首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemoattractant stimulation of polymorphonuclear leukocytes is associated with a nearly two-fold rise in actin filament content. We examined the role of the actin monomer sequestering protein, profilin, in the regulation of PMN actin filament assembly during chemoattractant stimulation using a Triton extraction method. Poly-L-proline-conjugated Sepharose beads were used to assess the relative concentration of actin bound to profilin with high enough affinity to withstand dilution (profilin-actin complex) and DNase I-conjugated beads to measure the relative concentration of actin in the Triton-soluble fraction not bound to profilin. Actin associated with the Triton-insoluble fraction (F-actin) was also measured. In unstimulated PMN, the relative concentration of actin bound to profilin was maximum. After FMLP stimulation, profilin released actin monomers within 10 s, with the profilin-actin complex concentration reaching a nadir by 40 s and remaining low as long as the cells were exposed to chemoattractant (up to 30 min). If FMLP was dissociated from PMN membrane receptors using t-BOC, actin reassociated with profilin within 20 s. Quantitative analysis of these reactions, however, revealed that profilin release of and rebinding to actin could account for only a small percentage of the total change in F-actin content. Determination of the total profilin and actin concentrations in PMN revealed that the molar ratio of profilin to actin was 1 to 5.2. When purified actin was polymerized in PMN Triton extract containing EGTA, removal of profilin from the extract minimally affected (12% reduction) the high apparent critical concentration at which actin began to assemble. Although profilin released actin at the appropriate time to stimulate actin assembly during exposure to chemoattractants, the concentration of profilin in PMN was insufficient to explain the high unpolymerized actin content in unstimulated PMN and the quantity of actin released from profilin too small to account for the large shifts from unpolymerized to polymerized actin associated with maximal chemoattractant stimulation.  相似文献   

2.
The ability of a phagocytic stimulus, rabbit IgG anti-BSA/BSA immune complexes, to increase the F-actin content of human polymorphonuclear leukocytes was quantitated by flow cytometry following staining with nitrobenzoxadiazole-phallacidin. A significant rise in F-actin assembly was induced by addition of 5 micrograms/ml immune complex. Concentrations of immune complex of more than 200 micrograms/ml caused a maximal (approximately twofold) increase in F-actin content. After a delay of 5 s, the F-actin levels rose and reached maximum levels by 60 s after adding immune complexes. The twofold elevation in F-actin persisted for up to 60 min. Both anti-Fc gamma RII and anti-Fc gamma RIII mAb blocked immune complex stimulated actin polymerization. Exposure to pertussis toxin failed to affect the rate or extent of immune complex-induced actin polymerization. Cells incubated with immune complexes and then lysed with Triton had an increased number of sites able to nucleate actin polymerization. These findings suggest that immune complex binding to both polymorphonuclear leukocytes Fc gamma RII and Fc gamma RIII is required for actin filament assembly and that the induction of assembly occurs via transduction pathways that differ from those used by chemoattractants. As with adhesion this phagocytic stimulus induces actin assembly by a pertussis toxin insensitive pathway and produces a rise in actin filament content that persists for prolonged periods of time.  相似文献   

3.
Chemotactic peptide-induced changes in neutrophil actin conformation   总被引:27,自引:16,他引:11       下载免费PDF全文
The effect of the chemotatic peptide, N- formylmethionylleucylphenylalanine (FMLP), on actin conformation in human neutrophils (PMN) was studied by flow cytometry using fluorescent 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin to quantitate cellular F-actin content. Uptake of NBD-phallacidin by fixed PMN was saturable and inhibited by fluid phase F-actin but not G-actin. Stimulation of PMN by greater than 1 nM FMLP resulted in a dose-dependent and reversible increase in F-actin in 70-95% of PMN by 30 s. The induced increase in F-actin was blocked by 30 microM cytochalasin B or by a t- BOC peptide that competitively inhibits FMLP binding. Under fluorescence microscopy, NBD-phallacidin stained, unstimulated PMN had faint homogeneous cytoplasmic fluorescence while cells exposed to FMLP for 30 s prior to NBD-phallacidin staining had accentuated subcortical fluorescence. In the continued presence of an initial stimulatory dose of FMLP, PMN could respond with increased F-actin content to the addition of an increased concentration of FMLP. Thus, FMLP binding to PMN induces a rapid transient conversion of unpolymerized actin to subcortical F-actin and repetitive stimulation of F-actin formation can be induced by increasing chemoattractant concentration. The directed movement of PMN in response to chemoattractant gradients may require similar rapid reversible changes in actin conformation.  相似文献   

