首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent of electrostatic contributions from the protein environment was assessed by the introduction of ionizable residues near the bacteriochlorophyll dimer in reaction centers from Rhodobacter sphaeroides. Two mutations at symmetry-related sites, M199 Asn to Asp and L170 Asn to Asp, resulted in a 48 and 44 mV lowering of the midpoint potential, respectively, compared to the wild type at pH 8, while a 75 mV decrease in the midpoint potential was observed for the mutation L168 His to Glu. The decrease relative to wild type was found to be approximately additive, up to 147 mV, for various combinations of the mutations. As the pH was lowered from 9.5 to 6.0, the relative decrease in the midpoint potential became smaller for each of these three mutations. Titration of the pH dependence of the change in midpoint potential of the M199 Asn to Asp mutant compared to wild type yielded a pK(a) value of 7.9 and a change in midpoint potential from low to high pH of 59 mV. The major effect of the mutation on the midpoint potential of the dimer is interpreted as stemming from a negative charge on the residue. An average dielectric constant of approximately 20 was estimated for the local protein environment, consistent with a relatively hydrophobic environment for residue M199. The rate of charge recombination between the primary quinone acceptor and the bacteriochlorophyll dimer decreased in the M199 Asn to Asp mutant at high pH, reflecting the decrease in midpoint potential.  相似文献   

2.
3.
The photosynthetic reaction center from the purple bacterium Rhodobacter sphaeroides has been modified such that the bacteriochlorophyll dimer, when it becomes oxidized after light excitation, is capable of oxidizing tyrosine residues. One factor in this ability is a high oxidation-reduction midpoint potential for the dimer, although the location and protein environment of the tyrosine residue appear to be critical as well. These factors were tested in a series of mutants, each of which contains changes, at residues L131, M160, M197, and M210, that give rise to a bacteriochlorophyll dimer with a midpoint potential of at least 800 mV. The protein environment was altered near tyrosine residues that are either present in the wild type or introduced by mutagenesis, focusing on residues that could act as acceptors for the phenolic proton of the tyrosine upon oxidation. These mutations include Ser M190 to His, which is near Tyr L162, the combination of His M193 to Tyr and Arg M164 to His, which adds a Tyr-His pair, and the combinations of Arg L135 to Tyr with Tyr L164 to His, Arg L135 to Tyr with Tyr L144 to Glu, and Arg L135 to Tyr with Tyr L164 to Phe. Radicals were produced in the mutants by using light to initiate electron transfer. The radicals were trapped by freezing the samples, and the relative populations of the oxidized dimer and tyrosyl radicals were determined by analysis of low-temperature electron paramagnetic resonance spectra. The mutants all showed evidence of tyrosyl radical formation at high pH, and the extent of radical formation at Tyr L135 with pH differed depending on the identity of L144 and L164. The results show that tyrosine residues within approximately 10 A of the dimer can become oxidized when provided with a suitable protein environment.  相似文献   

4.
We studied the accumulation of long-lived charge-separated states in reaction centers isolated from Rhodobacter sphaeroides, using continuous illumination, or trains of single-turnover flashes. We found that under both conditions a long-lived state was produced with a quantum yield of about 1%. This long-lived species resembles the normal P(+)Q(-) state in all respects, but has a lifetime of several minutes. Under continuous illumination the long-lived state can be accumulated, leading to close to full conversion of the reaction centers into this state. The lifetime of this accumulated state varies from a few minutes up to more than 20 min, and depends on the illumination history. Surprisingly, the lifetime and quantum yield do not depend on the presence of the secondary quinone, Q(B). Under oxygen-free conditions the accumulation was reversible, no changes in the normal recombination times were observed due to the intense illumination. The long-lived state is responsible for most of the dark adaptation and hysteresis effects observed in room temperature experiments. A simple method for quinone extraction and reconstitution was developed.  相似文献   

5.
Three single-site mutations have been introduced at positions close to the QA ubiquinone in the reaction centre from Rhodobacter sphaeroides. Two of these mutations, Ala M260 to Trp and Ala M248 to Trp, result in a reaction centre that does not support photosynthetic growth of the bacterium, and in which electron transfer to the QA ubiquinone is abolished. In the reaction centre with an Ala to Trp mutation at the M260 residue, electron transfer from the primary donor to the acceptor bacteriopheophytin is not affected by the mutation, but electron transfer from the acceptor bacteriopheophytin to QA is not observed. The most likely basis for these effects is that the mutation produces a structural change that excludes binding of the QA ubiquinone. A third mutation, Leu M215 to Trp, produces a reaction centre that has an impaired capacity for supporting photosynthetic growth. The mutation changes the nature of ubiquinone binding at the QA site, and renders the site sensitive to quinone site inhibitors such as o- phenanthroline. Adopting a similar approach, in which a small residue located close to a cofactor is changed to a more bulky residue, we show that the reaction centre can be rendered carotenoid-less by the mutation Gly M71 to Leu.  相似文献   

