首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The codon usage in the Vibrio cholerae genome is analyzed in this paper. Although there are much more genes on the chromosome 1 than on chromosome 2, the codon usage patterns of genes on the two chromosomes are quite similar, indicating that the two chromosomes may have coexisted in the same cell for a very long history. Unlike the base frequency pattern observed in other genomes, the G+C content at the third codon position of the V. cholerae genome varies in a rather small interval. The most notable feature of codon usage of V. cholerae genome is that there is a fraction of genes show significant bias in base choice at the second codon position. The 2,006 known genes can be classified into two clusters according to the base frequencies at this position. The smaller cluster contains 227 genes, most of which code for proteins involved in transport and binding functions. The encoding products of these genes have significant bias in amino acids composition as compared with other genes. The codon usage patterns for the 1,836 function unknown ORFs are also analyzed, which is useful to study their functions.  相似文献   

2.
Abstract

The codon usage in the Vibrio cholerae genome is analyzed in this paper. Although there are much more genes on the chromosome 1 than on chromosome 2, the codon usage patterns of genes on the two chromosomes are quite similar, indicating that the two chromosomes may have coexisted in the same cell for a very long history. Unlike the base frequency pattern observed in other genomes, the G+C content at the third codon position of the V. cholerae genome varies in a rather small interval. The most notable feature of codon usage of V. cholerae genome is that there is a fraction of genes show significant bias in base choice at the second codon position. The 2006 known genes can be classified into two clusters according to the base frequencies at this position. The smaller cluster contains 227 genes, most of which code for proteins involved in transport and binding functions. The encoding products of these genes have significant bias in amino acids composition as compared with other genes. The codon usage patterns for the 1836 function unknown ORFs are also analyzed, which is useful to study their functions.  相似文献   

3.
In bacteriophage T4, there is a strong tendency for genes that encode interacting proteins to be clustered on the chromosome. There is 1.6 kb of DNA between the DNA helicase (gene 41) and the DNA primase (gene 61) genes of this virus. The DNA sequence of this region suggests that it contains five genes, designated as open reading frames (ORFs) 61.1 to 61.5, predicted to encode proteins ranging in size from 5.94 to 22.88 kDa. Are these ORFs actually genes? As one test, we compared the DNA sequence of this region in bacteriophages T2, T4, and T6 and found that ORFs 61.1, 61.3, 61.4, and 61.5 are highly conserved among the three closely related viruses. In contrast, ORF 61.2 is conserved between phages T4 and T6 yet is absent from phage T2, where it is replaced by another ORF, T2 ORF 61.2, which is not found in the T4 and T6 genomes. As a second, independent test for coding sequences, we calculated the codon base position preferences for all ORFs in this region that could encode proteins that contain at least 30 amino acids. Both the T4/T6 and T2 versions of ORF 61.2, as well as the other ORFs, have codon base position preferences that are indistinguishable from those of known T4 genes (coefficients of 0.81 to 0.94); the six other possible ORFs of at least 90 bp in this region are ruled out as genes by this test (coefficients less than zero). Thus, both evolutionary conservation and codon usage patterns lead us to conclude that ORFs 61.1 to 61.5 represent important protein-coding sequences for this family of bacteriophages. Because they are located between the genes that encode the two interacting proteins of the T4 primosome (DNA helicase plus DNA primase), one or more may function in DNA replication by modulating primosome function.  相似文献   

4.
In some Drosophila species, there are two types of greatly diverged amylase (Amy) genes (Amy clusters 1 and 2), each encoding active amylase isozymes. Cluster 1 is located at the middle of its chromosomal arm, and the region has a normal local recombination rate. However, cluster 2 is near the centromere, and this region is known to have a reduced recombination rate. Although nonsynonymous substitutions follow a molecular clock, synonymous substitutions were accelerated in cluster 2 after gene duplications. This resulted in a higher GC content at the third codon position (GC3) and codon usage bias in cluster 1, and lower GC3 content and codon usage bias in the cluster 2. However, no systematic difference in GC content was observed in the first and second codon positions or the 3'-flanking regions. Therefore, differences in local recombination rate rather than mutation bias might explain the divergence at synonymous sites between the two Amy clusters within species (Hill-Robertson effect). Alternatively, the different patterns and levels of expression between the two clusters may imply that the reduced expression level in cluster 2 caused by chromatin potentiation decreased the codon bias. Both of these hypotheses imply the importance of the genomic background as a driving force of divergence between non-tandemly duplicated genes.  相似文献   

