共查询到20条相似文献,搜索用时 0 毫秒
1.
M Grazia Tozzi U D'Arcangelo A Del Corso G W Ordal 《Biochimica et biophysica acta》1991,1080(2):160-164
A Ca(2+)-binding protein was identified in Bacillus subtilis in the log phase of growth. The molecular mass of this protein is about 38 kDa as estimated by polyacrylamide gel electrophoresis in the presence of SDS and by gel filtration. The protein was found to be resistant 10 min at 65 degrees C and was purified about 400 times, starting from heated crude extract, by conventional procedures. This novel protein is able to bind Ca2+ in the presence of an excess of MgCl2 and KCl both in solution and after SDS gel electrophoresis and electrotransfer. Since an impairment of the Ca2+ intake, in Bacillus subtilis, results in an impairment of chemotactic behavior (Matsushita, T. et al (1988) FEBS lett. 236, 437-440), 38 kDa protein may be involved in the regulation of chemotaxis. 相似文献
2.
3.
The protease purified from Bacillus cereus JH108 has the function of leucine specific endopeptidase. When measured by hydrolysis of synthetic substrate (N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide), the enzyme activity exhibited optimal activity at pH 9.0, 60 degrees C. The endopeptidase activity was stimulated by Ca++, Co++, Mn++, Mg++, and Ni++, and was inhibited by metal chelating agents such as EDTA, 1,10-phenanthroline, and EGTA. Addition of serine protease inhibitor, PMSF, resulted in the elimination of the activity. The endopeptidase activity was fully recovered from the inhibition of EDTA by the addition of 1 mM Ca++, and was partially restored by Co++ and Mn++, indicating that the enzyme was stabilized and activated by divalent cations and has a serine residue at the active site. Addition of Ca++ increased the pH and heat stability of endopeptidase activity. These results show that endopeptidase requires calcium ions for activity and/or stability. A Lineweaver-Burk plot analysis indicated that the Km value of endopeptidase is 0.315 mM and Vmax is 0.222 mmol of N-succinyl-Ala-Ala-Pro-Leu-p-nitroanilide per min. Bestatin was shown to act as a competitive inhibitor to the endopeptidase activity. 相似文献
4.
The major cold shock protein from Bacillus subtilis (CspB) was overexpressed using the bacteriophage T7 RNA polymerase/promoter system and purified to apparent homogeneity from recombinant Escherichia coli cells. CspB was crystallized in two different forms using vapor diffusion methods. The first crystal form obtained with ammonium sulfate as precipitant belongs to the trigonal crystal system, space group P3(1)21 (P3(2)21) with unit cell dimensions a = b = 59.1 A and c = 46.4 A. The second crystal form is tetragonal, space group P4(1)2(1)2 (P4(3)2(1)2) with unit cell dimensions a = b = 56.9 A and c = 53.0 A. These crystals grow with polyethylene glycol 4000 as precipitant. 相似文献
5.
Ghorbel-Frikha B Sellami-Kamoun A Fakhfakh N Haddar A Manni L Nasri M 《Journal of industrial microbiology & biotechnology》2005,32(5):186-194
The production and purification of a calcium-dependent protease by Bacillus cereus BG1 were studied. The production of the protease was found to depend specifically on the calcium concentration in the culture medium. This suggests that this metal ion is essential for the induction of protease production and/or stabilisation of the enzyme after synthesis. The calcium requirement is highly specific since other metal ions (such as Mg2+ and Ba2+, which both activate the enzyme) are not able to induce protease production. The most appropriate medium for growth and protease production comprises (g L–1) starch 5, CaCl2 2, yeast extract 2, K2HPO4 0.2 and KH2PO4 0.2. The protease of BG1 strain was purified to homogeneity by ultrafiltration, heat treatment, gel filtration on Sephacryl S-200, ion exchange chromatography on DEAE-cellulose and, finally, a second gel filtration on Sephacryl S-200, with a 39-fold increase in specific activity and 23% recovery. The molecular weight was estimated to be 34 kDa on SDS-PAGE. The optimum temperature and pH of the purified enzyme were determined to be 60°C and 8.0, respectively, in 100 mM Tris-HCl buffer + 2 mM CaCl2. 相似文献
6.
