首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, disinfection of water containing Giardia intestinalis and Acanthamoeba castellani cysts with TiO2 and modified catalyst silver loaded TiO2 (Ag-TiO2) was investigated. Destruction of the parasites was evaluated after UV illumination of the suspension consisting 5 x 10(8)-13.5 x 10(8)cysts/mL in the presence of 2g/L neat or modified TiO2 at neutral pH. In the initial stage, the solid photocatalyst particles penetrated the cyst wall and then oxidant species produced by TiO2/UV destroyed both cell wall and intracellular structure. In the case of G. intestinalis inactivation (disinfection) performance of TiO2/UV system reached 52.5% only after 25 min illumination and total parasite disinfection was achieved after 30 min illumination. However, silver loaded TiO2 seemed to be more effective as this loading provided better catalytic action as well as additional antimicrobial properties. Cell viability tests showed that parasite cysts, their walls in particular, were irreversibly damaged and cysts did not re-grow. Nevertheless the studied system seemed to be ineffective for the inactivation of A. castellani. Inactivation percentages of TiO2/UV and Ag-TiO2/UV systems were far lower than that of UV alone, being 50.1% and 46.1%, respectively.  相似文献   

2.
Liquefaction of glucose into oil was examined in hot-compressed water at 300 degrees C and 30 or 60 min in a tumbling batch reactor. The effects of alkali (KHCO(3)), a hydrogenating agent (HCO(2)H), and a cobalt catalyst (Co(3)O(4)) were studied. Also the combinations of these additives were investigated. HCO(2)H and KHCO(3) showed a positive effect on oil formation. Co(3)O(4) was found to be an advantageous additive as well, increasing the oil formation from glucose, but the stability of this catalyst under reaction conditions was quite low.  相似文献   

3.
SBA-15 and SBA-3 mesoporous silicas are synthesised by P123 and CTAB surfactants via hydrothermal and liquid phase deposition procedures, respectively. An inorganic-organic hybrid mesoporous material is then synthesised by functionalization of SBA-15 with aminopropyl functional groups via grafting method. After characterization, effect of immobilizing support and functional groups on intercalation of phosphomolybdic acid (H3PMo12O40) is taken into consideration. The immobilization pattern is discussed and supported H3PMo12O40 catalysts are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), EDX, inductively coupled plasma (ICP), FT-IR, and UV-vis analysis. The newly synthesised hybrid catalysts are investigated for epoxidation of cyclooctene in presence of hydrogen peroxide as oxidant. The reaction mechanism is discussed. Furthermore, effects of different immobilizing supports and functionalization on catalyst activity, stability, and reusability are taken into consideration. Similar catalytic reactions are carried out with pristine supports and neat H3PMo12O40 (homogeneous). Results reveal that the mesostructured phosphomolybdic acid based catalysts are shown to be efficient and selective heterogeneous catalysts for oxidation of alkenes.  相似文献   

4.
The new type of catalyst for fatty acid methyl esters (FAME or biodiesel) synthesis with K2CO3 as active component on alumina/silica support was synthesized using sol–gel method. Corresponding catalyst (xerogel) was prepared by 12 h drying the wet gel in air at 300 °C, 600 °C or 1000 °C at atmospheric pressure. The catalysts activity in the methanolysis of sunflower oil was compared to the activity of the pure K2CO3. The effects of various reaction variables on the yield of FAME were investigated. It was found that the temperature of 120 °C and methanol to oil molar ratio of 15:1, are optimal conditions for FAME synthesis with synthesized catalyst. Repeated use of same amount of catalyst indicated that effect of potassium leaching obviously existed leading to decrease of catalyst activity.  相似文献   

5.
The influence of water-miscible alcohols (methanol, 1-propanol, 2-propanol, and t-butyl alcohol) on the isomerization of glucose to fructose and mannose was investigated under subcritical aqueous conditions (180–200 °C). Primary and secondary alcohols promoted the conversion and isomerization of glucose to afford fructose and mannose with high and low selectivity, respectively. On the other hand, the decomposition (side-reaction) of glucose was suppressed in the presence of the primary and secondary alcohols compared with that in subcritical water. The yield of fructose increased with increasing concentration of the primary and secondary alcohols, and the species of the primary and secondary alcohols tested had little effect on the isomerization behavior of glucose. In contrast, the isomerization of glucose was suppressed in subcritical aqueous t-butyl alcohol. Both the conversion of glucose and the yield of fructose decreased with increasing concentration of t-butyl alcohol. In addition, mannose was not detected in reactions using subcritical aqueous t-butyl alcohol.  相似文献   

