首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jeffers CE  Tu SC 《Biochemistry》2001,40(6):1749-1754
It is believed that the reduced FMN substrate required by luciferase from luminous bacteria is provided in vivo by NAD(P)H-FMN oxidoreductases (flavin reductases). Our earlier kinetic study indicates a direct flavin cofactor transfer from Vibrio harveyi NADPH-preferring flavin reductase P (FRP(H)) to the luciferase (L(H)) from the same bacterium in the in vitro coupled luminescence reaction. Kinetic studies were carried out in this work to characterize coupled luminescence reactions using FRP(H) and the Vibrio fischeri NAD(P)H-utilizing flavin reductase G (FRG(F)) in combination with L(H) or luciferase from V. fischeri (L(F)). Comparisons of K(m) values of reductases for flavin and pyridine nucleotide substrates in single-enzyme and luciferase-coupled assays indicate a direct transfer of reduced flavin, in contrast to free diffusion, from reductase to luciferase by all enzyme couples tested. Kinetic mechanisms were determined for the FRG(F)-L(F) and FRP(H)-L(F) coupled reactions. For these two and the FRG(F)-L(H) coupled reactions, patterns of FMN inhibition and effects of replacement of the FMN cofactor of FRP(H) and FRG(F) by 2-thioFMN were also characterized. Similar to the FRP(H)-L(H) couple, direct cofactor transfer was detected for FRG(F)-L(F) and FRP(H)-L(F). In contrast, despite the structural similarities between FRG(F) and FRP(H) and between L(F) and L(H), direct flavin product transfer was observed for the FRG(F)-L(H) couple. The mechanism of reduced flavin transfer appears to be delicately controlled by both flavin reductase and luciferase in the couple rather than unilaterally by either enzyme species.  相似文献   

2.
Bioluminescence of the insect pathogen Xenorhabdus luminescens.   总被引:8,自引:1,他引:7       下载免费PDF全文
Luminescence of batch cultures of Xenorhabdus luminescens was maximal when cultures approached stationary phase; the onset of in vivo luminescence coincided with a burst of synthesis of bacterial luciferase, the enzyme responsible for luminescence. Expression of luciferase was aldehyde limited at all stages of growth, although more so during the preinduction phase. Luciferase was purified from cultures of X. luminescens Hm to a specific activity of 4.6 x 10(13) guanta/s per mg of protein and found to be similar to other bacterial luciferases. The Xenorhabdus luciferase consisted of two subunits with approximate molecular masses of 39 and 42 kilodaltons. A third protein with a molecular mass of 24 kilodaltons copurified with luciferase, and in its presence, either NADH or NADPH was effective in stimulating luminescence, indicating that this protein is an NAD(P)H oxidoreductase. Luciferases from two other luminous bacteria, Vibrio harveyii (B392) and Vibrio cholerae (L85), were partially purified, and their subunits were separated in 5 M urea and tested for complementation with the subunits prepared from X. luminescens Hb. Positive complementation was seen with luciferase subunits among all three species. The slow decay kinetics of the Xenorhabdus luciferase were attributed to the alpha subunit.  相似文献   

3.
Summary Three different NAD(P)H-FMN reductases were extracted from Beneckea harveyi MB-20 cells and separated by DEAE-Sephadex A50 column chromatography. Further purification was achieved by affinity chromatography. In determinations of Km values for NADH, NADPH, and FMN, these three reductases exhibited different specificities and kinetic parameters. One reductase utilizes NADH, whereas a second one utilizes NADPH as the preferred substrate. The third, a newly described reductase species, exhibits about the same reaction rates with NADH and NADPH. The reaction mechanisms of the three enzyme forms have been deduced by steady state kinetic analysis. The highly pure (based on gel electrophoresis) NADPH-FMN reductase still exhibited a low (approximately 2%) activity for NADH, which activity was increased upon storage at 4° but suppressed completely by the replacement of the phosphate buffer with sodium citrate buffer. This high specificity of NADPH-FMN reductase for NADPH under these conditions is useful for the assay of NADPH, notably in systems coupled to bacterial luciferase.  相似文献   