7.
The induction of proteins after a 25 to 5 degrees C cold shock in the psychrotrophic Acinetobacter HH1-l was examined using two-dimensional polyacrylamide gel electrophoresis. In addition, effects of various carbon sources (acetate, Tween 80, and olive oil) on protein synthesis after cold shock were assessed. HH1-1 responded to cold shock by synthesizing both cold shock proteins (csps) and cold acclimation proteins (caps). The synthesis of two csps (89 and 18) was increased 2 h after cold shock by the cells, regardless of the carbon source provided. An additional csp (csp 12), with an estimated molecular mass of 12 kDa, was observed in cells grown in olive oil only. Csp 12 was also synthesized when cells were incubated at 30 degrees C, suggesting that this protein may serve as a general stress protein. In addition to csps, caps were observed post cold shock at 72 h in acetate-grown cells and at 140 h in cells grown in Tween 80 and olive oil. Induction of cold-acclimated periplasmic proteins was observed for cells grown in olive oil only, suggesting cells grown in olive oil may be stressed by low temperatures to a greater extent than cells grown in either acetate or Tween 80. 相似文献
8.
产胶原酶的蜡样芽胞杆菌发酵条件优化及酶的分离纯化 总被引:2,自引:0,他引:2
【目的】优化蜡样芽胞杆菌R75E菌株产胶原酶的条件,并通过蛋白分离纯化技术获得高纯度胶原酶。【方法】利用单因素及正交试验优化蜡样芽胞杆菌R75E产胶原酶的发酵条件及发酵培养基,将发酵液离心除菌后得到粗酶液,对其依次通过硫酸铵分级沉淀、Butyl FF疏水层析及SuperdexTM 200凝胶过滤层析等方法对目标胶原酶进行分离纯化,利用SDS-PAGE电泳检测其纯度。【结果】优化后发酵条件为培养温度41°C、接种量6%、培养时间36 h,优化后发酵培养基为葡萄糖10 g/L、蛋白胨5 g/L、起始p H 7.0,粗酶液酶活力较优化前提高了2.9倍;将该粗酶液经过一系列纯化后得到纯度超过90%的胶原酶产物,其纯化倍数和回收率分别为18.4和1.1%。【结论】获得蜡样芽胞杆菌R75E的最佳产酶条件,并对胶原酶分离纯化的方法进行了探索,为微生物胶原酶的开发应用奠定基础。 相似文献
9.
10.
11.
A substrain of Bacillus cereus 569/H produced under controlled fermentation conditions in a pilot plant fermentor phospholipase-C. A partially purified preparation showed good storage stability as a lyophylized powder and in frozen solutions. The preparation contained very small amounts of phosphomonoesterase and proteolytic activities and essentially no ribonuclease activity. The level of hemolytic activity of the preparation was much lower than that of a commercial preparation of phospholipase-C from Clostridium. Treatment of sarcoplasmic reticulum membrane with phospholipase-C from B. cereus and from Clostridium showed that the B. cereus enzyme caused hydrolysis of 96% of the membrane phospholipids whereas the enzyme from Clostridium could hydrolyze only 80% of the phospholipids. 相似文献
12.