5.
Brevibacterium epidermidis HCU can grow on cyclic ketones and alcohols as a sole carbon source. We have previously reported the identification of two cyclohexanone-induced Bayer-Villiger monooxygenase genes by mRNA differential display. Using the related technique of Out-PCR, we have amplified large DNA fragments flanking the two monooxygenase genes. Two large gene clusters were sequenced. Several ORFs in each gene cluster encoded proteins homologous to cyclohexanol and cyclohexanone oxidation enzymes from Acinetobacter. However, the structure of these two gene clusters differs significantly from that of Acinetobacter, where the complete pathway has been described. To assess activity of these genes, they were cloned and expressed in Escherichia coli. In vivo and in vitro assays enabled us to assign functions to the expressed ORFs. These ORFs included a cyclohexanol dehydrogenase, two different epsilon-caprolactone hydrolases and two 6-hydroxyhexanoate dehydrogenases belonging to different enzyme families. Because this environmental isolate is difficult to manipulate, we cannot determine at this time which cluster is involved in the degradation of cyclohexanone under physiological conditions. However, the original differential display experiments and some of the experiments reported here suggest the involvement of both gene clusters in the oxidation of cyclic ketones.  相似文献   

6.
The 2694 ORFs originally annotated as potential genes in the genome of Aeropyrum pernix can be categorized into three clusters (A, B, C), according to their nucleotide composition at three codon positions. Coding potential was found to be responsible for the phenomenon of three clusters in a 9-dimensional space derived from the nucleotide composition of ORFs: ORFs assigned to cluster A are coding ones, while those assigned to clusters B and C are non-coding ORFs. A "codingness" index called the AZ score is defined based on a clustering method used to recognize protein-coding genes in the A. pernix genome. The criterion for a coding or non-coding ORF is based on the AZ score. ORFs with AZ > 0 or AZ < 0 are coding or non-coding, respectively. Consequently, 620 out of 632 ORFs with putative functions based on the original annotation are contained in cluster A, which have positive AZ scores. In addition, all 29 ORFs encoding putative or conserved proteins newly added in RefSeq annotation also have positive AZ scores. Accordingly, the number of re-recognized protein-coding genes in the A. pernix genome is 1610, which is significantly less than 2694 in the original annotation and also much less than 1841 in the RefSeq annotation curated by NCBI staff. Annotation information of re-recognized genes and their AZ scores are available at: http://tubic.tju.edu.cn/Aper/.  相似文献   

7.
Adenine nucleotides have been found to appear preferentially in the regions after the initiation codons or before the termination codons of bacterial genes. Our previous experiments showed that AAA and AAT, the two most frequent second codons in Escherichia coli, significantly enhance translation efficiency. To determine whether such a characteristic feature of base frequencies exists in eukaryote genes, we performed a comparative analysis of the base biases at the gene terminal portions using the proteomes of seven eukaryotes. Here we show that the base appearance at the codon third positions of gene terminal regions is highly biased in eukaryote genomes, although the codon third positions are almost free from amino acid preference. The bias changes depending on its position in a gene, and is characteristic of each species. We also found that bias is most outstanding at the second codon, the codon after the initiation codon. NCN is preferred in every genome; in particular, GCG is strongly favored in human and plant genes. The presence of the bias implies that the base sequences at the second codon affect translation efficiency in eukaryotes as well as bacteria.  相似文献   