6.
We studied intracellular calcium ([Ca(2+)](i)) in acid-secreting bone-attached osteoclasts, which produce a high-calcium acidic extracellular compartment. Acid secretion and [Ca(2+)](i) were followed using H(+)-restricted dyes and fura-2 or fluo-3. Whole cell calcium of acid-secreting osteoclasts was approximately 100 nM, similar to cells on inert substrate that do not secrete acid. However, measurements in restricted areas of the cell showed [Ca(2+)](i) transients to 500-1000 nM consistent with calcium puffs, transient (millisecond) localized calcium elevations reported in other cells. Spot measurements at 50-ms intervals indicated that puffs were typically less than 400 ms. Transients did not propagate in waves across the cell in scanning confocal measurements. Calcium puffs occurred mainly over regions of acid secretion as determined using lysotracker red DND99 and occurred at irregular periods averaging 5-15 s in acid secreting cells, but were rare in lysotracker-negative nonsecretory cells. The calmodulin antagonist trifluoperazine, cell-surface calcium transport inhibitors lanthanum or barium, and the endoplasmic reticulum ATPase inhibitor thapsigargin had variable acute effects on the mean [Ca(2+)](i) and puff frequency. However, none of these agents prevented calcium puff activity, suggesting that the mechanism producing the puffs is independent of these processes. We conclude that [Ca(2+)](i) transients in osteoclasts are increased in acid-secreting osteoclasts, and that the puffs occur mainly near the acid-transporting membrane. Cell membrane acid transport requires calcium, suggesting that calcium puffs function to maintain acid secretion. However, membrane H(+)-ATPase activity was insensitive to calcium in the 100 nM-1 microM range. Thus, any effects of calcium puffs on osteoclastic acid transport must be indirect.  相似文献   

7.
Secretory phospholipase A(2) (sPLA(2)) plays important roles in mediating various cellular processes, including cell proliferation, differentiation, apoptosis, and inflammatory response. In this study, we demonstrated that a basic sPLA(2) inhibits epidermal growth factor (EGF)-induced EGF receptor activation, as determined by autophosphorylation of EGF receptor, EGF-activated phospholipase D (PLD) activity, and phospholipase C-gamma(1) (PLC-gamma(1)) tyrosine phosphorylation in a human epidermoid carcinoma cell line, A-431. Treatment of cells with exogenous neutral sphingomyelinase (SMase) or a cell permeable ceramide analog, C(2)-ceramide, also caused similar inhibitory effects on EGF-induced activation of EGF receptor, tyrosine phosphorylation of PLC-gamma(1), and the activation of PLD. sPLA(2)-induced inhibition of EGF receptor was associated with arachidonic acid release, which was followed by an increase in intracellular ceramide formation. Both sPLA(2) and exogenous C(2)-ceramide are able to inhibit the proliferation of A-431. The data presented indicate for the first time that sPLA(2) downregulates the EGF receptor-mediated intracellular signal transduction that may be mediated by arachidonic acid and/or ceramide.  相似文献   

8.
ZrO2 supported La2O3 catalyst prepared by impregnation method was examined in the transesterification reaction of sunflower oil with methanol to produce biodiesel. It was found that the catalyst with 21 wt% loaded La2O3 and calcined at 600 °C showed the optimum activity. The basic property of the catalyst was studied by CO2-TPD, and the results showed that the fatty acid methyl ester (FAME) yield was related to their basicity. The catalyst was also characterized by TG–DTA, XRD, FTIR, SEM and TEM, and the mechanism for the formation of basic sites was discussed. It was also found that the crystallite size of support ZrO2 decreased by loading of La2O3, and the model of the solid-state reaction on the surface of La2O3/ZrO2 catalyst was proposed. Besides, the influence of various reaction variables on the conversion was investigated.  相似文献   

9.
Four isomers of methyl 2-deoxy-D-arabino-hexosides were isolated by HPLC as chromatographically homogeneous compounds. The rates of pyranoside isomerization (alpha(p) and beta(p)) at 40 degrees C and of furanoside isomerization (alpha(f) and beta(f)) at 26 degrees C were determined. A mechanism has been suggested for transformations taking place during isomerization of methyl 2-deoxy-D-arabino-hexosides in methanolic solution catalyzed with hydrogen chloride.  相似文献   