4.
Bioluminescence of the insect pathogen Xenorhabdus luminescens   总被引:2,自引:0,他引:2  
Luminescence of batch cultures of Xenorhabdus luminescens was maximal when cultures approached stationary phase; the onset of in vivo luminescence coincided with a burst of synthesis of bacterial luciferase, the enzyme responsible for luminescence. Expression of luciferase was aldehyde limited at all stages of growth, although more so during the preinduction phase. Luciferase was purified from cultures of X. luminescens Hm to a specific activity of 4.6 x 10(13) guanta/s per mg of protein and found to be similar to other bacterial luciferases. The Xenorhabdus luciferase consisted of two subunits with approximate molecular masses of 39 and 42 kilodaltons. A third protein with a molecular mass of 24 kilodaltons copurified with luciferase, and in its presence, either NADH or NADPH was effective in stimulating luminescence, indicating that this protein is an NAD(P)H oxidoreductase. Luciferases from two other luminous bacteria, Vibrio harveyii (B392) and Vibrio cholerae (L85), were partially purified, and their subunits were separated in 5 M urea and tested for complementation with the subunits prepared from X. luminescens Hb. Positive complementation was seen with luciferase subunits among all three species. The slow decay kinetics of the Xenorhabdus luciferase were attributed to the alpha subunit.  相似文献   

5.
NAD(P)H: FMN oxidoreductase (flavin reductase) couples in vitro to bacterial luciferase. This reductase, which is also postulated to supply reduced flavin mononucleotide in vivo as a substrate for the bioluminescent reaction, has been partially purified and characterized from two species of luminous bacterial. From Photobacterium fischeri the enzyme has a M. W. determined by Sephadex gel filtration, of 43,000 and may have a subunit structure. The turnover number at 20 degrees C, based on a purity estimate of 20 percent, is 1.7 times 10-4 moles of NADH oxidized per min per mole of reductase. The reductase isolated from Beneckea harveyi has an apparent molecular weight of 23,000; its purity was too low to permit estimation of specific activity. Using a spectrophotometric assay at 340 nm with the P. fischeri reductase, both NADH (Km, 8 times 10-5 M) and NADPH (Km, 4 times 10-4 M) were enzymatically oxidized, the Vmax with NADH being approximately twice that of NADPH. Of the flavins tested in this assay, only FMN (Km, 7.3 times 10-5 M) and FAD (Km, 1.4 times 10-4 M) were effective, FMN having a Vmax three times that of FAD. In the coupled assay, i.e., measuring the bioluminescence intensity of the reaction with added luciferase, the optimum FMN concentration was nearly 100 times less than in the spectrophotometric assay. The studies reported suggest the existence of a functional reductase-luciferase complex.  相似文献   

6.
Bacterial bioluminescence is very sensitive to cerulenin, a fungal antibiotic which is known to inhibit fatty acid synthesis. When Vibrio harveyi cells pretreated with cerulenin were incubated with [3H]myristic acid in vivo, acylation of the 57-kilodalton reductase subunit of the luminescence-specific fatty acid reductase complex was specifically inhibited. In contrast, in vitro acylation of both the synthetase and transferase subunits, as well as the activities of luciferase, transferase, and aldehyde dehydrogenase, were not adversely affected by cerulenin. Light emission of wild-type V. harveyi was 20-fold less sensitive to cerulenin at low concentrations (10 micrograms/ml) than that of the dark mutant strain M17, which requires exogenous myristic acid for luminescence because of a defective transferase subunit. The sensitivity of myristic acid-stimulated luminescence in the mutant strain M17 exceeded that of phospholipid synthesis from [14C]acetate, whereas uptake and incorporation of exogenous [14C]myristic acid into phospholipids was increased by cerulenin. The reductase subunit could be labeled by incubating M17 cells with [3H]tetrahydrocerulenin; this labeling was prevented by preincubation with either unlabeled cerulenin or myristic acid. Labeling of the reductase subunit with [3H]tetrahydrocerulenin was also noted in an aldehyde-stimulated mutant (A16) but not in wild-type cells or in another aldehyde-stimulated mutant (M42) in which [3H]myristoyl turnover at the reductase subunit was found to be defective. These results indicate that (i) cerulenin specifically and covalently inhibits the reductase component of aldehyde synthesis, (ii) this enzyme is partially protected from cerulenin inhibition in the wild-type strain in vivo, and (iii) two dark mutants which exhibit similar luminescence phenotypes (mutants A16 and M42) are blocked at different stages of fatty acid reduction.  相似文献   