8.
Summary We have analyzed the correlation that exists between the GC levels of third and first or second codon position for about 1400 human coding sequences. The linear relationship that was found indicates that the large differences in GC level of third codon positions of human genes are paralleled by smaller differences in GC levels of first and second codon positions. Whereas third codon position differences correspond to very large differences in codon usage within the human genome, the first and second codon position differences correspond to smaller, yet very remarkable, differences in the amino acid composition of encoded proteins. Because GC levels of codon positions are linearly correlated with the GC levels of the isochores harboring the corresponding genes, both codon usage and amino acid composition are different for proteins encoded by genes located in isochores of different GC levels. Furthermore, we have also shown that a linear relationship with a unity slope and a correlation coefficient of 0.77 exists between GC levels of introns and exons from the 238 human genes currently available for this analysis. Introns are, however, about 5% lower in GC, on average, than exons from the same genes.  相似文献   

9.
Rhizobium sp. strain NGR234 has an exceptionally broad host range and is able to nodulate more than 112 genera of legumes. Since the overall organization of the NGR234 genome is strikingly similar to that of the narrow-host-range symbiont Rhizobium meliloti strain 1021 (also known as Sinorhizobium meliloti), the obvious question is why are the spectra of hosts so different? Study of the early symbiotic genes of both bacteria (carried by the SymA plasmids) did not provide obvious answers. Yet, both rhizobia also possess second megaplasmids that bear, among many other genes, those that are involved in the synthesis of extracellular polysaccharides (EPSs). EPSs are involved in fine-tuning symbiotic interactions and thus may help answer the broad- versus narrow-host-range question. Accordingly, we sequenced two fragments (total, 594 kb) that encode 575 open reading frames (ORFs). Comparisons revealed 19 conserved gene clusters with high similarity to R. meliloti, suggesting that a minimum of 28% (158 ORFs) of the genetic information may have been acquired from a common ancestor. The largest conserved cluster carried the exo and exs genes and contained 31 ORFs. In addition, nine highly conserved regions with high similarity to Agrobacterium tumefaciens C58, Bradyrhizobium japonicum USDA110, and Mesorhizobium loti strain MAFF303099, as well as two conserved clusters that are highly homologous to similar regions in the plant pathogen Erwinia carotovora, were identified. Altogether, these findings suggest that >/==" BORDER="0">40% of the pNGR234b genes are not strain specific and were probably acquired from a wide variety of other microbes. The presence of 26 ORFs coding for transposases and site-specific integrases supports this contention. Surprisingly, several genes involved in the degradation of aromatic carbon sources and genes coding for a type IV pilus were also found.  相似文献   

10.
A quantitative measure of error minimization in the genetic code   总被引:7,自引:0,他引:7  
Summary We have calculated the average effect of changing a codon by a single base for all possible single-base changes in the genetic code and for changes in the first, second, and third codon positions separately. Such values were calculated for an amino acid's polar requirement, hydropathy, molecular volume, and isoelectric point. For each attribute the average effect of single-base changes was also calculated for a large number of randomly generated codes that retained the same level of redundancy as the natural code. Amino acids whose codons differed by a single base in the first and third codon positions were very similar with respect to polar requirement and hydropathy. The major differences between amino acids were specified by the second codon position. Codons with U in the second position are hydrophobic, whereas most codons with A in the second position are hydrophilic. This accounts for the observation of complementary hydropathy. Single-base changes in the natural code had a smaller average effect on polar requirement than all but 0.02% of random codes. This result is most easily explained by selection to minimize deleterious effects of translation errors during the early evolution of the code.  相似文献   

11.
The distribution patterns of bases of DNA fragments in different regions in P. aeruginosa genome are analyzed in this paper. It's shown that 5565 protein-coding genes, 17315 non-coding ORFs, and 1104 intergenic sequences are located into seven clusters based on their base frequencies. Almost all the protein-coding genes are contained in one of the seven clusters. The significant difference of base frequencies among three codon positions in high GC genome, which arouse the division between the distribution patterns of bases of six reading frames of protein-coding genes, is responsible for the appearance of the clustering phenomenon. In the light of the clustering phenomenon, the author supposes that the anitisense strand ORFs, particularly those corresponding to Frame 2' and Frame 3', may not code for proteins in P. aeruginosa genome.  相似文献   