H Kumeta T Hoshino T Goda T Okayama T Shimada S Ohgiya H Matsuyama K Ishizaki 《Bioscience, biotechnology, and biochemistry》1999,63(7):1165-1170
An extracellular metalloprotease named No. 114 protease is one of the major secretions of a psychrotrophic bacterium, Pseudomonas fluorescens 114, the cold-adaptation mechanism of which has not been identified. In this study, we purified and cloned No. 114 protease, which is a single polypeptide having a molecular mass of 47 kDa. This protease contains a zinc-binding motif (HEXXHXUGUXH: X, arbitrary amino acid; U, bulky hydrophobic amino acid), glycine-rich repeats (GGXGXD) and no cysteine residue, which are the features specifically found in serralysin subfamily. No. 114 protease has its maximum activity at the temperature of 35-40 degrees C, which is about 20 degrees C lower than that of a serralysin from a mesophilic bacterium, Pseudomonas aeruginosa. All these results imply that No. 114 protease from this psychrophilic bacterium is a unique member of the serralysin group characterized by a low optimal temperature. 相似文献
13.
Fadouloglou VE Deli A Glykos NM Psylinakis E Bouriotis V Kokkinidis M 《The FEBS journal》2007,274(12):3044-3054
Bacillus cereus is an opportunistic pathogenic bacterium closely related to Bacillus anthracis, the causative agent of anthrax in mammals. A significant portion of the B. cereus chromosomal genes are common to B. anthracis, including genes which in B. anthracis code for putative virulence and surface proteins. B. cereus thus provides a convenient model organism for studying proteins potentially associated with the pathogenicity of the highly infectious B. anthracis. The zinc-binding protein of B. cereus, BcZBP, is encoded from the bc1534 gene which has three homologues to B. anthracis. The protein exhibits deacetylase activity with the N-acetyl moiety of the N-acetylglucosamine and the diacetylchitobiose and triacetylchitotriose. However, neither the specific substrate of the BcZBP nor the biochemical pathway have been conclusively identified. Here, we present the crystal structure of BcZBP at 1.8 A resolution. The N-terminal part of the 234 amino acid protein adopts a Rossmann fold whereas the C-terminal part consists of two beta-strands and two alpha-helices. In the crystal, the protein forms a compact hexamer, in agreement with solution data. A zinc binding site and a potential active site have been identified in each monomer. These sites have extensive similarities to those found in two known zinc-dependent hydrolases with deacetylase activity, MshB and LpxC, despite a low degree of amino acid sequence identity. The functional implications and a possible catalytic mechanism are discussed. 相似文献
14.
Dyhydrodipicolinate reductases were purified 100-fold from crude extracts of B. cereus and B. megaterium and their properties were compared with those of the reductase from B. subtilis. The molecular weights of the reductases of B. cereus and B. megaterium were fount to be 155,000 and 150,000, respectively. These reductases were shown to be free of flavin, unlike the B. subtilis enzyme, which contains flavin. Both NADPH and NADH acted as coenzymes for these two reductases. NADPH being three or four times more effective than NADH. The Km values for NADPH and dihydrodipicolinate were 8 micrometer and 62 micrometer, respectively, with B. cereus reductase, and 13 micrometer and 59 micrometer with B. megaterium reductase. The pH optima of the enzymes from B. cereus and B. megaterium were pH 7.4 and 7.2, respectively. The reductases were inhibited by dipicolinate noncompetitively with respect to dihydrodipicolinate and the Ki values were 85 micrometer and 140 micrometer, respectively. Lysine and diaminopimelate were not inhibitory. The properties of the reductases from B. cereus and B. megaterium were similar, but they differed considerably from those of the B. subtilis enzyme. However, all three Bacillus reductases were markedly inhibited by dipicolinate, unlike the enzyme from E. coli. 相似文献
15.
Purification and some characteristics of a calcium-binding protein from Bacillus cereus spores 总被引:1,自引:0,他引:1
A novel calcium-binding protein has been purified from the dormant spores of Bacillus cereus T. Purity of this protein was verified by SDS-PAGE and reversed-phase HPLC. Its calcium-binding ability was verified by a competitive calcium-binding assay using Chelex-100 resin and 45Ca autoradiography. The protein is heat-stable and is retained by hydrophobic matrices (phenyl-Sepharose) in a calcium-dependent manner. SDS-PAGE and amino acid composition indicate the molecular mass of the protein to be 24 kDa. 相似文献
16.