7.
In vitro complementation of the soluble assimilatory NAD(P)H-nitrate reductase (NAD(P)H:nitrate oxidoreductase, EC 1.6.6.2) was attained by mixing cell-free preparations of Chlamydomonas reinhardii mutant 104, uniquely possessing nitrate-inducible NAD(P)H-cytochrome c reductase, and mutant 305 which possesses solely the nitrate-inducible FMNH2- and reduced benzyl viologen-nitrate reductase activities. Full activity and integrity of NAD(P)H-cytochrome c reductase from mutant 104 and reduced benzyl viologen-nitrate reductase from mutant 305 are needed for the complementation to take place. A constitutive and heat-labile molybdenum-containing cofactor, that reconstitutes the NAD(P)H-nitrate reductase activity of nit-1 Neurospora crassa but is incapable of complementing with 104 from C. reinhardii, is present in the wild type and 305 algal strains. The complemented NAD(P)H-nitrate reductase has been purified 100-fold and was found to be similar to the wild enzyme in sucrose density sedimentation, molecular size, pH optimum, kinetic parameters, substrate affinity and sensitivity to inhibitors and temperature. From previous data and data presented in this article on 104 and 305 mutant activities, it is concluded that C. reinhardii NAD(P)H-nitrate reductase is a heteromultimeric complex consisting of, at least, two types of subunits separately responsible for the NAD(P)H-cytochrome c reductase and the reduced benzyl viologen-nitrate reductase activities.  相似文献   

8.
Dinitrogenase reductase is posttranslationally regulated by dinitrogenase reductase ADP-ribosyltransferase (DRAT) via ADP-ribosylation of the arginine 101 residue in some bacteria. Rhodospirillum rubrum strains in which the arginine 101 of dinitrogenase reductase was replaced by tyrosine, phenylalanine, or leucine were constructed by site-directed mutagenesis of the nifH gene. The strain containing the R101F form of dinitrogenase reductase retains 91%, the strain containing the R101Y form retains 72%, and the strain containing the R101L form retains only 28% of in vivo nitrogenase activity of the strain containing the dinitrogenase reductase with arginine at position 101. In vivo acetylene reduction assays, immunoblotting with anti-dinitrogenase reductase antibody, and [adenylate-(32)P]NAD labeling experiments showed that no switch-off of nitrogenase activity occurred in any of the three mutants and no ADP-ribosylation of altered dinitrogenase reductases occurred either in vivo or in vitro. Altered dinitrogenase reductases from strains UR629 (R101Y) and UR630 (R101F) were purified to homogeneity. The R101F and R101Y forms of dinitrogenase reductase were able to form a complex with DRAT that could be chemically cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. The R101F form of dinitrogenase reductase and DRAT together were not able to cleave NAD. This suggests that arginine 101 is not critical for the binding of DRAT to dinitrogenase reductase but that the availability of arginine 101 is important for NAD cleavage. Both DRAT and dinitrogenase reductase can be labeled by [carbonyl-(14)C]NAD individually upon UV irradiation, but most (14)C label is incorporated into DRAT when both proteins are present. The ability of R101F dinitrogenase reductase to be labeled by [carbonyl-(14)C]NAD suggested that Arg 101 is not absolutely required for NAD binding.  相似文献   

