首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bleomycins (BLMs) are widely used in combination therapies for the treatment of various cancers. Dose-dependent and cumulative pulmonary toxicity is the major cause of BLM-associated morbidity, limiting the broad uses of BLMs as anticancer drugs. The organ specificity of BLM-induced toxicity has been correlated with the expression of the hBLMH gene, encoding the human bleomycin hydrolase (hBLMH), which is poorly expressed in the lung. hBLMH hydrolyzes BLMs into the biologically inactive deamido BLMs, thereby protecting organs from BLM-induced toxicity. Here we report (i) expression of hBLMH and production and isolation of recombinant human bleomycin hydrolase (rhBLMH) from E. coli, (ii) structural characterization of deamido BLM A2 and B2 isolated from rhBLMH-catalyzed hydrolysis of BLM A2 and B2, and (iii) kinetic characterization of the rhBLMH-catalyzed hydrolysis of BLM A2 and B2, in comparison with five BLM analogues. rhBLMH from E. coli catalyzes rapid and efficient hydrolysis of all BLMs tested, exhibiting a superior catalytic efficiency for BLM B2. These findings reveal new opportunities to overcome BLM-induced pulmonary toxicity in chemotherapies, potentially by exploring BLM B2 as the preferred congener, engineering designer BLMs with optimized activity for rhBLMH, or co-administrating rhBLMH directly into the lung as a potential protein therapeutic.  相似文献   

2.
The bleomycins (BLMs) are a family of natural glycopeptides used clinically as antitumor agents. In the presence of required cofactors (Fe2+ and O2), BLM causes both single-stranded (ss) and double-stranded (ds) DNA damage with the latter thought to be the major source of cytotoxicity. Previous biochemical and structural studies have demonstrated that BLM can mediate ss cleavage through multiple binding modes. However, our studies have suggested that ds cleavage occurs by partial intercalation of BLM's bithiazole tail 3′ to the first cleavage site that facilitates its re-activation and re-organization to the second strand without dissociation from the DNA where the second cleavage event occurs. To test this model, a BLM A5 analog (CD-BLM) with β-cyclodextrin attached to its terminal amine was synthesized. This attachment presumably precludes binding via intercalation. Cleavage studies measuring ss:ds ratios by two independent methods were carried out. Studies using [32P]-hairpin technology harboring a single ds cleavage site reveal a ss:ds ratio of 6.7 ± 1.2:1 for CD-BLM and 3.4:1 and 3.1 ± 0.3:1 for BLM A2 and A5, respectively. In contrast with BLM A5 and A2, however, CD-BLM mediates ds-DNA cleavage through cooperative binding of a second CD-BLM molecule to effect cleavage on the second strand. Studies using the supercoiled plasmid relaxation assay revealed a ss:ds ratio of 2.8:1 for CD-BLM in comparison with 7.3:1 and 5.8:1, for BLM A2 and A5, respectively. This result in conjunction with the hairpin results suggest that multiple binding modes of a single BLM can lead to ds-DNA cleavage and that ds cleavage can occur using one or two BLM molecules. The significance of the current study to understanding BLM's action in vivo is discussed.  相似文献   

3.
DNA strand scission by activated bleomycin group antibiotics   总被引:1,自引:0,他引:1  
The bleomycins (BLMs) are a structurally related group of antitumor antibiotics used clinically for the treatment of certain malignancies. The mechanism of action of the BLM is believed to involve DNA strand scission, a process that requires O2 and an appropriate metal ion; the therapeutically relevant metal is probably iron or copper. DNA strand scission by activated Fe X BLM involves oxygenation C-4' of deoxyribose and leads to two sets of products. One set results from scission of the C-3'--C-4' bond of deoxyribose, with concomitant cleavage of the DNA chain. The other set of products consists of free bases and an alkali-labile lesion, the latter of which leads to DNA chain cleavage on subsequent treatment with base. The structures of all of these degradation products have now been established by direct comparison with authentic synthetic samples. Also studied was the activation of BLM with (mono)oxygen surrogates such as iodosobenzene. The chemistry of the activated BLM so formed was remarkably similar to that of activated cytochrome P-450 and structurally related metalloporphyrins, which suggests a mechanistic analogy between the two. Remarkably, both Fe X BLM and Cu X BLM were also shown to be activated by NADPH cytochrome P-450 reductase in a transformation that was dependent on metal ion, O2 and NADPH.  相似文献   

