首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined the nucleotide sequence of a DNA fragment which contains the replication region of pMSC262, a Mycobacterium scrofulaceum plasmid used to construct the Mycobacterium-Escherichia coli shuttle vector. The complete sequence of the fragment contained 2,504 bp with an overall G+C content of 69.8%. By deletion analysis, we found that the minimum length required for plasmid replication in M. bovis BCG was about 1.6 kb. Within this region, several open reading frames (ORFs) and a putative replication origin (ori) were identified by computer analysis. One of the ORFs, ORF2, which encodes a putative 28.9-kDa basic protein with characteristics of DNA-binding proteins, appeared to be involved in replication of the plasmid in BCG. By separation of ORF2 and the putative ori region, it was revealed that the relative locations of ORF2 and the putative ori region are likely important for replication in BCG. No DNA or amino acid homologies were found between this replication region and that of pAL5000, another mycobacterial plasmid used for vector plasmid construction. In addition, we found that this replicon did not lead to replication in E. coli and was compatible in BCG with pAL5000-derived vector plasmid pYUB75 (R. G. Barletta, D. D. Kim, S. B. Snapper, B. R. Bloom, and W. R. Jacobs, J., J. Gen. Microbiol. 138:23-30, 1992).  相似文献   

2.
Abstract The most widely used plasmid vector system in mycobacteria is based on pAL5000 from Mycobacterium fortuitum . The derivatives of the pAL5000-based shuttle vectors between Escherichia coli and mycobacteria, which we have utilized to secrete recombinant antigens, were generated. The stability of the vectors was assessed in Mycobacterium bovis BCG (BCG). The plasmid vector pSO246 was stable in BCG for at least 50 generations.  相似文献   

3.
A simple and efficient delivery system was developed for making targeted gene knockouts in Mycobacterium smegmatis. This delivery system relies on the use of a pair of replicating plasmids, which are incompatible. Incompatible plasmids share elements of the same replication machinery and so compete with each other during both replication and partitioning into daughter cells. Such plasmids can be maintained together in the presence of antibiotics; however, removal of selection leads to the loss of one or both plasmids. For mutagenesis, two replicating plasmids based on pAL5000 are introduced; one of these plasmids carries a mutated allele of the targeted gene. Homologous recombination is allowed to take place, and either one or both of the vectors are lost through the pressure of incompatibility, allowing the phenotypic effects of the mutant to be studied. Several different plasmid combinations were tested to optimize loss in the absence of antibiotic selection. pAL5000 carries two replication genes (repA and repB), which act in trans, and the use of vectors that each lack one rep gene and complement each other resulted in the loss of both plasmids in M. smegmatis and Mycobacterium bovis BCG. The rate of loss was increased by the incorporation of an additional incompatibility region in one of the plasmids. To facilitate cloning when the system was used, we constructed plasmid vector pairs that allow simple addition of selection and screening genes on flexible gene cassettes. Using this system, we demonstrated that M. smegmatis pyrF mutants could be isolated at high frequency. This method should also be useful in other species in which pAL5000 replicates, including Mycobacterium tuberculosis.  相似文献   

4.
The Mycobacterium-Escherichia coli shuttle vector system, equipped with the pAL5000 replicon, is widely used for heterologous gene expression and gene delivery in mycobacteria. Despite its extensive use, this system has certain limitations, which has led to the development of alternative mycobacterial vector systems. The present study describes the molecular structure and expression profiles of a novel 18-kb linear plasmid, pMyong2, from Mycobacterium yongonense. Sixteen open reading frames and a putative origin of replication were identified, and the compatibility of the pMyong2 and pAL5000 vector systems was demonstrated. In recombinant Mycobacterium smegmatis (rSmeg), the pMyong2 vector system showed a copy number that was approximately 37 times greater than that of pAL5000. Furthermore, pMyong2 increased the mRNA and protein expression of the human macrophage migration inhibitory factor (hMIF) over pAL5000 levels by approximately 10-fold and 50-fold, respectively, demonstrating the potential utility of the pMyong2 vector system in heterologous gene expression in mycobacteria. Successful delivery of the EGFP gene into mammalian cells via rSmeg carrying the pMyong2 vector system was also observed, demonstrating the feasibility of this system for DNA delivery. In conclusion, the pMyong2 vector system could be effectively used not only for the in vivo delivery of recombinant protein and DNA but also for mycobacterial genetic studies as an alternative or a complement to the pAL5000 vector system.  相似文献   