12.
13.
In Rhodospirillum rubrum, pufL, and pufM, the structural genes coding for the photoreaction center L and M polypeptides, are comprised respectively of 831 and 921 nucleotides. They are separated by a stretch of 12 nucleotides between the TAA stop codon of pufL and the first base of the ATG initiation codon of pufM. The predicted amino acid sequence of the L and M polypeptides, respectively, contain 275 and 305 residues with corresponding molecular weights of 30,473 and 33,978. Their sequences are highly homologous to those of Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis. As can be deduced from the crystallographic structure of other photoreaction centers, the regions of greatest similarity are the binding sites of the cofactors involved in the photochemical reaction rather than the protein secondary structure. L and M contain, at conserved positions of their sequences, three main clusters of positively charged residues on the cytoplasmic side of the membrane. This arrangement may be involved in protein orientation during membrane assembly. Evolutionary distance of pufL and pufM, as assessed by substitution frequency analysis, confirms the closeness of the two Rhodobacter species, the other two species being equidistant from one another. Interspecies evolutionary distance is greater for pufL than for pufM.  相似文献   

14.
15.
Abstract

The distribution patterns of bases of DNA fragments in different regions in P. aeruginosa genome are analyzed in this paper. It's shown that 5565 protein-coding genes, 17315 non- coding ORFs, and 1104 intergenic sequences are located into seven clusters based on their base frequencies. Almost all the protein-coding genes are contained in one of the seven clusters. The significant difference of base frequencies among three codon positions in high GC genome, which arouse the division between the distribution patterns of bases of six reading frames of protein-coding genes, is responsible for the appearance of the clustering phenomenon. In the light of the clustering phenomenon, the author supposes that the anitisense strand ORFs, particularly those corresponding to Frame 2′ and Frame 3′, may not code for proteins in P. aeruginosa genome.  相似文献   

16.
Rare codons cluster   总被引:1,自引:0,他引:1  
Clarke TF  Clark PL 《PloS one》2008,3(10):e3412
Most amino acids are encoded by more than one codon. These synonymous codons are not used with equal frequency: in every organism, some codons are used more commonly, while others are more rare. Though the encoded protein sequence is identical, selective pressures favor more common codons for enhanced translation speed and fidelity. However, rare codons persist, presumably due to neutral drift. Here, we determine whether other, unknown factors, beyond neutral drift, affect the selection and/or distribution of rare codons. We have developed a novel algorithm that evaluates the relative rareness of a nucleotide sequence used to produce a given protein sequence. We show that rare codons, rather than being randomly scattered across genes, often occur in large clusters. These clusters occur in numerous eukaryotic and prokaryotic genomes, and are not confined to unusual or rarely expressed genes: many highly expressed genes, including genes for ribosomal proteins, contain rare codon clusters. A rare codon cluster can impede ribosome translation of the rare codon sequence. These results indicate additional selective pressures govern the use of synonymous codons, and specifically that local pauses in translation can be beneficial for protein biogenesis.  相似文献   

17.
Veitia RA 《Genomics》2004,83(3):502-507
A compositional analysis of a sample of 50 zebrafish proteins containing at least one alanine run and of their open reading frames (ORFs) has been performed. The sample of poly(Ala) proteins showed a tendency to have runs of other amino acids (His/H, Gln/Q, Ser/S, Pro/P). Their ORFs and the first and second codon positions had higher GC contents than a reference gene set. The "universal" correlation between the GC content of the first+second and third codon positions (GC1+2 vs GC3) does not hold, but I provide an explanation in terms of genomic heterogeneity. Significant correlation between AHQS content and GC3 was obtained, reflecting codon bias favoring G/C at the third codon position of these amino acids. A correspondence analysis (COA) of relative synonymous codon usage showed that the poly(Ala) proteins have a biased distribution according to the second axis of the COA, which correlates with gene expression in zebrafish. A comparison with human is undertaken.  相似文献   