9.
Bacterial bioluminescence, catalyzed by FMN:NAD(P)H oxidoreductase and luciferase, has been used as an analytical tool for quantitating the substrates of NAD(P)H-dependent enzymes. The development of inexpensive and sensitive biosensors based on bacterial bioluminescence would benefit from a method to immobilize the oxidoreductase and luciferase with high specific activity. Toward this end, oxidoreductase and luciferase were fused with a segment of biotin carboxy carrier protein and produced in Escherichia coli. The in vivo biotinylated luciferase and oxidoreductase were immobilized on avidin-conjugated agarose beads with little loss of activity. Coimmobilized enzymes had eight times higher bioluminescence activity than the free enzymes at low enzyme concentration and high NADH concentration. In addition, the immobilized enzymes were more stable than the free enzymes. This immobilization method is also useful to control enzyme orientation, which could increase the efficiency of sequentially operating enzymes like the oxidoreductase-luciferase system.  相似文献   

10.
An analytical multienzyme system composed of NAD-dependent hydrogenase of Alcaligenes eutrophus, and reductase and luciferase from luminous bacteria was studied. The rate of luminescence increase of this system was found to be proportional to hydrogenase activity. The apparent Michaelis constants for NAD and hydrogen were determined (5 and 40 microM, respectively). The pH optimum is 7.5-9.0. Over the NAD concentration range from 20 to 100 microM, the rate of luminescence increase changed by less than 10%. At higher concentrations of NAD a monotonous decreasing of the rate of luminescence increase was observed. The proposed multienzyme system can be used for measuring the hydrogenase activity and hydrogen concentration. The high sensitivity to hydrogen (0.1 nmol in sample) and to hydrogenase (0.5 mU) and specificity of the system enable its application in the development of a biosensor for rapid detection of hydrogen in a medium.  相似文献   

11.
Chemical mutagens were used to obtain mutants deficient in bioluminescence in the marine bacterium Photobacterium fischeri strain MAV. Acridine dyes were effective in the production of dark mutants but not in the production of auxotrophs. These dark mutants were all of one type and appeared to contain lesions blocking the synthesis of luciferase. ICR-191 was especially effective in the production of aldehyde mutants, i.e., dark strains that luminesce when a long-chain aldehyde such as n-decanal is added to them. However, other mutant types were isolated after treatment with ICR-191. N-methyl-N'-nitro-N-nitrosoguanidine induced many bioluminescence-deficient types with respect to both the site of the lesion and the quantitative effect on the luminescent system. We characterized the dark and dim mutants with respect to their response to exogenous decanal, levels of in vivo and in vitro luminescence, and their rates of reversion to wild type. In addition, the luciferases of the mutant strains were examined by subunit complementation. On the basis of these analyses, we identified mutants which synthesize altered luciferase, strains which are deficient in synthesis of luciferase, and aldehyde mutants. The results of analysis of luciferase from the aldehyde mutants and the complementation studies indicate that the lesions in these strains are in the luciferase itself. Results obtained with wild-type cells grown in minimal medium, and aldehyde mutant cells grown either in complete or minimal medium, indicate that a "natural aldehyde factor" is involved in in vivo light emission. These same studies showed that the long-chain aldehyde(s) could only partially substitute for the natural "aldehyde factor." The possibility that the in vivo aldehyde factor is not a long-chain aldehyde is discussed.  相似文献   

12.
A singular mutant strain from Chlamydomohas reinhardii defective in nitrate reductase has been characterized. Mutant 301 possesses an ammonia-repressible NAD(P)H-cytochrome c reductase with the same charge and size properties as the low molecular weight ammonia-repressible diaphorase present in the wild-type strain 6145c and is also able to reconstitute NAD(P)H-nitrate reductase activity by in vitro complementation with reduced benzyl viologen-nitrate reductase from mutant 305. Furthermore, a heat-labile costitutive molybdenum cofactor which is fuctionally active is also present in mutant 301. Mutant 301 has the two requirements exhibited by the active nitrate reductase complex from fungi, namely, NAD(P)H-cytochrome c reductase activity and molybdenum cofactor, but lacks NAD(P)H-nitrate reductase activity. This fact together with biochemical data presented from other C. reinhardii mutants strongly suggest a heteropolymeric model for the nitrate reductase complex of the alga.  相似文献   