5.
Adenovirus (Ad) vectors for gene therapy are made replication defective by deletion of E1 region genes. For isolation, propagation, and large-scale production of such vectors, E1 functions are supplied in trans from a stable cell line. Virtually all Ad vectors used for clinical studies are produced in the 293 cell, a human embryonic kidney cell line expressing E1 functions from an integrated segment of the left end of the Ad type 5 (Ad5) genome. Replication-competent vector variants that have regained E1 sequences have been observed within populations of Ad vectors grown on 293 cells. These replication-competent variants presumably result from recombination between vector and 293 cell Ad5 sequences. We have developed Ad2-based vectors and have characterized at the molecular level examples of replication-competent variants. All such variants analyzed are Ad2-Ad5 chimeras in which the 293 cell Ad5 E1 sequences have become incorporated into the viral genome by legitimate recombination events. A map of Ad5 sequences within the 293 cell genome developed in parallel is consistent with the proposed recombination events. To provide a convenient vector production system that circumvents the generation of replication-competent variants, we have modified the Ad2 vector backbone by deleting or rearranging the protein IX coding region normally present downstream from the E1 region such that the frequency of recombination between vector and 293 cell Ad5 sequences is greatly reduced. Twelve serial passages of an Ad2 vector lacking the protein IX gene were carried out without generating replication-competent variants. In the course of producing and testing more than 30 large-scale preparations of vectors lacking the protein IX gene or having a rearranged protein IX gene, only three examples of replication-competent variants were observed. Use of these genome modifications allows use of conventional 293 cells for production of large-scale preparations of Ad-based vectors lacking replication-competent variants.  相似文献   

6.
Gene Replacement in Mycobacteria by Using Incompatible Plasmids   总被引:2,自引:0,他引:2       下载免费PDF全文
A simple and efficient delivery system was developed for making targeted gene knockouts in Mycobacterium smegmatis. This delivery system relies on the use of a pair of replicating plasmids, which are incompatible. Incompatible plasmids share elements of the same replication machinery and so compete with each other during both replication and partitioning into daughter cells. Such plasmids can be maintained together in the presence of antibiotics; however, removal of selection leads to the loss of one or both plasmids. For mutagenesis, two replicating plasmids based on pAL5000 are introduced; one of these plasmids carries a mutated allele of the targeted gene. Homologous recombination is allowed to take place, and either one or both of the vectors are lost through the pressure of incompatibility, allowing the phenotypic effects of the mutant to be studied. Several different plasmid combinations were tested to optimize loss in the absence of antibiotic selection. pAL5000 carries two replication genes (repA and repB), which act in trans, and the use of vectors that each lack one rep gene and complement each other resulted in the loss of both plasmids in M. smegmatis and Mycobacterium bovis BCG. The rate of loss was increased by the incorporation of an additional incompatibility region in one of the plasmids. To facilitate cloning when the system was used, we constructed plasmid vector pairs that allow simple addition of selection and screening genes on flexible gene cassettes. Using this system, we demonstrated that M. smegmatis pyrF mutants could be isolated at high frequency. This method should also be useful in other species in which pAL5000 replicates, including Mycobacterium tuberculosis.  相似文献   

7.
Bacille Calmette-Guèrin (BCG), a live attenuated tubercle bacillus, is currently the most widely used vaccine in the world. Because of its unique characteristics, including low toxicity, adjuvant potential, and long-lasting immunity, BCG represents a novel vaccine vehicle with which to deliver protective antigens of multiple pathogens. We have developed episomal and integrative expression vectors employing regulatory sequences of major BCG heat shock proteins for stable maintenance and expression of foreign antigens in BCG vaccine strains (22). Shuttle plasmids capable of autonomous replication in Escherichia coli and BCG were constructed with a DNA cassette containing a minimal replicon derived from the Mycobacterium fortuitum plasmid pAL5000. Efficient and stable chromosomal integration of recombinant plasmids into BCG was achieved using a DNA segment containing the mycobacteriophage L5 attachment site and integrase coding sequence. Using the BCG hsp60 and hsp70 stress gene promoters, we were able to express Escherchia coli beta-galactosidase to levels in excess of 10% of total cell protein. The major antigens of HIV-1 gag, pol, and env were also stably expressed using our vector systems. The recombinant BCG elicited long-lasting humoral and cellular immune responses to these antigens in mice. Antibody responses to beta-galactosidase using as few as 200 colony-forming units were detected 6 weeks after immunization, and titers (1:30,000) were sustained for more than 10 weeks. Cellular immune responses, of both cytotoxic T cell (CTL) and helper T lymphocytes, were detected to beta-galactosidase. CTL responses were also induced to the HIV-1 envelope protein. Thus, we have demonstrated stable recombinant antigen expression, processing, and presentation using our recombinant BCG vector system. This live recombinant vector system shows promise as a universally applicable and safe vaccine vehicle for protection against various infectious diseases.  相似文献   