4.
Fusion of synaptic vesicle membranes with planar bilayer membranes.   总被引:2,自引:1,他引:1       下载免费PDF全文
The interaction of synaptic vesicles with horizontal bilayer lipid membranes (BLMs) was investigated as a model system for neurotransmitter release. High concentrations (200 mM) of the fluorescent dye, calcein, were trapped within synaptic vesicles by freezing and thawing. In the presence of divalent ions (usually 15 mM CaCl2), these frozen and thawed synaptic vesicles (FTSVs) adhere to squalene-based phosphatidylserine-phosphatidylethanolamine BLMs whereupon they spontaneously release their contents which is visible by fluorescence microscopy as bright flashes. The highest rate of release was obtained in KCl solutions. Release was virtually eliminated in isotonic glucose, but could be elicited by perfusion with KCl or by addition of urea. The fusion and lysis of adhering FTSVs appears to be the consequence of stress resulting from entry of permeable external solute (KCl, urea) and accompanying water. An analysis of flash diameters in experiments where Co+2, which quenches calcein fluorescence, was present on one or both sides of the BLM, indicates that more than half of the flashes represent fusion events, i.e., release of vesicle contents on the trans side of the BLM. A population of small, barely visible FTSVs bind to BLMs at calcium ion concentrations of 100 microM. Although fusion of these small FTSVs to BLMs could not be demonstrated, fusion with giant lipid vesicles was obvious and dramatic, albeit infrequent. Addition of FTSVs or synaptic vesicles to BLMs in the presence of 100 microM-15 mM Ca2+ produced large increases in BLM conductance. The results presented demonstrate that synaptic vesicles are capable of fusing with model lipid membranes in the presence of Ca+2 ion which, at the lower limit, may begin to approach physiological concentrations.  相似文献   

5.
Conducting polymer polypyrrole supported bilayer lipid membranes   总被引:3,自引:0,他引:3  
Electrochemically synthesized conducting polymer polypyrrole (PPy) film on gold electrode surface was used as a novel support for bilayer lipid membranes (BLMs). Investigations by surface plasmon resonance (SPR) suggest that dimyristoyl-L-alpha-phosphatidylcholine (DMPC) and dimyristoyl-L-alpha-phosphatidyl-L-serine (DMPS) can form BLMs on PPy film surface but dimyristoyl-L-alpha-phosphatidylglycerol (DMPG) and didodecyldimethylammonium bromide (DDAB) can not do so, indicating the formation of PPy supported bilayer lipid membranes (s-BLMs) is dependent on the chemical structure of the lipids used. The self-assembly of DMPC induces a smoother topography than the PPy layer with rms roughness decreasing from 4.484 to 2.914 nm convinced by atomic force microscopy (AFM). Impedance spectroscopy measurements confirm that the deposition of BLM substantially increases the resistance of the system indicating a very densely packed BLM structures. The little change of PPy film in capacitance shows that solvent and electrolyte ions still retain within the porous PPy film after BLM deposition. Therefore, the PPy supported BLM is to some extent comparable to conventional BLM with aqueous medium retaining at its two sides. As an example and preliminary application, horseradish peroxidase (HRP) reconstituted into the s-BLM shows the expected protein activity and can transfer electron from or to the underlying PPy support for its response to electrocatalytic reduction of hydrogen peroxide in solution. Thus the system maybe possesses potential applications to biomimetic membrane studies.  相似文献   

6.
Isolated protein subunits of the crystalline bacterial cell surface layer (S-layer) of Bacillus coagulans E38-66 have been recrystallized on one side of planar black lipid membranes (BLMs) and their influence on the electrical properties, rupture kinetics and mechanical stability of the BLM was investigated. The effect on the boundary potential, the capacitance or the conductance of the membrane was negligible whereas the mechanical properties were considerably changed. The mechanical stability was characterized by applying voltage pulses or ramps to induce irreversible rupture. The amplitude of the voltage pulse leading to rupture allows conclusions on the ability of membranes to resist external forces. Surprisingly, these amplitudes were significantly lower for composite S-layer/lipid membranes compared to undecorated BLMs. In contrast, the delay time between the voltage pulse and the appearance of the initial defect was found to be drastically longer for the S-layer-supported lipid bilayer. Furthermore, the kinetics of the rupture process was recorded. Undecorated membranes show a fast linear increase of the pore conductance in time, indicating an inertia-limited defect growth. The attachment of an S-layer causes a slow exponential increase in the conductance during rupture, indicating a viscosity-determined widening of the pore. In addition, the mechanical properties on a longer time scale were investigated by applying a hydrostatic pressure across the BLMs. This causes the BLM to bulge, as monitored by an increase in capacitance. Compared to undecorated BLMs, a significantly higher pressure gradient has to be applied on the S-layer face of the composite BLMs to observe any change in capacitance. Received: 4 May 1999 / Revised version: 1 July 1999 / Accepted: 1 July 1999  相似文献   

