatly exacerbated malonate toxicity; this combined toxicity was blocked by the noncompetitive NMDA antagonist MK-801. The toxicity of NMDA was also exacerbated by ouabain. The overt toxicity of a high dose of ouabain (1 nmol) was largely prevented by MK-801. Coinjection of the K+ channel activator minoxidil (4 nmol) to reduce depolarization attenuated the toxicity of 1 µmol of malonate by ∼60% without affecting malonate-induced ATP depletion. These results indicate that membrane depolarization exacerbates malonate neurotoxicity and that membrane hyperpolarization protects against malonate-induced neuronal damage. We hypothesize that the effects of membrane potential on malonate toxicity are mediated through the NMDA receptor as a result of its combined agonist- and voltage-dependent properties.  相似文献   

17.
Rats injected intravenously with monoclonal antibodies reactive with brain acetylcholinesterase (AChE) developed a prolonged depression of plasma AChE without changes in butyrylcholinesterase, lactic acid dehydrogenase, or hematocrit. One antibody, ZR1, accumulated in the brain and spinal cord. Within 3 days of injection, ZR1 bound to most of the AChE in cerebral cortex and certain other regions of the CNS. Examination of the molecular forms of cortical 10S AChE, whereas 4S AChE remained free. In vitro, however, ZR1 bound equally to solubilized 4S and 10S forms. These data provide direct evidence for the compartmentalization of different AChE forms in the CNS, 10S being mainly extracellular and 4S apparently intracellular. Development of a striking and persistent bilateral ptosis within hours of injection suggests that AChE in the autonomic nervous system is also accessible to antibodies and, furthermore, is the site of an immunopathological lesion. This novel model of cholinergic autoimmunity may have relevance for human neurological disorders of unknown etiology.  相似文献   

18.
Abstract: The expression of the protooncogene bcl-2 , an inhibitor of apoptosis in various cells, was examined in the adult human brain. Several experimental criteria were used to verify its presence; mRNA was analyzed by northern blot with parallel experiments in mouse tissues, by RNase protection, and by in situ hybridization histochemistry. Bcl-2 protein was detected by western blot analysis and immunohistochemistry. Two bcl-2 mRNA species were identified in the human brain. The pattern of distribution of bcl-2 mRNA at the cellular level showed labeling in neurons but not glia. The in situ hybridization signal was stronger in the pyramidal neurons of the cerebral cortex and in the cholinergic neurons of the nucleus basalis of Meynert than in the Purkinje neurons of the cerebellum. Both melanized and nonmelanized neurons were labeled in the substantia nigra. In the striatum, bcl-2 mRNA was detected in some but not all neurons. In the regions examined for Bcl-2 protein, the expression pattern correlated with the mRNA results. In patients with Alzheimer's and Parkinson's diseases, quantification of bcl-2 mRNA in the nucleus basalis of Meynert and substantia nigra, respectively, showed that the expression was unaltered compared with controls, raising the possibility that the expression of other components of apoptosis is modulated.  相似文献   

19.
Abstract: We have studied 14 patients with different grades of astrocytomas using 1H NMR spectroscopy in vivo. Typically, astrocytomas exhibited a low N -acetyl-aspartate peak, a prominent signal from choline group-containing compounds, and lactate in the 1H NMR spectra in vivo. The uncorrected choline/creatine + phosphocreatine peak area ratios were higher in tumors than in normal brain tissue. Absolute concentration of choline-containing compounds (1.74 ± 0.09 mmol/L) in the normal brain tissue was not different in any grade of astrocytoma, but total creatine concentration in healthy brain (7.49 ± 0.30 mmol/L) was higher than that in grade IV astrocytomas (4.84 ± 0.89 mmol/L). Relaxation constants of choline-containing compounds did not differ in tumors from those determined in normal brain. Perchloric acid extracts of biopsy samples from 35 astrocytomas and 13 samples of normal temporal white matter were analyzed with 1H NMR. Total concentration of choline-containing compounds did not differ between controls and any grade of astrocytoma when the quantification was done in vitro. It is interesting that phosphorylcholine concentration was about twofold greater in grade IV astrocytomas than in controls or other grades of astrocytomas. We conclude that high phosphorylcholine in grade IV astrocytomas may be an indicator of degree of malignancy. The proportional changes within the group of choline-containing compounds observed in vitro were not reflected in the NMR properties of choline signal in vivo.  相似文献   

20.
Putative nicotine receptors in the human cerebral cortex were characterized with L-[3H]nicotine, L-[3H]Nicotine binding was enhanced by the addition of Ca2+ and abolished in the presence of Na3EDTA. Association and dissociation of the ligand were rapid at 25 degrees C with t1/2 values of 2 and 3 min, respectively. Saturation binding analysis revealed an apparent single class of sites with a dissociation constant of 5.6 nM and a Hill coefficient of 1.05. There was no effect of postmortem interval on the density of binding sites assayed up to 24 h in rat frontoparietal cortex. Nicotine binding in human cortical samples was also unaltered by increasing sampling delay. In human cortical membranes, binding site density decreased with normal aging. Receptor affinity and concentration in samples of frontal cortex (Brodmann area 10) from patients with Alzheimer's disease were comparable to age-matched control values. Samples of infratemporal cortex (Brodmann area 38) from patients with Alzheimer's disease had a 50% reduction in the number of L-[3H]nicotine sites. Choline acetyltransferase activity was significantly decreased in both cortical areas. Enzyme activities in the temporal pole were reduced to 20% of control values. These data indicate that postsynaptic nicotine receptors are spared in the frontal cortex in Alzheimer's disease. In the infratemporal cortex, significant numbers of receptors remain despite the severe reduction in choline acetyltransferase activity. Replacement therapy directed at these sites may be warranted in Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号