8.
Plasmid pAL5000 from Mycobacterium fortuitum encodes two proteins necessary for replication: RepA (307 amino acid residues) and RepB (119 residues). A single RNA species encoding these proteins was characterized, and its 5' end was defined. The proteins were expressed as maltose-binding protein fusions in Escherichia coli. The RepB protein was shown in vitro to bind specifically to a previously defined 435-bp region of pAL5000 containing the origin of replication (ori). The precise RepB binding sites were defined by DNase I footprinting experiments. RepB binds to two motifs in the ori region: a high-affinity site within its own promoter region, implying autoregulation of its expression, and a low-affinity site further upstream, presumably the origin of replication itself. The binding to the latter motif seems to occur on one DNA strand only. The high-affinity binding site contains several palindromic sequences. Gel retardation assays were performed with the different binding sites as templates, and the binding constant to each site was estimated from protein titrations. This is the first molecular dissection of mycobacterial DNA-binding proteins and their interactions with their targets.  相似文献   

9.
10.
We have determined the complete nucleotide sequence of pAL5000, a plasmid from Mycobacterium fortuitum; the plasmid contains 4837 bp with 65% G + C. Five open reading frames (ORF1 to ORF5) have been identified. A number of sequences corresponding to palindromes, repeats, a helix-turn-helix motif, a signal sequence and repetitive amino acid motifs can be identified. This sequence should facilitate the construction of vectors based on pAL5000 for transfer and expression studies in mycobacteria.  相似文献   

11.
The improvements to adenovirus necessary for an optimal gene transfer vector include the removal of virus gene expression in transduced cells, increased transgene capacity, complete replication incompetence, and elimination of replication-competent virus that can be produced during the growth of first-generation adenovirus vectors. To achieve these aims, we have developed a vector-cell line system for complete functional complementation of both adenovirus early region 1 (E1) and E4. A library of cell lines that efficiently complement both E1 and E4 was constructed by transforming 293 cells with an inducible E4-ORF6 expression cassette. These 293-ORF6 cell lines were used to construct and propagate viruses with E1 and E4 deleted. While the construction and propagation of AdRSV beta gal.11 (an E1-/E4- vector engineered to contain a deletion of the entire E4 coding region) were possible in 293-ORF6 cells, the yield of purified virus was depressed approximately 30-fold compared with that of E1- vectors. The debilitation in AdRSV beta gal.11 vector growth was found to correlate with reduced fiber protein and mRNA accumulation. AdCFTR.11A, a modified E1-/E4- vector with a spacer sequence placed between late region 5 and the right inverted terminal repeat, efficiently expressed fiber and grew with the same kinetic profile and virus yield as did E1- vectors. Moreover, purified AdCFTR.11A yields were equivalent to E1- vector levels. Since no overlapping sequences exist in the E4 regions of E1-/E4- vectors and 293-ORF6 cell lines, replication-competent virus cannot be generated by homologous recombination. In addition, these second-generation E1-/E4- vectors have increased transgene capacity and have been rendered virus replication incompetent outside of the new complementing cell lines.  相似文献   