7.
Bleomycins (BLMs) are antitumor antibiotics that in the presence of iron and oxygen mediate DNA damage by 4′-hydrogen atom abstraction of pyrimidines 3′ to guanines. The resulting 4′-deoxyribose radicals can be trapped by O2 and ultimately result in the formation of base-propenal and gapped DNA with 3′-phosphoglycolate (3′-PG) and 5′-phosphate (5′-P) ends. The role of this lesion in triggering double-strand cleavage of duplex DNA by a single BLM molecule and the mechanism by which this lesion is repaired in vivo remain unsolved problems. The structure of these lesions is an essential step in addressing both of these problems. Duplex DNAs (13mers containing tethered hexaethylene glycol linkers) with GTAC and GGCC cleavage sites have been synthesized in which gaps containing 3′-PG and 5′-P ends at the sites of BLM cleavage have been inserted. The former sequence represents a hot spot for double-strand cleavage, while the latter is a hot spot for single-strand cleavage. Analytical methods to characterize the lesioned products have been developed. These oligonucleotides have been examined using 2D NMR methods and molecular modeling. The studies reveal that the lesioned DNAs are B-form and the 3′-PG and 5′-P are extrahelical. The base opposite the gap and the base pairs adjacent to the gap remain well stacked in the DNA duplex. Titrations of the lesioned GGCC oligomer with HOO-CoBLM leads to a mixture of complexes, in contrast to results of a similar titration with the lesioned GTAC oligomer.  相似文献   

8.
The application of voltammetric methods to planar bilayer lipid membranes (BLM) studies is described. BLM-compound interaction experiments lead to the measurement of the membrane current underlying transport phenomena. From measurements of current/voltage of BLM in unstirred solutions as a function of scan rates, it is possible to obtain both thermodynamic and kinetic information. In past years, a variety of techniques have been used to study the electrical properties of BLMs, but in terms of versatility, the cyclic voltammetric technique is outstanding. Cyclic voltammetry is the definitive means of characterizing the redox process of electroactive membranes.  相似文献   

9.
The bleomycins (BLMs) are natural products that in the presence of iron and oxygen bind to and cause single-strand and double-strand cleavage of DNA. The mode(s) of binding of the FeBLMs that leads to sequence-specific cleavage at pyrimidines 3′ to guanines and chemical-specific cleavage at the C-4′ H of the deoxyribose of the pyrimidine has remained controversial. 2D NMR studies using the hydroperoxide of CoBLM (HOO-CoBLM) have demonstrated that its bithiazole tail binds by partial intercalation to duplex DNA. Studies with ZnBLM demonstrate that the bithiazole tail binds in the minor groove. Phleomycins (PLMs) are BLM analogs in which the penultimate thiazolium ring of the bithiazole tail is reduced. The disruption of planarity of this ring and the similarities between FePLM- and FeBLM-mediated DNA cleavage have led Hecht and co-workers to conclude that a partial intercalative mode of binding is not feasible. The interaction of HOO-CoPLM with d(CCAGGCCTGG)2 has therefore been investigated. Binding studies indicate a single site with a Kd of 16 µM, 100-fold greater than HOO-CoBLM for the same site. 2D NMR methods and molecular modeling using NMR-derived restraints have led to a structural model of HOO-CoPLM complexed to d(CCAGGCCTGG)2. The model reveals a partial intercalative mode of binding and the basis for sequence specificity of binding and chemical specificity of cleavage. The importance of the bithiazoles and the partial intercalative mode of binding in the double-strand cleavage of DNA is discussed.  相似文献   