6.
The effect of dicyclohexylcarbodiimide (DCCD) on electron transfer in the acceptor quinone complex of reaction centers (RC) from Rhodobacter sphaeroides is reported. DCCD covalently labelled the RC over a wide concentration range. At low concentrations (<10 M) the binding was specific for the L subunit. At relatively high concentrations (>100 M) DCCD accelerated the rate of charge recombination of the P+QB - state, consistent with a decrease in the equilibrium constant between QA -QB and QAQB -. At similar concentrations, in the presence of cytochrome c as exogenous donor, turnover of the RC was inhibited such that only three cytochromes were oxidized in a train of flashes. Both these inhibitory effects were fully reversed by dialysis, indicating that stable covalent binding was not involved. Possible mechanisms of action are discussed in terms of the putative role of specific residues in proton transfer and protonation and release of quinol from the RC.  相似文献   

7.
Kálmán L  Williams JC  Allen JP 《FEBS letters》2003,545(2-3):193-198
Markedly different light-induced protonational changes were measured in two reaction center mutants of Rhodobacter sphaeroides. A quadruple mutant containing alterations, at residues L131, M160, M197, and M210, that elevate the midpoint potential of the bacteriochlorophyll dimer was compared to the Y(M) mutant, which contains these alterations plus a tyrosine at M164 serving as a secondary electron donor [Kálmán et al., Nature 402 (1999) 696]. In the quadruple mutant, a proton uptake of 0.1-0.3 H(+)/reaction center between pH 6 and 10 resulted from formation of the oxidized bacteriochlorophyll donor and reduced primary quinone. In the Y(M) mutant, a maximal proton release of -0.5 H(+)/reaction center at pH 8 was attributed to formation of the tyrosyl radical and modeled using electrostatic and direct proton-releasing mechanisms.  相似文献   

8.
Zhu Z  Gunner MR 《Biochemistry》2005,44(1):82-96
Proteins bind redox cofactors, modifying their electrochemistry and affinity by specific interactions of the binding site with each cofactor redox state. Photosynthetic reaction centers from Rhodobacter sphaeroides have three ubiquinone-binding sites, Q(A), and proximal and distal Q(B) sites. Ubiquinones, which can be doubly reduced and bind 2 protons, have 9 redox states. However, only Q and Q(-) are seen in the Q(A) site and Q, Q(-), and QH(2) in the proximal Q(B) site. The distal Q(B) function is uncertain. Multiple conformation continuum electrostatics (MCCE) was used to compare the ubiquinone electrochemical midpoints (E(m)) and pK(a) values at these three sites. At pH 7, the Q(A)/Q(A)(-) E(m) is -40 mV and proximal Q(B)/Q(B)(-) -10 mV in agreement with the experimental values (assuming a solution ubiquinone E(m) of -145 mV). Q(B) reduction requires changes in nearby residue protonation and SerL223 reorientation. The distal Q(B)/Q(B)(-) E(m) is a much more unfavorable -260 mV. Q(A) and proximal Q(B) sites generally stabilize species with a -1 charge, while the distal Q(B) site prefers binding neutral species. In each site, the dianion is destabilized because favorable interactions with the residues and backbone increase with charge (q), while the unfavorable loss of solvation energy increases with q(2). Therefore, proton binding before a second reduction, forming QH and then QH(-), is always preferred to forming the dianion (Q(-)(2)). The final product QH(2) is higher in energy at the proximal Q(B) site than in solution; therefore, it binds poorly, favoring release. In contrast, QH(2) binds more tightly than Q at the distal Q(B) site.  相似文献   

9.
A specific carotenoid associated with reaction centers purified from Rhodopseudomonas sphaeroides shows an optical absorbance change in response to photochemical activity, at temperatures down to 35 K. The change corresponds to a bathochromic shift of 1 nm of each absorption band. The same change is induced by either chemical oxidation or photo-oxidation of reaction center bacteriochlorophyll (P-870). Reduction of the electron acceptor of the reaction center, either chemically or photochemically, does not cause a carotenoid absorbance change or modify a change already induced by oxidation of P-870. The change of the carotenoid spectrum can therefore be correlated with the appearance of positive charge in the reaction center. In these studies we observed that at 35 K the absorption band of reaction center bacteriochlorophyll near 600 nm exhibits a shoulder at 605 nm. The resolution into two components is more pronounced in the light-dark difference spectrum. This observation is consistent with our earlier finding, that the "special pair" of bacteriochlorophyll molecules that acts as photochemical electron donor has a dimer-like absorption spectrum in the near infrared.  相似文献   