4.
Cell motility and changes in cell shape are largely powered by actin polymerization and depolymerization. Eight to ten second periodic changes in human polymorphonuclear neutrophil (PMN) shape were detected by video-image analysis of PMN crawling on a surface and by right angle light scattering (RALS) in suspended PMN. However, sustained RALS oscillations in suspended PMN requires pre-treatment with an inhibitor of phosphatidylinositol 3-kinase or an activator of protein kinase C. Here, we show that cross-linking of the beta(2) (CD18) or beta(3) (CD61), but not beta(1) (CD 29) integrins in the presence of a low dose of formyl-Methionyl-Leucyl-Phenylalanine (fMLP) enables similar 8-s periodic RALS oscillations in suspended PMN in response to stimulation with two consecutive doses of chemoattractants. This effect did not appear to be due to increased surface expression of CD18 or CD61. RALS oscillations occurred in phase with 8-s oscillations in the stable F-actin pool and peaks in F-actin correlated with predominance of cells exhibiting a nascent lamella. Thus, simulation of surface attachment by CD18 and CD61 cross-linking after exposure to fMLP in suspended cells supports shape oscillations that are the result of actin-driven cyclic extension/retraction of nascent lamellae at the same frequency as the shape changes previously observed in crawling PMN.  相似文献   

5.
We have addressed the important question as to if and how the cytosolic free Ca2+ concentration, [Ca2+]i, is involved in fMet-Leu-Phe induced actin polymerization in human neutrophils. Stimulation of human neutrophils with the chemotactic peptide (10(-7) M), known to result in a prompt rise of the [Ca2+]i to above 500 nM, also induced a rapid decrease of monomeric actin, G-actin, content (to 35% of basal) and increase of filamentous actin, F-actin, content (to 320% of basal). A reduction of the fMet-Leu-Phe induced [Ca2+]i transient to about 250 nM, resulted in a less pronounced decrease of G-actin content (to 80% of basal) and increase of F-actin content (to 235% of basal). A total abolishment of the chemotactic peptide induced [Ca2+]i rise, still led to a decrease of the G-actin content (to 85% of basal) and increase of F-actin (to 200% of basal). These results indicate that the [Ca2+]i rise is not an absolute requirement, but has a modulating role for the fMet-Leu-Phe induced actin polymerization. Another possible intracellular candidate for fMet-Leu-Phe induced actin polymerization is protein kinase C. However, direct activation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) only resulted in a minor increase of F-actin content. The recent hypothesis that a metabolite of the polyphosphoinositide cycle, independently of [Ca2+]i and protein kinase C, is responsible for actin polymerization agrees well with these results and by the fact that preexposure to pertussis toxin totally abolished a subsequent increase of F-actin content induced by fMet-Leu-Phe.  相似文献   

6.
Pentoxifylline is used clinically for the treatment of intermittent claudication. It is believed to exert its effect by altering the rheologic properties of blood. The cytoskeleton plays an important role in the maintenance of cell structure and function. In particular, alterations in the state of actin seem to play an important role in cell motility. Therefore, we examined the effect of pentoxifylline on the actin state in human polymorphonuclear leukocytes (PMN) and mononuclear cells. Pentoxifylline (10 mM final concentration) decreased F-actin content in both PMN and mononuclear cells. Pentoxifylline also inhibited concanavalin A-induced capping in PMN and mononuclear cells. Similarly, surface immunoglobulin capping in B lymphocytes was also inhibited. Pretreatment of cells with pertussis toxin did not inhibit pentoxifylline-induced decrease in F-actin, suggesting pentoxifylline does not act through pertussis toxin-sensitive G-proteins. Dibutyryl cyclic AMP failed to show any significant effect on the F-actin content in PMN. Therefore, the effect of pentoxifylline cannot be attributed to changes in cyclic AMP levels. Chemotactic peptide-induced actin polymerization was unaffected in PMN when expressed as percent changes in F-actin. The observations reported here suggest that the rheological effects of pentoxifylline might be due to its effects on the actin state in the cellular elements of the blood. Further studies on the mechanism of action of pentoxifylline on actin state in leukocytes will prove useful in delineating the physiological mechanisms regulating actin state in leukocytes.  相似文献   