10.
Chemical modification and photodynamic treatment of the colicin E1 channel-forming domain (P178) in vesicular and planar bilayer lipid membranes (BLMs) was used to elucidate the role of tryptophan residues in colicin E1 channel activity. Modification of colicin tryptophan residues by N-bromosuccinimide (NBS), as judged by the loss of tryptophan fluorescence, resulted in complete suppression of wild-type P178 channel activity in BLMs formed from fully saturated (diphytanoyl) phospholipids, both at the macroscopic-current and single-channel levels. The similar effect on both the tryptophan fluorescence and the electric current across BLM was observed also after NBS treatment of gramicidin channels. Of the single-tryptophan P178 mutants studied, W460 showed the highest sensitivity to NBS treatment, pointing to the importance of the water-exposed Trp460 in colicin channel activity. In line with previous work, the photodynamic treatment (illumination with visible light in the presence of a photosensitizer) led to suppression of P178 channel activity in diphytanoyl-phospholipid membranes concomitant with the damage to tryptophan residues detected here by a decrease in tryptophan fluorescence. The present work revealed novel effects: activation of P178 channels as a result of both NBS and photodynamic treatments was observed with BLMs formed from unsaturated (dioleoyl) phospholipids. These phenomena are ascribed to the effect of oxidative modification of double-bond-containing lipids on P178 channel formation. The pronounced stimulation of the colicin-mediated ionic current observed after both pretreatment with NBS and sensitized photomodification of the BLMs support the idea that distortion of membrane structure can facilitate channel formation.Abbreviations: AlPcS3, almininum trisulfophthalocyanine; BLM, bilayer lipid membrane; DOPC, dioleoylphosphatidylcholine; DOPG, dioleoylphosphatidyl-glycerol; DPhPG, diphytanoylphos-phatidylglycerol; DPhPg, diphytanoylphosphatidylcholine; gA, gramicidin A; NBS, N-bromosuccinimideThis revised version was published online in August 2005 with a corrected cover date.  相似文献   

11.
Pohl EE  Peterson U  Sun J  Pohl P 《Biochemistry》2000,39(7):1834-1839
The passive transbilayer movement-flip-flop-was investigated on planar bilayer lipid membranes (BLMs), containing myristic, stearic, or linoleic long-chain fatty acids (FA). In response to a transbilayer pH gradient, a difference in the surface charges between inner and outer leaflets appeared. Because the BLM was formed from FA and neutral lipid, a surface potential difference was originated solely by a concentration difference of the initially equally distributed ionized FA. As revealed by zeta-potential measurements, the corresponding surface potential difference DeltaPhi(s) was at least twice the value expected from a titration of the FA alone. The additional surface charge was attributed to FA flip-flop induced by the transbilayer pH gradient. DeltaPhi(s) was derived from capacitive current measurements carried out with a direct current (dc) bias and was corrected for changes of membrane dipole potential Phi(d). Dual-wavelength ratiometric fluorescence measurements have shown that Phi(d) values of the pure DPhPC bilayers and BLMs containing 40 mol % FA differ by less than 6%. It is concluded that fast FA flip-flop is not restricted to membranes with high curvature. The role of pH gradient as an effective driving force for the regulation of FA uptake is discussed.  相似文献   

12.
Changes in the bilayer lipid membrane (BLM) conductance induced by electric field were studied. BLMs were formed from diphytanoylphosphocholine (DPhPC) solution in squalene. Certain time after a constant voltage (200-500 mV) was applied to the BLM in the voltage-clamp mode, the BLM conductance started to grow up to approximately 10 nS until the BLM ruptured. The conductance often changed abruptly (with the front duration of less than 33 micros) and then stabilized for a relatively long time (up to 10; 300 ms on average) thus resembling the ion channel activity. The mean amplitude of conductance steps was 650 pS. However, in some cases a slow conductance drift was recorded. When N-methyl-D-glucamine/glutamate ions were used instead of KCl, the conductance changes became 5 times smaller. We suggest that formation in the BLM of single pores approximately 1 nm in diameter should result in the observed changes in BLM conductance. The BLM conductance growth was due to consecutive opening of several such pores. When the electric field amplitude was abruptly decreased (down to 50-100 mV), the conductance dropped rapidly to the background value. When we increased the voltage again, the BLM conductance right after the increase depended on the time BLM spent under "weak" electric field. If this time exceeded 500 ms, the conductance was at the background level, but when the time was diminished, the conductance reached the value recorded before the voltage decrease. These data imply that the closure of the pores should lead to the formation in BLM of small defects (prepores) that can be easily transformed into pores when the voltage is increased. The lifetimes of such prepores did not exceed 500 ms.  相似文献   