17.
J A Koke M Yang D J Henner J J Volwerk O H Griffith 《Protein expression and purification》1991,2(1):51-58
The construction of four vectors for high-level expression in Escherichia coli of the phosphatidylinositol-specific phospholipase C from Bacillus cereus or Bacillus thuringiensis is described. In all constructs the coding sequence for the mature phospholipase is precisely fused to the E. coli heat-stable enterotoxin II signal sequence for targeting of the protein to the periplasm. In one set of plasmids expression of the B. cereus or B. thuringiensis enzyme is under control of the E. coli alkaline phosphatase promoter, while in a second set of plasmids expression is under control of a lac-tac-tac triple tandem promoter. A simple and rapid procedure for complete purification of the phospholipase C overproduced in E. coli, involving isolation of the periplasmic proteins by osmotic shock followed by a single column chromatography step, is described. The largest quantity of purified enzyme, 40-60 mg per liter culture, is obtained with the plasmid expressing the B. cereus enzyme under control of the lac-tac-tac promoter. Lower quantities are obtained with the plasmids containing the alkaline phosphatase promoter (15-20 and 4-6 mg/liter for the B. cereus and B. thuringiensis enzymes, respectively) and with the plasmid expressing the B. thuringiensis phospholipase under control of the lac-tac-tac promoter (15-20 mg/liter). A comparison of the functional properties of the recombinant phospholipases with the native enzymes isolated from B. cereus or B. thuringiensis culture supernatant shows that they are identical with respect to their catalytic functions, viz., cleavage of phosphatidylinositol and cleavage of the glycosyl-phosphatidylinositol membrane anchor of bovine erythrocyte acetylcholinesterase. 相似文献
18.
Deoxyribose 5-phosphate aldolase was purified 41 times from Bacillus cereus induced by growth on deoxyribonucleosides. The purification procedure includes ammonium sulphate fractionation, gel filtration on Sephadex G-100, ion-exchange chromatography on DEAE-Sephacel and preparative electrophoresis on 10% polyacrylamide gel. The enzyme is stable above pH 6.5, but is rapidly inactivated by sulfhydryl reagents. Being insensitive to EDTA, it may be considered as a Class I aldolase. Among a number of compounds tested (including some carboxylic acids, free and phosphorylated pentoses, nucleotides and nucleosides), none has been found to affect the enzyme activity. The enzyme appears to be dimeric, with a subunit Mr of 23,600. A Km of 4.4 x 10(-4) M was calculated for dRib 5-P. 相似文献
19.
20.
CspB is a small acidic protein of Bacillus subtilis, the induction of which is increased dramatically in response to cold shock. Although the exact functional role of CspB is unknown, it has been demonstrated that this protein binds single-stranded deoxynucleic acids (ssDNA). We addressed the question of the effect of base composition on the CspB binding to ssDNA by analyzing the thermodynamics of CspB interactions with model oligodeoxynucleotides. Combinations of four different techniques, fluorescence spectroscopy, gel shift mobility assays, isothermal titration calorimetry, and analytical ultracentrifugation, allowed us to show that: 1) CspB can preferentially bind poly-pyrimidine but not poly-purine ssDNA templates; 2) binding to T-based ssDNA template occurs with high affinity (K(d(25 degrees C)) approximately 42 nM) and is salt-independent, whereas binding of CspB to C-based ssDNA template is strongly salt-dependent (no binding is observed at 1 M NaCl), indicating large electrostatic component involved in the interactions; 3) upon binding each CspB covers a stretch of 6-7 thymine bases on T-based ssDNA; and 4) the binding of CspB to T-based ssDNA template is enthalpically driven, indicating the possible involvement of interactions between aromatic side chains on the protein with the thymine bases. The significance of these results with respect to the functional role of CspB in the bacterial cold shock response is discussed. 相似文献