7.
Leukocyte recruitment to inflammatory foci is generally associated with cellular activation. Recent evidence suggests that chemotactic agents can be divided into two classes, “classical chemoattractants” such as FMLP, C5a, and IL-8, which stimulate directed migration and activation events and “pure chemoattractants” such as TGF-β1 which influence actin polymerisation and movement but not oxidative burst and associated granular enzyme release. The studies reported here demonstrate that the murine S100 chemoattractant protein, CP-10, belongs to the “non-classical” group. Despite its potent chemotactic activity for neutrophils and monocytes/macrophages, CP-10 failed to increase [Ca2+]i in human or mouse PMN, although chemotaxis was inhibited by pertussis toxin, confirming the suggestion of a novel Ca2+-independent G-protein-coupled pathway for post-receptor signal transduction triggered by “pure chemoattractants.” The co-ordinated up-regulation of Mac-1 and down-regulation of L-selectin induced by FMLP on human PMN in vitro was not observed with CP-10. Quantitative changes in immediate (30 s) actin polymerisation occurred with FMLP and CP-10-treated human PMN. The relative F-actin increases induced in WEHI 265 monocytoid cells by FMLP and CP-10 was optimal at 60 s and declined over 120 s. F-actin changes reflected the concentration and potencies of the agonists required to provoke chemotaxis. After 90 min, CP-10 profoundly altered cell shape and increased both cell size and F-actin within pseudopodia. These changes are typical of those mediating leukocyte deformability, and CP-10 may mediate leukocyte retention within microcapillaries and thereby contribute to the initiation of inflammation in vascular beds. © 1996 Wiley-Liss, Inc.  相似文献   

8.
A new method was devised to visualize actin polymerization induced by postsynaptic differentiation signals in cultured muscle cells. This entails masking myofibrillar filamentous (F)-actin with jasplakinolide, a cell-permeant F-actin-binding toxin, before synaptogenic stimulation, and then probing new actin assembly with fluorescent phalloidin. With this procedure, actin polymerization associated with newly induced acetylcholine receptor (AChR) clustering by heparin-binding growth-associated molecule-coated beads and by agrin was observed. The beads induced local F-actin assembly that colocalized with AChR clusters at bead-muscle contacts, whereas both the actin cytoskeleton and AChR clusters induced by bath agrin application were diffuse. By expressing a green fluorescent protein-coupled version of cortactin, a protein that binds to active F-actin, the dynamic nature of the actin cytoskeleton associated with new AChR clusters was revealed. In fact, the motive force generated by actin polymerization propelled the entire bead-induced AChR cluster with its attached bead to move in the plane of the membrane. In addition, actin polymerization is also necessary for the formation of both bead and agrin-induced AChR clusters as well as phosphotyrosine accumulation, as shown by their blockage by latrunculin A, a toxin that sequesters globular (G)-actin and prevents F-actin assembly. These results show that actin polymerization induced by synaptogenic signals is necessary for the movement and formation of AChR clusters and implicate a role of F-actin as a postsynaptic scaffold for the assembly of structural and signaling molecules in neuromuscular junction formation.  相似文献   