13.
Bloom syndrome (BS) is an autosomal recessive disorder characterized by a high incidence of cancer and genomic instability. BLM, the protein defective in BS, is a RECQ-like helicase that is presumed to function in mammalian DNA replication, recombination, or repair. We show here that BLM, but not the related RECQ-like helicase WRN, is rapidly cleaved in cells undergoing apoptosis. BLM was cleaved to 47- and 110-kDa major fragments, with kinetics similar to the apoptotic cleavage of poly(A)DP-ribose polymerase. BLM cleavage was prevented by a caspase 3 inhibitor and did not occur in caspase 3-deficient cells. Moreover, recombinant BLM was cleaved to 47- and 110-kDa fragments by caspase 3, but not caspase 6, in vitro. The caspase 3 recognition sequence (412)TEVD(415) was verified by mutating aspartate 415 to glycine and showing that this mutation rendered BLM resistant to caspase 3 cleavage. Cleavage did not abolish the BLM helicase activity but abolished BLM nuclear foci and the association of BLM with condensed DNA and the insoluble matrix. The results suggest that BLM, but not WRN, is an early selected target during the execution of apoptosis.  相似文献   

14.
通过光谱分析、粘度测定及~1HNMR研究证实:博安霉素(BleomycinA_6,BLMA_6)是通过双噻唑基嵌插入碱基对之间与DNA结合的。同时测定了BLMA_6与DNA的结合常数、结合位点数并与博莱霉素A_2(BLMA_2)、A_5(BLMA_5)进行了比较,证实了末端胺基对BLMA_6与DNA结合的贡献,琼脂糖凝胶电泳对BLMA_6及其Cu(Ⅱ)、Fe(Ⅱ)络合物断裂DNA的研究表明,在DNA断裂中某种氧自由基的存在及金属螯合部位与DNA嵌插部位之间的相互影响,对于BLMA_6及同系物对小鼠肺毒性的差异与不同尾链结构的关系进行了探讨。  相似文献   

15.
In higher eukaryotes, the integration of signals triggered in response to certain types of stress can result in programmed cell death. Central to these events is the sequential activation of a cascade of proteinases known as caspases. The final activated effector caspases of this cascade digest a number of cellular proteins, in some cases increasing their enzymatic activity, in others destroying their function. Of the proteins shown to be targets for caspase-mediated proteolysis, a surprisingly large proportion are proteins involved in the signalling or repair of DNA damage. Here we investigate whether BLM, the product of the gene mutated in Bloom’s syndrome, a human autosomal disease characterised by cancer predisposition and sunlight sensitivity, is cleaved during apoptosis. BLM interacts with topoisomerase IIIα and has been proposed to play an important role in maintaining genomic integrity through its roles in DNA repair and replication. We show that BLM is cleaved during apoptosis by caspase-3 and reveal that the main cleavage site is located at the junction between the N-terminal and central helicase domains of BLM. Proteolytic cleavage by caspase-3 produces a 120 kDa fragment, which contains the intact helicase domain and three smaller fragments, the relative amounts of which depend on time of incubation with caspase-3. The 120 kDa fragment retains the helicase activity of the intact BLM protein. However, its interaction with topoisomerase IIIα is severely impaired. Since the BLM–topoisomerase interaction is believed to be necessary for many of the replication and recombination functions of BLM, we suggest that caspase-3 cleavage of BLM could alter the localisation and/or function of BLM and that these changes may be important in the process of apoptosis.  相似文献   

16.
Bleomycin (BLM) is used clinically in combination with a number of other agents for the treatment of several types of tumours. Members of the BLM family of drugs include zorbamycin (ZBM), phleomycin D1, BLM A2 and BLM B2. By manipulating the BLM biosynthetic machinery, we have produced two new BLM analogues, BLM Z and 6′-deoxy-BLM Z, with the latter exhibiting significantly improved DNA cleavage activity. Here we determined the DNA sequence specificity of BLM Z, 6′-deoxy-BLM Z and ZBM, in comparison with BLM, with high precision using purified plasmid DNA and our recently developed technique. It was found that ZBM had a different DNA sequence specificity compared with BLM and the BLM analogues. While BLM and the BLM analogues showed a similar DNA sequence specificity, with TGTA sequences as the main site of cleavage, ZBM exhibited a distinct DNA sequence specificity, with both TGTA and TGTG as the predominant cleavage sites. These differences in DNA sequence specificity are discussed in relation to the structures of ZBM, BLM and the BLM analogues. Our findings support the strategy of manipulating the BLM biosynthetic machinery for the production of novel BLM analogues, difficult to prepare by total synthesis; some of which could have beneficial cancer chemotherapeutic properties.  相似文献   