10.
Picosecond transient circular dichroism spectra are reported for the primary intermediates in the photocycle of reaction centers isolated from Rhodobacter sphaeroides. The time-resolved circular dichroism spectra of the two electron transfer intermediates (BChl2) +BPh-LQA and (BChl2) +BPhLQ-A reveal a large, nonconservative, and fairly stationary CD band at 800 nm. These results suggests that mechanisms other than exciton interactions need to be included in order to explain the optical activity of this biological system.  相似文献   

11.
Mutants of Rhodobacter (Rba.) sphaeroides are described which were designed to study electron transfer along the so-called B-branch of reaction center (RC) cofactors. Combining the mutation L(M214)H, which results in the incorporation of a bacteriochlorophyll, β, for HA [Kirmaier et al. (1991) Science 251: 922–927] with two mutations, G(M203)D and Y(M210)W, near BA, we have created a double and a triple mutant with long lifetimes of the excited state P* of the primary donor P, viz. 80 and 160 ps at room temperature, respectively. The yield of P+QA formation in these mutants is reduced to 50 and 30%, respectively, of that in wildtype RCs. For both mutants, the quantum yield of P+HB formation was less than 10%, in contrast to the 15% B-branch electron transfer demonstrated in RCs of a similar mutant of Rba. capsulatus with a P* lifetime of 15 ps [Heller et al. (1995) Science 269: 940–945]. We conclude that the lifetime of P* is not a governing factor in switching to B-branch electron transfer. The direct photoreduction of the secondary quinone, QB, was studied with a triple mutant combining the G(M203)D, L(M214)H and A(M260)W mutations. In this triple mutant QA does not bind to the reaction center [Ridge et al. (1999) Photosynth Res 59: 9–26]. It is shown that B-branch electron transfer leading to P+QB formation occurs to a minor extent at both room temperature and at cryogenic temperatures (about 3% following a saturating laser flash at 20 K). In contrast, in wildtype RCs P+QB formation involves the A-branch and does not occur at all at cryogenic temperatures. Attempts to accumulate the P+QB state under continuous illumination were not successful. Charge recombination of P+QB formed by B-branch electron transfer in the new mutant is much faster (seconds) than has been previously reported for charge recombination of P+QB trapped in wildtype RCs (105 s) [Kleinfeld et al. (1984b) Biochemistry 23: 5780–5786]. This difference is discussed in light of the different binding sites for QB and QB that recently have been found by X-ray crystallography at cryogenic temperatures [Stowell et al. (1997) Science 276: 812–816]. We present the first low-temperature absorption difference spectrum due to P+QB . This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Spectral and kinetic characteristics of fluorescence from isolated reaction centers of photosynthetic purple bacteria Rhodobacter sphaeroides and Rhodobacter capsulatus were measured at room temperature under rectangular shape of excitation at 810 nm. The kinetics of fluorescence at 915 nm reflected redox changes due to light and dark reactions in the donor and acceptor quinone complex of the reaction center as identified by absorption changes at 865 nm (bacteriochlorophyll dimer) and 450 nm (quinones) measured simultaneously with the fluorescence. Based on redox titration and gradual bleaching of the dimer, the yield of fluorescence from reaction centers could be separated into a time-dependent (originating from the dimer) and a constant part (coming from contaminating pigment (detached bacteriochlorin)). The origin was also confirmed by the corresponding excitation spectra of the 915 nm fluorescence. The ratio of yields of constant fluorescence over variable fluorescence was much smaller in Rhodobacter sphaeroides (0.15±0.1) than in Rhodobacter capsulatus (1.2±0.3). It was shown that the changes in fluorescence yield reflected the disappearance of the dimer and the quenching by the oxidized primary quinone. The redox changes of the secondary quinone did not have any influence on the yield but excess quinone in the solution quenched the (constant part of) fluorescence. The relative yields of fluorescence in different redox states of the reaction center were tabulated. The fluorescence of the dimer can be used as an effective tool in studies of redox reactions in reaction centers, an alternative to the measurements of absorption kinetics.Abbreviations Bchl bacteriochlorophyll - Bpheo bacteriopheophytin - D electron donor to P+ - P bacteriochlorophyll dimer - Q quinone acceptor - QA primary quinone acceptor - QB secondary quinone acceptor - RC reaction center protein - UQ6 ubiquinone-30  相似文献   