12.
13.
DNA fragments derived from the left end of Herpesvirus saimiri 11 L-DNA were cloned in Escherichia coli by using vector pBR322. Deletions were introduced within a cloned 7.4-kilobase-pair sequence by using restriction endonucleases that cut once or twice within this sequence. Permissive owl monkey kidney-cultured cells were transfected with parental strain 11 viral DNA plus cloned DNA with specific sequences deleted. By screening the progeny of these transfections with a limiting-dilution spot hybridization assay, we isolated recombinant viruses containing deletions in this region. A contiguous 4.5-kilobase-pair sequence representing 4.1% of the coding capacity of the virus was found to be unnecessary for virus replication in cultured cells. These deletion mutants will allow us to test whether sequences in this region are required for the lymphoma-inducing capacity of H. saimiri. These same procedures should also allow us to introduce foreign DNA sequences into this region for studying their expression.  相似文献   

14.
The minimal replication region of the mycobacterial plasmid pAL5000 encompasses the replication origin (ori) and two tandemly organized replication genes, repA and repB, the functions of which are not clearly known. It was observed that when the repA and repB genes were expressed in Escherichia coli, a strong ori binding activity was generated in the host cells. Inactivation of repB led to a complete loss of activity, whereas inactivation of repA had a partial effect, indicating that while repB plays an important role in the process, its activity is stimulated through coexpression of repA. However, this stimulatory effect could be demonstrated only when expression of repA and that of repB were coupled. At a relatively high concentration (1,000 nM), the purified RepB protein was found to form an ori complex with low specificity, which was sensitive to high salt concentrations and challenge by a nonspecific competitor. In contrast, the complex formed by an extract of repA-repB-expressing cells was highly specific and was resistant to both types of challenges. At a 10-fold-lower concentration, RepB did not exhibit ori binding activity, but it could nevertheless form a salt-resistant ori complex in vitro, provided that host factors were present. Antibody supershift experiments indicated that RepB is a key component of the specific complex formed by extracts prepared from E. coli cells expressing the repA and repB genes and also from mycobacterial cells harboring pAL5000-derived vectors. The results indicate that in vivo RepB interacts with host factors and forms an ori complex, but this activity is maximal only when there is coupled expression of repA.  相似文献   

15.
Recent development of vectors and methodologies to introduce recombinant DNA into members of the genus Mycobacterium has provided new approaches for investigating these important bacteria. While most pathogenic mycobacteria are slow-growing, Mycobacterium smegmatis is a fast-growing, non-pathogenic species that has been used for many years as a host for mycobacteriophage propagation and, recently, as a host for the introduction of recombinant DNA. Its use as a cloning host for the analysis of mycobacterial genes has been limited by its inability to be efficiently transformed with plasmid vectors. This work describes the isolation and characterization of mutants of M. smegmatis that can be transformed, using electroporation, at efficiencies 10(4) to 10(5) times greater than those of the parent strain, yielding more than 10(5) transformants per microgram of plasmid DNA. The mutations conferring this efficient plasmid transformation (Ept) phenotype do not affect phage transfection or the integration of DNA into the M. smegmatis chromosome, but seem to be specific for plasmid transformation. Such Ept mutants have been used to characterize plasmid DNA sequences essential for replication of the Mycobacterium fortuitum plasmid pAL5000 in mycobacteria by permitting the transformation of a library of hybrid plasmid constructs. Efficient plasmid transformation of M. smegmatis will facilitate the analysis of mycobacterial gene function, expression and replication and thus aid in the development of BCG as a multivalent recombinant vaccine vector and in the genetic analysis of the virulence determinants of pathogenic mycobacteria.  相似文献   

16.
17.
The nucleotide sequence of the linear catabolic plasmid pAL1 from the 2-methylquinoline (quinaldine)-degrading strain Arthrobacter nitroguajacolicus Rü61a comprises 112,992 bp. A total of 103 open reading frames (ORFs) were identified on pAL1, 49 of which had no annotatable function. The ORFs were assigned to the following functional groups: (i) catabolism of quinaldine and anthranilate, (ii) conjugation, and (iii) plasmid maintenance and DNA replication and repair. The genes for conversion of quinaldine to anthranilate are organized in two operons that include ORFs presumed to code for proteins involved in assembly of the quinaldine-4-oxidase holoenzyme, namely, a MobA-like putative molybdopterin cytosine dinucleotide synthase and an XdhC-like protein that could be required for insertion of the molybdenum cofactor. Genes possibly coding for enzymes involved in anthranilate degradation via 2-aminobenzoyl coenzyme A form another operon. These operons were expressed when cells were grown on quinaldine or on aromatic compounds downstream in the catabolic pathway. Single-stranded 3' overhangs of putative replication intermediates of pAL1 were predicted to form elaborate secondary structures due to palindromic and superpalindromic terminal sequences; however, the two telomeres appear to form different structures. Sequence analysis of ORFs 101 to 103 suggested that pAL1 codes for one or two putative terminal proteins, presumed to be covalently bound to the 5' termini, and a multidomain telomere-associated protein (Tap) comprising 1,707 amino acids. Even if the putative proteins encoded by ORFs 101 to 103 share motifs with the Tap and terminal proteins involved in telomere patching of Streptomyces linear replicons, their overall sequences and domain structures differ significantly.  相似文献   