9.
《The Journal of cell biology》1993,123(6):1789-1796
alpha-Thrombin induced a change in the cell morphology of IIC9 fibroblasts from a semiround to an elongated form, accompanied by an increase in stress fibers. Incubation of the cells with phospholipase D (PLD) from Streptomyces chromofuscus and exogenous phosphatidic acid (PA) caused similar morphological changes, whereas platelet-derived growth factor (PDGF) and phorbol 12-myristate 13-acetate (PMA) induced different changes, e.g., disruption of stress fibers and cell rounding. alpha-Thrombin, PDGF, and exogenous PLD increased PA by 20-40%, and PMA produced a smaller increase. alpha-Thrombin and exogenous PLD produced rapid increases in the amount of filamentous actin (F-actin) that were sustained for at least 60 min. However, PDGF produced a transient increase of F-actin at 1 min and PMA caused no significant change. Dioctanoylglycerol was ineffective except at 50 micrograms/ml. Phospholipase C from Bacillus cereus, which increased diacylglycerol (DAG) but not PA, did not change F-actin content. Down-regulation of protein kinase C (PKC) did not block actin polymerization induced by alpha-thrombin. H-7 was also ineffective. Exogenous PA activated actin polymerization with a significant effect at 0.01 microgram/ml and a maximal increase at 1 microgram/ml. No other phospholipids tested, including polyphosphoinositides, significantly activated actin polymerization. PDGF partially inhibited PA-induced actin polymerization after an initial increase at 1 min. PMA completely or largely blocked actin polymerization induced by PA or PLD. These results show that PC-derived PA, but not DAG or PKC, activates actin polymerization in IIC9 fibroblasts, and indicate that PDGF and PMA have inhibitory effects on PA-induced actin polymerization.  相似文献   

10.
Radhika V  Naik NR  Advani SH  Bhisey AN 《Cytometry》2000,42(6):379-386
Chronic myeloid leukemia (CML), a hematopoietic stem cell disorder, is characterized by the presence of Philadelphia chromosome (Ph1). Earlier studies have shown that various functions, such as chemotaxis, fluid phase pinocytosis, phagocytosis, and degranulation in response to chemotactic peptide formyl-methionyl-leucyl-phenylalanine (fMLP), were defective in polymorphonuclear leukocytes (PMNL) from CML patients. These functions depend on actin microfilaments (MF). Further studies showed that fMLP-induced actin polymerization was lower in CML PMNL. To see if this defect is specific to stimulation by fMLP alone or is a global phenomenon involving other chemoattractant receptors, chemotaxis and actin polymerization were studied in response to fMLP, an analog of fMLP, formyl-methionine-1 aminocyclooctane 1 carboxylic acid-phenyalanine-O-methionine (FACC8), platelet-activating factor (PAF), and leukotriene B4 (LTB4). These compounds bind to different chemoattractant receptors. Chemotaxis and actin polymerization in response to all four chemoattractants were significantly lower in CML PMNL compared with PMNL from normal subjects and were differentially affected for the different chemoattractants. These results suggest a global phenomenon involving all four chemoattractant-stimulated pathways. This lower amount of F-actin may be responsible for the defective chemotaxis seen in these cells.  相似文献   

11.
Human polymorphonuclear leukocytes (PMN) express two classes of Fc gamma R: Fc gamma RII the 42-kDa receptor with a traditional membrane spanning domain and cytoplasmic tail and Fc gamma RIIIPMN the 50- to 80-kDa receptor with a glycosyl-phatidylinositol membrane anchor expressed on PMN. To explore the capacity of Fc gamma RIIIPMN to generate intracellular signals, we have analyzed the ability of Fab and F(ab')2 anti-Fc gamma R mAb to induce actin filament assembly, a prerequisite for motile behaviors. Multivalent ligation of Fc gamma RIIIPMN, independent of Fc gamma RII, results in an increase in F-actin content that is [Ca2+]i dependent. Multivalent ligation of Fc gamma RII also initiates actin polymerization but uses a [Ca2+]i-independent initial pathway. In addition to providing a mechanism for Fc gamma RIIIPMN triggered effector functions, the increase in F-actin and [Ca2+]i generated by Fc gamma RIIIPMN ligation also serves as a "priming" signal to modify PMN responses to other stimuli. Experiments using erythrocytes specifically coated with anti-Fc gamma RII Fab demonstrate that cross-linking of Fc gamma RIIIPMN with anti-Fc gamma RIII F(ab')2 enhances phagocytosis mediated by Fc gamma RII. Thus, Fc gamma RIIIPMN, a glycosyl-phosphatidylinositol anchored protein, may contribute directly to an intracellular program of actin assembly that may trigger and prime neutrophil effector functions.  相似文献   