13.
In reaction centers from Rhodobacter sphaeroides, subjected to continuous illumination in the presence of an inhibitor of the QA to QB electron transfer, the oxidation of P870 consisted of several kinetic phases with a fast initial reaction followed by very slow accumulation of P870+ with a halftime of several minutes. When the light was turned off, a phase of fast charge recombination was followed by an equally slow reduction of P870+. In reaction centers depleted of QB, where forward electron transfer from QA is also prevented, the slow reactions were also observed but with different kinetic properties. The kinetic traces of accumulation and decay of P870+ could be fitted to a simple three-state model where the initial, fast charge separation is followed by a slow reversible conversion to a long-lived, charge-stabilized state. Spectroscopic examination of the charge-separated, semi-stable state, using optical absorbance and EPR spectroscopy, suggests that the unpaired electron on the acceptor side is located in an environment significantly different from normal. The activation parameters and enthalpy and entropy changes, determined from the temperature dependence of the slow conversion reaction, suggest that this might be coupled to changes in the protein structure of the reaction centers, supporting the spectroscopic results. One model that is consistent with the present observations is that reaction centers, after the primary charge separation, undergo a slow, light-induced change in conformation affecting the acceptor side. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Mutations were made in four residues near the bacteriochlorophyll cofactors of the photosynthetic reaction center from Rhodobacter sphaeroides. These mutations, L131 Leu to His and M160 Leu to His, near the dimer bacteriochlorophylls, and M203 Gly to Asp and L177 Ile to Asp, near the monomer bacteriochlorophylls, were designed to result in the placement of a hydrogen bond donor group near the ring V keto carbonyl of each bacteriochlorophyll. Perturbations of the electronic structures of the bacteriochlorophylls in the mutants are indicated by additional resolved transitions in the bacteriochlorophyll absorption bands in steady-state low-temperature and time-resolved room temperature spectra in three of the resulting mutant reaction centers. The major effect of the two mutations near the dimer was an increase up to 80 mV in the donor oxidation-reduction midpoint potential. Correspondingly, the calculated free energy difference between the excited state of the primary donor and the initial charge separated state decreased by up to 55 mV, the initial forward electron-transfer rate was up to 4 times slower, and the rate of charge recombination between the primary quinone and the donor was approximately 30% faster in these two mutants compared to the wild type. The two mutations near the monomer bacteriochlorophylls had minor changes of 25 mV or less in the donor oxidation-reduction potential, but the mutation close to the monomer bacteriochlorophyll on the active branch resulted in a roughly 3-fold decrease in the rate of the initial electron transfer.  相似文献   

15.
We investigate the dynamical properties of the non-heme iron (NHFe) in His-tagged photosynthetic bacterial reaction centers (RCs) isolated from Rhodobacter (Rb.) sphaeroides. M?ssbauer spectroscopy and nuclear inelastic scattering of synchrotron radiation (NIS) were applied to monitor the arrangement and flexibility of the NHFe binding site. In His-tagged RCs, NHFe was stabilized only in a high spin ferrous state. Its hyperfine parameters (IS=1.06±0.01mm/s and QS=2.12±0.01mm/s), and Debye temperature (θ(D0)~167K) are comparable to those detected for the high spin state of NHFe in non-His-tagged RCs. For the first time, pure vibrational modes characteristic of NHFe in a high spin ferrous state are revealed. The vibrational density of states (DOS) shows some maxima between 22 and 33meV, 33 and 42meV, and 53 and 60meV and a very sharp one at 44.5meV. In addition, we observe a large contribution of vibrational modes at low energies. This iron atom is directly connected to the protein matrix via all its ligands, and it is therefore extremely sensitive to the collective motions of the RC protein core. A comparison of the DOS spectra of His-tagged and non-His-tagged RCs from Rb. sphaeroides shows that in the latter case the spectrum was overlapped by the vibrations of the heme iron of residual cytochrome c(2), and a low spin state of NHFe in addition to its high spin one. This enabled us to pin-point vibrations characteristic for the low spin state of NHFe.  相似文献   