10.
ABSTRACT

In this article, we report a theoretical investigation on the role of several catalysts in the isomerisation mechanisms of HON(O)NNO2 to ON(OH)NNO2 by theoretical method of CBS-QB3. The isomerisation reactions with catalyst X (X?=?H2O, (H2O)2, HCOOH and H2SO4) are multi-hydrogen atom transfer reactions. Compared to the isomerisation mechanisms and rate constant of HON(O)NNO2 to ON(OH)NNO2 without catalysts, incorporation of the catalyst X shows different positive catalytic effects on affecting the reaction processes, with the H2SO4-assisted reaction being the most favourable. Such different catalytic effects are mainly related to the size of the ring structure in X-assisted transition states and the different values of pKa and proton affinities for HCOOH and H2SO4. Besides, compared with the barrier height of the isomerisation process from HON(O)NNO2 to ON(OH)NNO2 with HN(NO2)2 and HON(O)NNO2, the barrier of H2SO4-assisted reaction is lower by 9.3 and 4.5?kcal?·mol?1, meanwhile, the rate constant of H2SO4 catalyzed is larger than water and water dimer–assisted by 3–5 and 2–3 orders of magnitude, respectively. So, H2SO4-assisted reaction is the most favourable.  相似文献   

11.
The investigated catalyst system consists of immobilized Arthrobacter cells containing the enzyme glucose isomerase, which catalyzes the isomerization of glucose into fructose. The internal structure of the catalyst was determined from electrom microscope photographs of replicas of freeze-etched catalyst. On the basis of the photographs a model for the internal structure of the catalyst was proposed. This structure was subsequently used to describe the reaction including mass-transfer effects. It appeared that under normal operating conditions the external mass-transfer rate does not influence the overall rate of reaction. The effect of internal mass-transfer resistances on the overall reaction rate can well be accounted for by the so-called porous sphere model. The intrinsic kinetics of the isomerization catalyzed by the present catalyst system can be represented by a modified Michaelis-Menten equation for a reversible one-substrate reaction.  相似文献   

12.
Dicarboxylic organic acids have properties that differ from those of sulfuric acid during hydrolysis of lignocellulose. To investigate the effects of different acid catalysts on the hydrolysis and degradation of biomass compounds over a range of thermochemical pretreatments, maleic, oxalic and sulfuric acids were each used at the same combined severity factor (CSF) values during hydrolysis. Xylose and glucose concentrations in hydrolysates were highest with maleic acid. Oxalic acid gave the next highest followed by sulfuric acid. This ranking was particularly true at low CSF values. The concentrations of glucose and xylose increased with oxalic and sulfuric acid pretreatments as the CSF increased, but they never attained the levels observed with maleic acid. Among sulfuric, oxalic and maleic acid treatments, the amount of xylose released as xylooligosaccharide was highest with sulfuric acid. The fraction of xylooligosaccharide was lowest with the maleic acid and the oligosaccharide fraction with oxalic acid fell in between. Furfural and hydroxymethyl furfural levels were also highest with maleic acid. In subsequent fermentations with pretreated biomass, the ethanol concentration was maximal at 19.2 g/l at CSF 1.9 when maleic acid was used as the pretreatment catalyst. This corresponded to an ethanol volumetric production rate of 0.27 g ethanol/l per h. This was the same condition showing the highest xylose production in following pretreatment with various acid catalysts. These findings suggest that maleic and oxalic dicarboxylic acids degrade hemicelluloses more efficiently than does sulfuric acid.  相似文献   

13.
Arbuscular mycorrhizal fungi enhance CO2 assimilation of their hosts which ensure the demand for carbohydrates of these obligate biotrophic microorganisms. Photosynthetic parameters were measured in tomato colonised or not by the arbuscular mycorrhizal fungus Glomus mosseae. In addition, carbohydrate contents and mRNA accumulation of three sucrose transporter genes were analysed. Mycorrhizal plants showed increased opening of stomata and assimilated significant more CO2. A higher proportion of the absorbed light was used for photochemical processes, while non-photochemical quenching and the content of photoprotective pigments were lower. Analysis of sugar contents showed no significant differences in leaves but enhanced levels of sucrose and fructose in roots, while glucose amounts stayed constant. The three sucrose transporter encoding genes of tomato SlSUT1, SlSUT2 and SlSUT4 were up-regulated providing transport capacities to transfer sucrose into the roots. It is proposed that a significant proportion of sugars is used by the mycorrhizal fungus, because only amounts of fructose were increased, while levels of glucose, which is mainly transferred towards the fungus, were nearly constant.  相似文献   