12.
Formyl-met-leu-phe (fMLP) induces actin assembly in neutrophils; the resultant increase in F-actin content correlates with an increase in the rate of cellular locomotion at fMLP concentrations less than or equal to 10(-8) M (Howard, T.H., and W.H. Meyer, 1984, J. Cell Biol., 98:1265-1271). We studied the time course of change in F-actin content, F-actin distribution, and cell shape after fMLP stimulation. F-actin content was quantified by fluorescence activated cell sorter analysis of nitrobenzoxadiazole-phallacidin-stained cells (Howard, T.H., 1982, J. Cell Biol., 95(2, Pt. 2:327a). F-actin distribution and cell shape were determined by analysis of fluorescence photomicrographs of nitrobenzoxadiazole-phallacidin-stained cells. After fMLP stimulation at 25 degrees C, there is a rapid actin polymerization that is maximal (up to 2.0 times the control level) at 45 s; subsequently, the F-actin depolymerizes to an intermediate F-actin content 5-10 min after stimulation. The depolymerization of F-actin reflects a true decrease in F-actin content since the quantity of probe extractable from cells also decreases between 45 s and 10 min. The rate of actin polymerization (3.8 +/- 0.3-4.4 +/- 0.6% increase in F-actin/s) is the same for 10(-10) - 10(-6) M fMLP and the polymerization is inhibited by cytochalasin D. The initial rate of F-actin depolymerization (6.0 +/- 1.0-30 +/- 5% decrease in F-actin/min) is inversely proportional to fMLP dose. The F-actin content of stimulated cells at 45 s and 10 min is greater than control levels and varies directly with fMLP dose. F-actin distribution and cell shape also vary as a function of time after stimulation. 45 s after stimulation the cells are rounded and F-actin is diffusely distributed; 10 min after stimulation the cell is polarized and F-actin is focally distributed. These results indicate that actin polymerization and depolymerization follow fMLP stimulation in sequence, the rate of depolymerization and the maximum and steady state F-actin content but not the rate of polymerization are fMLP dose dependent, and concurrent with F-actin depolymerization, F-actin is redistributed and the cell changes shape.  相似文献   

13.
Polymerization of actin has been associated with development of polar shape in human neutrophils (PMN). To examine the relation of filamentous actin (F-actin) distribution to shape change in PMN, we developed a method using computerized video image analysis and fluorescence microscopy to quantify distribution of F-actin in single cells. PMN were labeled with fluorescent probe NBD-phallicidin to measure filamentous actin and Texas red to assess cell thickness. We show that Texas red fluorescence is a reasonable measure of cell thickness and that correction of the NBD-phallicidin image for cell thickness using the Texas red image permits assessment of focal F-actin content. Parameters were derived that quantify total F-actin content, movement of F-actin away from the center of the cell, asymmetry of F-actin distribution, and change from round to polar shape. The sequence of change in F-actin distribution and its relation to development of polar shape in PMN was determined using these parameters. After stimulation with chemotactic peptide at 25 degrees C, F-actin polymerized first at the rim of the PMN. This was followed by development of asymmetry of F-actin distribution and change to polar shape. The dominant pseudopod developed first in the region of lower F-actin concentration followed later by polymerization of actin in the end of the developed pseudopod. Asymmetric F-actin distribution was detected in round PMN before development of polar shape. Based upon these data, asymmetric distribution of F-actin is coincident with and probably precedes development of polar shape in PMN stimulated in suspension by chemotactic peptide.  相似文献   