18.
Previous work has shown that picornavirus 5' nontranslated regions (NTRs) can initiate internal translation of downstream coding regions both in vitro and in transient in vivo assays. We have used 5' NTR sequences from encephalomyocarditis virus and poliovirus to construct retroviral vectors that are designed to express two proteins from a single mRNA. Inclusion of 5' NTR sequences did not adversely affect vector titer. Protein expression was studied with stable cell lines generated by vector infection of mouse NIH 3T3 cells and human and canine skin fibroblasts. Expression of a coding region in the downstream position was at levels from 25 to 100% of the same coding region in the upstream position. Expression of downstream coding regions in control vectors that did not contain the 5' NTR sequences was very low, in agreement with the predictions of the scanning model for eukaryotic translation. These experiments demonstrate coordinate expression of two coding regions from a single mRNA in stable cell lines and provide further support for the model of internal translation initiation by sequences in the 5' NTRs of picornaviruses.  相似文献   

19.
Plasmid pAL5000 represents a family of relatively newly discovered cryptic plasmids in gram-positive Actinomycetes bacteria. The replication regions of these plasmids comprise a bicistronic operon, repA-repB, encoding two replication proteins. Located upstream is a cis-acting element that functions as the origin of replication. It comprises an ~200-bp segment spanning two binding sites for the replication protein RepB, a low-affinity (L) site and a high-affinity (H) site separated by an ~40-bp spacer sequence. The trajectory of the DNA in the RepB-origin complex has been investigated, and it has been found that the origin undergoes significant bending movements upon RepB binding. RepB binding not only led to local bending effects but also caused a long-range polar curvature which affected the DNA sequences 3′ to the H site. These movements appear to be essential for the in-phase alignment of the L and H sites that leads to the formation of a looped structure. A novel property of RepB unearthed in this study is its ability to form multimers. This property may be an important factor that determines the overall trajectory of the DNA in the RepB-origin complex. The results presented in this study suggest that the origins of replication of pAL5000 and related plasmids are highly flexible and that multimeric, RepB-like initiator proteins bind the origin and induce local deformations and long-range curvatures which are probably necessary for the proper functioning of the origin.  相似文献   

20.
Helper-dependent minimal adenovirus vectors are promising tools for gene transfer and therapy because of their high capacity and the absence of immunostimulatory or cytotoxic viral genes. In order to characterize this new vector system with respect to its integrative properties, the integration pattern of a minimal adenovirus vector with a neo(r) gene inserted centrally into a noncoding 27.4-kb genomic stuffer element derived from the human X chromosome after infection of a sex chromosome aneuploid (X0) human glioblastoma cell line was studied. Our results indicate that even extensive homologies and abundant chromosomal repeat elements present in the vector did not lead to integration of the vector via homologous or homology-mediated mechanisms. Instead, integration occurred primarily by insertion of a monomer with no or little loss of sequences at the vector ends, apparently at random sites, which is very similar to E1 deletion adenovirus vectors. It is therefore unlikely that the incorporation of stuffer elements derived from human genomic DNA, which were shown to allow long-term transgene expression in vivo in a number of studies, leads to an enhanced risk of insertional mutagenesis. Furthermore, our findings indicate that the potential of minimal adenovirus vectors as tools for targeted insertion and gene targeting is limited despite the possibility of incorporating long stretches of homologous sequences. However, we found an enhanced efficiency of stable neo(r) transduction of the minimal adenovirus vector compared to an E1 deletion adenovirus vector, possibly caused by the absence of potential growth-inhibitory viral genes. Complete integration of the vector and tolerance of the integrated vector sequences by the cell might indicate a potential use of these vectors as tools for stable transfer of (large) genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号