18.
Gu W  Zhou T  Ma J  Sun X  Lu Z 《Bio Systems》2004,73(2):89-97
The role of silent position in the codon on the protein structure is an interesting and yet unclear problem. In this paper, 563 Homo sapiens genes and 417 Escherichia coli genes coding for proteins with four different folding types have been analyzed using variance analysis, a multivariate analysis method newly used in codon usage analysis, to find the correlation between amino acid composition, synonymous codon, and protein structure in different organisms. It has been found that in E. coli, both amino acid compositions in differently folded proteins and synonymous codon usage in different gene classes coding for differently folded proteins are significantly different. It was also found that only amino acid composition is different in different protein classes in H. sapiens. There is no universal correlation between synonymous codon usage and protein structure in these two different organisms. Further analysis has shown that GC content on the second codon position can distinguish coding genes for different folded proteins in both organisms.  相似文献   

19.
BACKGROUND: The composition and sequence of amino acids in a protein may serve the underlying needs of the nucleic acids that encode the protein (the genome phenotype). In extreme form, amino acids become mere placeholders inserted between functional segments or domains, and--apart from increasing protein length--playing no role in the specific function or structure of a protein (the conventional phenotype). METHODS: We studied the genomes of two malarial parasites and 521 prokaryotes (144 complete) that differ widely in GC% and optimum growth temperature, comparing the base compositions of the protein coding regions and corresponding lengths (kilobases). RESULTS: Malarial parasites show distinctive responses to base-compositional pressures that increase as protein lengths increase. A low-GC% species (Plasmodium falciparum) is likely to have more placeholder amino acids than an intermediate-GC% species (P. vivax), so that homologous proteins are longer. In prokaryotes, GC% is generally greater and AG% is generally less in open reading frames (ORFs) encoding long proteins. The increased GC% in long ORFs increases as species' GC% increases, and decreases as species' AG% increases. In low- and intermediate-GC% prokaryotic species, increases in ORF GC% as encoded proteins increase in length are largely accounted for by the base compositions of first and second (amino acid-determining) codon positions. In high-GC% prokaryotic species, first and third (non-amino acid-determining) codon positions play this role. CONCLUSION: In low- and intermediate-GC% prokaryotes, placeholder amino acids are likely to be well defined, corresponding to codons enriched in G and/or C at first and second positions. In high-GC% prokaryotes, placeholder amino acids are likely to be less well defined. Increases in ORF GC% as encoded proteins increase in length are greater in mesophiles than in thermophiles, which are constrained from increasing protein lengths in response to base-composition pressures.  相似文献   

20.
In this study codon usage bias of all experimentally known genes of Lactococcus lactis has been analyzed. Since Lactococcus lactis is an AT rich organism, it is expected to occur A and/or T at the third position of codons and detailed analysis of overall codon usage data indicates that A and/or T ending codons are predominant in this organism. However, multivariate statistical analyses based both on codon count and on relative synonymous codon usage (RSCU) detect a large number of genes, which are supposed to be highly expressed are clustered at one end of the first major axis, while majority of the putatively lowly expressed genes are clustered at the other end of the first major axis. It was observed that in the highly expressed genes C and T ending codons are significantly higher than the lowly expressed genes and also it was observed that C ending codons are predominant in the duets of highly expressed genes, whereas the T endings codons are abundant in the quartets. Abundance of C and T ending codons in the highly expressed genes suggest that, besides, compositional biases, translational selection are also operating in shaping the codon usage variation among the genes in this organism as observed in other compositionally skewed organisms. The second major axis generated by correspondence analysis on simple codon counts differentiates the genes into two distinct groups according to their hydrophobicity values, but the same analysis computed with relative synonymous codon usage values could not discriminate the genes according to the hydropathy values. This suggests that amino acid composition exerts constraints on codon usage in this organism. On the other hand the second major axis produced by correspondence analysis on RSCU values differentiates the genes into two groups according to the synonymous codon usage for cysteine residues (rarest amino acids in this organism), which is nothing but a artifactual effect induced by the RSCU values. Other factors such as length of the genes and the positions of the genes in the leading and lagging strand of replication have practically no influence in the codon usage variation among the genes in this organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号