14.
Stimulation of human neutrophils with the chemoattractant N-formyl peptide caused rapid polymerization of F-actin as detected by right angle light scatter and 7-nitrobenz-2-oxa-1,3-diazol (NBD)-phallacidin staining of F-actin. After labeling neutrophils with 32P, exposure to N-formyl peptide induced a fast decrease of phosphatidylinositol 4-bisphosphate (PIP)2, a slow increase of phosphatidic acid, and a rapid rise of phosphatidylinositol 4-trisphosphate (PIP3). Formation of PIP3 as well as actin polymerization was near maximal at 10 s after stimulation. Half-maximal response and PIP3 formation at early time points resulted from stimulation of neutrophils with 0.01 nM N-formyl peptide or occupation of about 200 receptors. Sustained elevation of PIP3, prolonged right angle light scatter response, and F-actin formation required higher concentrations of N-formyl peptide, occupation of thousands of receptors, and high binding rates. When ligand binding was interrupted with an antagonist, F-actin rapidly depolymerized, transient light scatter response recovered immediately, and elevated [32P]PIP3 levels decayed toward initial values. However, recovery of [32P]PIP2 was not influenced by the antagonist. Based on the parallel time courses and dose response of [32P] PIP3, the right angle light scatter response, and F-actin polymerization, PIP3 is more likely than PIP2 to be involved in modulation of actin polymerization and depolymerization in vivo.  相似文献   

15.
Neutrophil activation by a variety of stimuli is accompanied by an intracellular acidification, which has been postulated to mediate actin polymerization (Yuli and Oplatka, Science 1987, 235, 340). This hypothesis was tested using 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin staining and flow cytometry, or right angle light scattering to study actin assembly in intact and electrically permeabilized human neutrophils. Intracellular pH was measured fluorimetrically using a pH sensitive dye. In cells stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) at 21 degrees C, actin assembly clearly preceded the intracellular acidification in response to fMLP. Moreover, actin polymerization persisted in cells where intracellular pH was clamped near the resting (unstimulated) level using nigericin/K+. Finally, fMLP induced a significant increase in F-actin content in electropermeabilized neutrophils equilibrated with an extracellular medium containing up to 50 mM HEPES. These observations indicate that fMLP-stimulated F-actin assembly is not mediated by a decrease in intracellular pH and suggest that changes in transmembrane potential and ionic gradients are unlikely to mediate actin polymerization.  相似文献   

16.
Human neutrophils adherent to a polystyrene plastic surface are vigorously activated, whereas those adherent to fibronectin manifest only a priming response. The basis of these metabolic differences was further characterized; polystyrene-adherent cells, which were shown to spread quickly upon adhesion, exhibited an increase of cytoskeleton-associated actin (F-actin) (measured by a nitrobenzoxadiazole-phallacidin fluorescent staining assay) and a decrease of monomeric G-actin concentration (measured by a DNase inhibition assay); in contrast, fibronectin-adherent cells exhibited little spreading and decreased their F-actin, after 1.5 min of adhesion, to 33.49 +/- 6.9% (mean +/- SD, n = 5) of initial levels found in suspended cells before plating. Actin depolymerization in fibronectin-adherent cells was confirmed by measuring G-actin, which sharply increased during the first minute of adhesion, rising from 0.065 +/- 0.007 to 0.20 +/- 0.035 microgram/microgram of protein (mean +/- SEM, p less than 0.05), and then remained elevated during 5 min of observation. In contrast, soluble fibronectin induced a decrease of G-actin in suspended cells. Cells pretreated with 1 microM cytochalasin D and allowed to adhere to a plastic surface did not spread, failed to generate O2-, and exhibited elevated concentrations of G-actin (0.1 to 0.2 microgram/microgram of protein) during the 5 min of observation. Actin changes, as well as respiratory burst, in adherent cells were shown to proceed through a pertussis toxin-insensitive pathway. Fluo-3 measurements of intracellular Ca2+ concentrations ([Ca2+]i) showed a fourfold and twofold [Ca2+]i increase in polystyrene- and fibronectin-adherent cells, respectively, after 2 min. The small rise in [Ca2+]i in fibronectin-adherent cells corresponds to a primed response of these cells to subsequent activation with FMLP. Ionomycin (1 microM) added to neutrophils just before adhesion on fibronectin induced full activation, i.e., O2- production and actin polymerization. The metabolic events controlling metabolic priming and actin depolymerization are as yet uncharacterized, but fibronectin receptor-linked responses beyond the mediation of cell adhesion have now been identified, suggesting complex metabolic functions of integrin receptors.  相似文献   