13.
In vitro complementation of the soluble assimilatory NAD(P)H-nitrate reductase (NAD(P)H:nitrate oxidoreductase, EC 1.6.6.2) was attained by mixing cell-free preparations of Chlamydomonas reinhardii mutant 104, uniquely possessing nitrate-inducible NAD(P)H-cytochrome c reductase, and mutant 305 which possesses solely the nitrate-inducible FMNH2- and reduced benzyl viologen-nitrate reductase activities.Full activity and integrity of NAD(P)H-cytochrome c reductase from mutant 104 and reduced benzyl viologen-nitrate reductase from mutant 305 are needed for the complementation to take place.A constitutive and heat-labile molybdenum-containing cofactor, that reconstitutes the NAD(P)H-nitrate reductase activity of nit-1 Neurospora crassa but is incapable of complementing with 104 from C. reinhardii, is present in the wild type and 305 algal strains.The complemented NAD(P)H-nitrate reductase has been purified 100-fold and was found to be similar to the wild enzyme in sucrose density sedimentation, molecular size, pH optimum, kinetic parameters, substrate affinity and sensitivity to inhibitors and temperature.From previous data and data presented in this article on 104 and 305 mutant activities, it is concluded that C. reinhardii NAD(P)H-nitrate reductase is a heteromultimeric complex consisting of, at least, two types of subunits separately responsible for the NAD(P)H-cytochrome c reductase and the reduced benzyl viologen-nitrate reductase activities.  相似文献   

14.
Summary NADH-specific and NAD(P)H bispecific nitrate reductases are present in barley (Hordeum vulgare L.). Wild-type leaves have only the NADH-specific enzyme while mutants with defects in the NADH nitrate reductase structural gene (nar1) have the NAD(P)H bispecific enzyme. A mutant deficient in the NAD(P)H nitrate reductase was isolated in a line (nar1a) deficient in the NADH nitrate reductase structural gene. The double mutant (nar1a;nar7w) lacks NAD(P)H nitrate reductase activity and has xanthine dehydrogenase and nitrite reductase activities similar to nar1a. NAD(P)H nitrate reductase activity in this mutant is controlled by a single codominant gene designated nar7. The nar7 locus appears to be the NAD(P)H nitrate reductase structural gene and is not closely linked to nar1. From segregating progeny of a cross between the wild type and nar1a;nar7w, a line was obtained which has the same NADH nitrate reductase activity as the wild type in both the roots and leaves but lacks NADPH nitrate reductase activity in the roots. This line is assumed to have the genotype Nar1Nar1nar7nar7. Roots of wild type seedlings have both nitrate reductases as shown by differential inactivation of the NADH and NAD(P)H nitrate reductases by a monospecific NADH-nitrate reductase antiserum. Thus, nar7 controls the NAD(P)H nitrate reductase in roots and in leaves of barley.Scientific Paper No. 7617, College of Agriculture Research Center and Home Economics, Washington State University, Pullman, WA, USA. Project Nos. 0233 and 0745  相似文献   

15.
Long-chain unsaturated fatty acids, as well as certain saturated fatty acids such as lauric acid, are inhibitors of the in vivo luminescence of wild-type strains of four species of luminous bacteria (Beneckea harveyi, Photobacterium phosphoerum, P. fischeri, andP. leiognathi) as well as the myristic acid-stimulated luminescence in the aldehyde dim mutant M17 ofB. harveyi. Based on studies with the system in vivo, the principal site of action of all the fatty acids appears to be the reductase activity that converts myristic acid to myristyl aldehyde. This was confirmed by in vitro studies: Reductase activity in crude cell-free extracts is strongly inhibited by oleic acid.  相似文献   

16.
Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.  相似文献   

17.
Arginine is known to increase the luminescence in vivo and in vitro of the marine bacterium Beneckea harveyi growing in minimal medium. Mutants in which this arginine effect is either diminished, or absent were isolated as bright clones on a minimal medium after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. On a minimal medium both with and without added arginine and also on complex medium, these "minimal bright" mutants produce higher levels of luminescence than the wild type both in vivo and in vitro. This is attributed to the production of an increased amount of luciferase, which itself is wild type in terms of its specific activity.  相似文献   