17.
The biotic ligand modeling (BLM) approach has gained recent widespread interest among the scientific and regulatory communities because of its potential for developing ambient water quality criteria (AWQC), which are site-specific, and in performing aquatic risk assessment for metals. Currently, BLMs are used for predicting acute toxicity (96?h LC50 for fish) in any defined water chemistry. The conceptual framework of the BLM has a strong physiological basis because it considers that toxicity of metals occurs due to the binding of free metal ions at the physiologically active sites of action (biotic ligand, e.g., fish gill) on the aquatic organism, which can be characterized by conditional binding constants (log K) and densities (Bmax). At present, these models assume that only water chemistry variables such as competing cations (e.g., Na+, Ca2+, Mg2+, and H+), inorganic ligands (e.g., hydroxides, chlorides, carbonates), and organic ligands (dissolved organic matter) can influence the bioavailability of free metal ions and thereby the acute toxicity of metals. Current BLMs do not consider the effects of chronic history of the fish in modifying gill-metal binding characteristics and acute toxicity. Here, for Cu, Cd, and Zn, we review a number of recent studies on the rainbow trout that describe significant modifying effects of chronic acclimation to waterborne factors (hardness and chronic metal exposure) and dietary composition (metal and essential ion content) on gill metalbinding characteristics (on both log K and Bmax) and on acute toxicity. We conclude that the properties of gill-metal interaction and toxicological sensitivity appear to be dynamic rather than fixed, with important implications for further development of both acute and chronic BLMs. Now that the initial framework of the BLM has been established, future research needs a more integrative approach with additional emphasis on the dynamic properties of the biotic ligand to make it a successful tool for ecological risk assessment of metals in the natural environment.  相似文献   

18.
Bleomycin (BLM) is a cancer chemotherapeutic agent that cleaves cellular DNA at specific sequences. Using next-generation Illumina sequencing, the genome-wide sequence specificity of DNA cleavage by two BLM analogues, 6′-deoxy-BLM Z and zorbamycin (ZBM), was determined in human HeLa cells and compared with BLM. Over 200 million double-strand breaks were examined for each sample, and the 50,000 highest intensity cleavage sites were analysed. It was found that the DNA sequence specificity of the BLM analogues in human cells was different to BLM, especially at the cleavage site (position “0”) and the “+1” position. In human cells, the 6′-deoxy-BLM Z had a preference for 5′-GTGY*MC (where * is the cleavage site, Y is C or T, M is A or C); it was 5′-GTGY*MCA for ZBM; and 5′-GTGT*AC for BLM. With cellular DNA, the highest ranked tetranucleotides were 5′-TGC*C and 5′-TGT*A for 6′-deoxy-BLM Z; 5′-TGC*C, 5′-TGT*A and 5′-TGC*A for ZBM; and 5′-TGT*A for BLM. In purified human genomic DNA, the DNA sequence preference was 5′-TGT*A for 6′-deoxy-BLM, 5′-RTGY*AYR (where R is G or A) for ZBM, and 5′-TGT*A for BLM. Thus, the sequence specificity of the BLM analogue, 6′-deoxy-BLM Z, was similar to BLM in purified human DNA, while ZBM was different.  相似文献   

19.
The bilayer lipid membrane (BLM) system was used to investigate the tumor killing effect of natural killer (NK) cells under various experimental conditions. It was found that NK cells interact specifically with BLMs made from lipids and proteolipids isolated from target K562 cells inducing an increase of the membrane conductance. This effect was more pronounced when the NK cells were pretreated with interferon. A similar effect was observed when NK cells were pretreated with sodium selenite. The results suggest that changes in membrane conductance and permeability are involved in the mechanism of the tumor-killing effect mediated by NK cells.  相似文献   

20.
A series of novel amino acid and peptide derivatives of bleomycin (BLM) A(5) were synthesized. All the compounds possessed significant antitumor activities in vitro against HL-60, BGC-823, PC-3MIE8, and MDA-MB-435 cell lines. Their antitumor activities against MDA-MB-435 were 10-fold higher than BLM A5. The DNA cleavage studies indicated that the hydrophobic amino acid or peptide derivatives of BLM A5 could induce higher cleavage ratio of double to single strand DNA than BLM A5. From the DNA binding studies, we found that the derivatives containing either D-conformation amino acid or basic amino acid could facilitate DNA binding of BLM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号