17.
Chemoattractants stimulate actin polymerization in lamellipodia of polymorphonuclear leukocytes. We find that removal of chemoattractant results in rapid (within 10 s at 37 degrees C) and selective depolymerization of the F-actin located in lamellipodia. Addition of 10 microM cytochalasin B, in the presence of chemoattractant, also resulted in rapid and selective depolymerization of lamellar F-actin. The elevated F-actin level induced by chemoattractant rapidly returns to the level present in unstimulated cells after (a) a 10-fold decrease in chemoattractant concentration; (b) the addition of 10 microM cytochalasin B; or (c) cooling to 4 degrees C. The F-actin levels of unstimulated cells are only slightly affected by these treatments. Based on the similar effects of cytochalasin addition and chemoattractant dilution, it is likely that both treatments result in actin depolymerization from the pointed ends of filaments. Based on our results we propose that chemoattractant-stimulated polymorphonuclear leukocytes contain two distinct populations of actin filaments. The actin filaments within the lamellipodia are highly labile and in the continued presence of chemoattractant these filaments are rapidly turning over, continually polymerizing at their plus (barbed) ends, and depolymerizing at their minus ends. In contrast, the cortical F-actin filaments of both stimulated and unstimulated cells are differentially stable.  相似文献   

18.
Chiou WF  Don MJ 《Life sciences》2007,81(2):109-114
We evaluated the anti-inflammatory effects of cryptotanshinone and tanshinone IIA, two major tanshinones isolated from Salvia miltiorrhiza, on chemoattractant-induced cell migration in RAW264.7 macrophages. Results showed that cryptotanshinone inhibited cell migration toward complement 5a (C5a) and macrophage inflammatory protein-1alpha (MIP-1alpha) in a concentration-dependent manner. In contrast, tanshinone IIA displayed less or even no effect on cell migration evoked by these chemoattractants. Both C5a- and MIP-1alpha-induced migration were clearly inhibited by cytochalasin B (an inhibitor of actin polymerization), but not by colchicine (an inhibitor of microtubule polymerization). Fluorescence staining demonstrated that cryptotanshinone as well as cytochalasin B, effectively reversed cell polarization and filopodia extension induced by both chemoattractants. Furthermore, C5a-evoked increase in F-actin fluorescence intensity was significantly suppressed by cryptotanshinone. Based on these observations, we suggest that cryptotanshinone exerts anti-migrating activity possibly by impeding F-actin polymerization and filopodia formation.  相似文献   

19.
In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent.  相似文献   

20.
Crosslinking of the IgE receptor on rat basophilic leukemia (RBL) cells using the multivalent antigen DNP-BSA leads to a rapid and sustained increase in the filamentous actin content of the cells. Stimulation of RBL cells through the adenosine receptor also induces a very rapid polymerization of actin, which peaks in 45-60 s and is equivalent in magnitude to the F-actin response elicited through stimulation of the IgE receptor. However, in contrast to the IgE mediated response, which remains elevated for over 30 min, the F-actin increase induced by the adenosine analogue 5'-(N-ethylcarboxamido)-adenosine (NECA) is relatively transient and returns to baseline values within 5-10 min. While previous work has shown that the polymerization of actin in RBL cells stimulated through the IgE receptor is mediated by protein kinase C (PKC), protein kinase inhibitors have no effect on the F-actin response activated through the adenosine receptor. In contrast, pretreatment of the cells with pertussis toxin completely inhibits the F-actin response to NECA but has relatively little effect on the response induced through the IgE receptor. Stimulation of RBL cells through either receptor causes increased production of phosphatidylinositol mono-phosphate (PIP) and phosphatidylinositol bis-phosphate (PIP2), which correlates with the F-actin response. Production of PIP and PIP2 may be important downstream signals since these polyphosphoinositides are able to regulate the interaction of gelsolin and profilin with actin. Thus the polymerization of actin can be triggered through either the adenosine receptor or the IgE receptor, but different upstream signaling pathways are being used. The IgE mediated response requires the activation of PKC while stimulation through the adenosine receptor is PKC independent but involves a G protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号