16.
《BBA》2020,1861(10):148238
The photoinduced charge separation in QB-depleted reaction centers (RCs) from Rhodobacter sphaeroides R-26 in solid air-dried and vacuum-dried (~10−2 Torr) films, obtained in the presence of detergent n-dodecyl-β-D-maltoside (DM), is characterized using ultrafast transient absorption spectroscopy. It is shown that drying of RC-DM complexes is accompanied by reversible blue shifts of the ground-state absorption bands of the pigment ensemble, which suggest that no dehydration-induced structural destruction of RCs occurs in both types of films. In air-dried films, electron transfer from the excited primary electron donor P to the photoactive bacteriopheophytin HA proceeds in 4.7 ps to form the P+HA state with essentially 100% yield. P+HA decays in 260 ps both by electron transfer to the primary quinone QA to give the state P+QA (87% yield) and by charge recombination to the ground state (13% yield). In vacuum-dried films, P decay is characterized by two kinetic components with time constants of 4.1 and 46 ps in a proportion of ~55%/45%, and P+HA decays about 2-fold slower (462 ps) than in air-dried films. Deactivation of both P and P+HA to the ground state effectively competes with the corresponding forward electron-transfer reactions in vacuum-dried RCs, reducing the yield of P+QA to 68%. The results are compared with the data obtained for fully hydrated RCs in solution and are discussed in terms of the presence in the RC complexes of different water molecules, the removal/displacement of which affects spectral properties of pigment cofactors and rates and yields of the electron-transfer reactions.  相似文献   

17.
Luminescence emitted by tryptophan residues of reaction center (RC) preparations was studied. The RG preparations were isolated from the photosynthetic bacterium Rhodopseudomonas sphaeroides by treatment with lauryl dimethyl amine oxide (LDAO). After excitation at lambda 280 nm the quantum yield of luminescence is 0,02. It is shown that 60% of tryptophanyls are located inside the protein globule in the surrounding of relaxating polar groups and the rest approximately 40% on the outer surface of the globule--predominantly in the positively charged region of the LDAO-RC protein--in the surrounding of protein-bound water molecules. There is a correlation between the pH dependencies of the position of the peak of luminescence from tryptophanyls and effectivity of electron transfer from the primary (quinone) to secondary acceptor. The two parameters are invariant at pH from 7 to 9 and vary at pH less than 7 and pH greater than 9. The phenomena responsible for the observed correlation are discussed on the basis of pH-dependent changes in the RC protein which govern electron transport activity at the reaction center.  相似文献   

18.
Photosynthesis Research - Electron-vibrational relaxation in the excited state of the primary electron donor, bacteriochlorophyll dimer P, in the reaction centers (RCs) of purple photosynthetic...  相似文献   

19.
Transient absorption changes induced by excitation of isolated reaction centers (RCs) from Rhodobacter sphaeroides with 600 nm laser pulses of 20 fs (full width at half maximum) were monitored in the wavelength region of 420–560 nm. The spectral features of the spectrum obtained are characteristic for an electrochromic band shift of the single carotenoid (Car) molecule spheroidene, which is an integral constituent of these RCs. This effect is assigned to an electrochromic bandshift of Car due to the local electric field of the dipole moment formed by electronic excitation of bacteriochlorophyll (BChl) molecule(s) in the neighborhood of Car. Based on the known distances between the pigments, the monomeric BChl (BB) in the inactive B-branch is inferred to dominate this effect. The excitation of BB at 600 nm leads to a transition into the S2 state (Qx band), which is followed by rapid internal conversion to the S1 state (Qy band), thus leading to a change of strength and orientation of the dipole moment, i.e., of the electric field acting on the Car molecule. Therefore, the time course of the electrochromic bandshift reflects the rate of the internal conversion from S2 to S1 of BB. The evaluation of the kinetics leads to a value of 30 fs for this relaxation process. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

20.
Pashchenko VZ 《Biofizika》2000,45(3):461-468
The effect of deuteration, and the addition of glycerol and dimethylsulfoxide on the redox midpoint potential Em of bacteriochlorophyll of the special pair ?PMPL?, the rate of energy migration from bacteriopheophytin HM to ?PMPL?, and electron transfer from ?PMPL? to HL and from HL to quinone QA in reaction centers of Rhodobacter sphaeroides was studied. It was shown that H2O-->D2O substitution did not change Em of the special pair, while the addition of 70% glycerol and 35% dimethylsulfoxide (v/v) increased the Em value by 30 and 45 mV, correspondingly. The rate constants of energy migration [formula: see text], charge separation [formula: see text], electron transfer to QA kQ remained unchanged upon the addition of glycerol. The isotopic substitution of water and addition of dimethylsulfoxide led to a 2-3-fold increase in km, ke and kQ values. The dependence of the potential of redox center on the dielectric constant epsilon was analyzed. It was shown that replacement of H2O by dimethylsulfoxide can increase Em by tens of millivolt. There was no correlation between changes in Em and the values of km, ke and kQ upon deuteration and addition of cryoprotectors. It was concluded that the processes of energy migration, charge separation, and electron transfer to the quinone acceptor are preceded by the solvation of states H*M, ?P+MP-L?* and [formula: see text].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号