14.
By employing metal salts in dilute-acid pretreatment the severity can be reduced due to reduced activation energy. This study reports on a dilute-acid steam pretreatment of spruce chips by addition of a small amount of ferrous sulfate to the acid catalyst, i.e., either SO2, H2SO3 or H2SO4. The utilization of ferrous sulfate resulted in a slightly increased overall glucose yield (from 74% to 78% of the theoretical value) in pretreatment with SO2 and H2SO3. Impregnation with ferrous sulfate and sulfuric acid did not give any improvement compared with pretreatment based solely on H2SO4.  相似文献   

15.
Kinetics of oxidation of reducing sugars D-galactose (Gal) and D-ribose (Rib) by N-bromoacetamide (NBA) in the presence of ruthenium(III) chloride as a homogeneous catalyst and in perchloric acid medium, using mercuric acetate as a scavenger for Br(minus sign) ions, as well as a co-catalyst, have been investigated. The kinetic results indicate that the first-order kinetics in NBA at lower concentrations tend towards zero order at its higher concentrations. The reactions follow identical kinetics, being first order in the [sugar] and [Ru(III)]. Inverse fractional order in [H(+)] and [acetamide] were observed. A positive effect of [Hg(OAc)(2)] and [Cl(minus sign)] was found, whereas a change in ionic strength (mu) has no effect on oxidation velocity. Formic acid and D-lyxonic acid (for Gal) and formic acid and L-erythronic acid (for Rib) were identified as main oxidation products of reactions. The various activation parameters have been computed and recorded. A suitable mechanism consistent with experimental findings has been proposed.  相似文献   

16.
To mimic the native conditions, the cyclooxygenase (COX)/prostaglandin I(2) synthase (PGIS) coupling reaction system was used to determine the coordination of PGIS with COX for the biosynthesis of prostacyclin (PGI(2)) using arachidonic acid (AA) as a substrate in a membrane-bound environment. The membrane-bound PGIS exhibited a faster isomerization of PGH(2) produced by COX to PGI(2) than the detergent-solubilized PGIS. To determine whether the N-terminal domain of PGIS responds to the facilitation of PGH(2) movement (presentation) from COX to the active site of PGIS, the first 20 residues of PGIS (Delta20-PGIS) were deleted and expressed in COS-7 cells. Delta20-PGIS retained membrane-bound properties and exhibited a slower substrate presentation property. Furthermore, a chimeric molecule (PGIS/TXAS(8-27)) with the replacement of the first 20 residues of PGIS by the corresponding membrane anchor region (residues 8-27) of thromboxane A(2) synthase was created to evaluate the mechanism influencing the biosynthesis of PGI(2) in coordination with COX. The chimera revealed a multiple fold delay in the PGH(2) presentation in low range concentrations of AA (0.3-3muM) at 30s reactions. However, the delay could be recovered by a longer incubation time in high range concentrations of AA (>10muM), but not in low range concentrations of AA. These results demonstrated that the N-terminal domain of PGIS plays a role in the facilitation of the substrate presentation to the PGIS active site in low concentrations of AA, which may be a physiological condition. The TXAS N-terminal domain could not replace the function of the corresponding domain of PGIS, indicating that the facilitation of the substrate presentation is specific.  相似文献   