18.
Pyrroline-5-carboxylate reductase (EC 1.5.1.2) catalyzes the NAD(P)H-dependent conversion of pyrroline-5-carboxylate to proline. We cloned a human pyrroline-5-carboxylate reductase cDNA by complementation of proline auxotrophy in a Saccharomyces cerevisiae mutant strain, DT1100. Using a HepG2 cDNA library in a yeast expression vector, we screened 10(5) transformants, two of which gained proline prototrophy. The plasmids in both contained similar 1.8-kilobase inserts, which when reintroduced into strain DT1100, conferred proline prototrophy. The pyrroline-5-carboxylate reductase activity in these prototrophs was 1-3% that of wild type yeast, in contrast to the activity in strain DT1100 which was undetectable. The 1810-base pair pyrroline-5-carboxylate reductase cDNA hybridizes to a 1.85-kilobase mRNA in samples from human cell lines and predicts a 319-amino acid, 33.4-kDa protein. The derived amino acid sequence is 32% identical with that of S. cerevisiae. By genomic DNA hybridization analysis, the human reductase appears to be encoded by a single copy gene which maps to chromosome 17.  相似文献   

19.
The involvement of nicotinamide adenine nucleotides (NAD(+), NADH) in the regulation of glycolysis in Lactococcus lactis was investigated by using (13)C and (31)P NMR to monitor in vivo the kinetics of the pools of NAD(+), NADH, ATP, inorganic phosphate (P(i)), glycolytic intermediates, and end products derived from a pulse of glucose. Nicotinic acid specifically labeled on carbon 5 was synthesized and used in the growth medium as a precursor of pyridine nucleotides to allow for in vivo detection of (13)C-labeled NAD(+) and NADH. The capacity of L. lactis MG1363 to regenerate NAD(+) was manipulated either by turning on NADH oxidase activity or by knocking out the gene encoding lactate dehydrogenase (LDH). An LDH(-) deficient strain was constructed by double crossover. Upon supply of glucose, NAD(+) was constant and maximal (approximately 5 mm) in the parent strain (MG1363) but decreased abruptly in the LDH(-) strain both under aerobic and anaerobic conditions. NADH in MG1363 was always below the detection limit as long as glucose was available. The rate of glucose consumption under anaerobic conditions was 7-fold lower in the LDH(-) strain and NADH reached high levels (2.5 mm), reflecting severe limitation in regenerating NAD(+). However, under aerobic conditions the glycolytic flux was nearly as high as in MG1363 despite the accumulation of NADH up to 1.5 mm. Glyceraldehyde-3-phosphate dehydrogenase was able to support a high flux even in the presence of NADH concentrations much higher than those of the parent strain. We interpret the data as showing that the glycolytic flux in wild type L. lactis is not primarily controlled at the level of glyceraldehyde-3-phosphate dehydrogenase by NADH. The ATP/ADP/P(i) content could play an important role.  相似文献   

20.
The NADH-specific and NAD(P)H-bispecific nitrate reductase genes from barley have been cloned and sequenced. To determine if the Nar7 locus encodes the NAD(P)H-bispecific nitrate reductase structural gene, a cross was made between a wild-type cultivar, Morex (Nar7 Nar7), and Az70 (nar7w nar7w), a mutant from the cultivar Steptoe that is deficient in NAD(P)H-bispecific nitrate reductase activity. A probe specific to the NAD(P)H-bispecific nitrate reductase structural gene detected restriction fragment length polymorphism between the parents. This probe was used to classify selected F2 progeny for restriction fragment length genotype. All the NAD(P)H nitrate reductase deficient F2 progeny (24/101) possessed the Az70 restriction fragment genotype. The absence of recombination between the NAD(P)H-bispecific nitrate reductase deficient genotype and the NAD(P)H-bispecific nitrate reductase restriction fragment length genotype indicates that the two traits are closely associated in inheritance and that Nar7 is probably the NAD(P)H-bispecific nitrate reductase structural gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号