17.
We systematically examined the effects of gangliosides on the plasma membrane Ca(2+)-ATPase (PMCA) from porcine brain synaptosomes. Our results showed that GD1b (two sialic acid residues) stimulated the activity, GM1 (one sialic acid residue) slightly reduced the activity, while asialo-GM1 (no sialic acid residue) markedly inhibited it, suggesting that sialic acid residues of gangliosides are important in the modulation of the PMCA. We also examined the oligosaccharide effects by using GM1, GM2, and GM3 whose only difference was in the length of their oligosaccharide chain. GM1, GM2, and GM3 reduced the enzyme activities, whereas GM2 and GM3 were potent inhibitors. Gangliosides affect both affinity for Ca(2+) and the Vmax of enzyme. It was observed that GD1b and GM2 increased the affinity of the enzyme for Ca(2+). GD1b, GM2 affected the Vmax with an increase of GD1b, but decreases of GM2. The study of the affinity for ATP and the Vmax of enzyme in the presence of gangliosides showed that GD1b and GM2 had little effect on the ATP binding to the enzyme, but the Vmax was apparently changed. Moreover, the effects of gangliosides are additive to that of calmodulin, suggesting that the modulation of PMCA by gangliosides should be through a different mechanism. The conformational changes induced by gangliosides were probed by fluorescence quenching. We found that fluorescent quenchers (I(-) and Cs(+)) with opposite charges had different accessibility to the IAEDANS binding to the PMCA in the presence of gangliosides. An apparent red shift (25nm) with increased maximum of fluorescence spectrum was also observed in the presence of GD1b.  相似文献   

18.
The previous studies showed that gangliosides modulated the ATPase activity of the PMCA from porcine brain synaptosomes [Yongfang Zhao, Xiaoxuan Fan, Fuyu Yang, Xujia Zhang, Arch. Biochem. Biophys. 427 (2004) 204-212]. The effects of gangliosides on the hydrolysis of p-nitrophenyl phosphate (pNPP) catalyzed by the erythrocyte plasma membrane Ca(2+)-ATPase, which was characterized as E(2) conformer of the enzyme, were studied. The results showed that pNPPase activity was stimulated up to seven-fold, depending upon the different gangliosides used with GD1b>GM1>GM2>GM3 approximately Asialo-GM1. Under the same conditions, the ATPase activity was also activated, suggesting that gangliosides should modify both E(1) and E(2) conformer of the enzyme. The Ca(2+), which drove the enzyme to E(1) conformation, inhibited the pNPPase activity, but with the similar half-maximal inhibitory concentrations (IC(50)) in the presence and the absence of gangliosides. Moreover, the pNPPase activity was also inhibited by the raise in ATP concentrations. Gangliosides caused a large increase in V(max), but had no effect on the apparent affinity (K(m)) of the enzyme for pNPP. The kinetic analysis indicated that gangliosides could modulate the erythrocyte PMCA through stabilizing E(2) conformer.  相似文献   

19.
Carrot (Daucus carota L.) cell suspension cultures grew well when provided with glucose, fructose, sucrose or raffinose. Galactose and melibiose supported less growth unless supplemented with glucose or fructose. In combination with ten different sugar mixtures, 2-deoxy-D-glucose (dGlc) inhibited culture growth. Inhibitory effects of dGlc were more marked with fructose, melibiose, raffinose or mixtures of these sugars in the culture medium. The presence of glucose or galactose reduced the inhibitory effects of dGlc on culture growth. Experiments with radioactive labelled sugars demonstrated that dGLc uptake was greater in the presence of fructose than glucose, and that growth inhibition of dGlc coincided with its uptake. Reduced protein content was also associated with the inhibitory effects of dGlc. Cultured cells contained lower levels of invertase (EC 3.2.1.26) activity during the active phase of culture growth (up to 25 days after subculture) than when growth had peaked and subsequently declined. Acid and alkaline invertase activities were not greatly reduced by exogenous hexoses. Invertase activity was greatest during periods of low protein content in all cultures and was inhibited by dGlc during the latter phases of the culture period. Free intracellular sugars throughout the culture period consisted mainly of glucose and fructose.  相似文献   

20.
The composite TiO2/Mo-TiO2 were prepared by a modified sol-gel method. The prepared catalysts were characterized by X-ray diffraction, BET analysis, SEM, X-ray photoelectron spectroscopy, and UV–vis diffused reflectance spectroscopy techniques. The structural characterization results demonstrated that Mo was successfully doped into the TiO2 lattice and caused slight changes in the physiochemical properties. The UV–vis DRS showed a red shift of the adsorption edge to the visible region. The photocatalytic decomposition efficiencies of the catalysts were examined with toluene as a typical VOC in a continuous flow reactor. The photocatalytic activity of the n-n heterogeneous TiO2/Mo-TiO2 was greater than that of pure TiO2 and Mo-TiO2, and the catalyst containing a Mo/Ti mole ratio of 2.5% exhibited optimum photocatalytic properties. In general, a relative humidity of 35%, a higher oxygen content, a lower initial toluene concentration, and a higher UV intensity were beneficial for toluene decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号