首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-catenin is central to recruitment of actin networks to the cadherin-catenin complex [1, 2], but how such networks are subsequently stabilized against stress applied during morphogenesis is poorly understood. To identify proteins that functionally interact with α-catenin in this process, we performed enhancer screening using a weak allele of the C.?elegans α-catenin, hmp-1, thereby identifying UNC-94/tropomodulin. Tropomodulins (Tmods) cap the minus ends of F-actin in sarcomeres [3]. They also regulate lamellipodia [4], can promote actin nucleation [5], and are required for normal cardiovascular development [6, 7] and neuronal growth-cone morphology [8]. Tmods regulate the morphology of cultured epithelial cells [9], but their role in epithelia in?vivo remains unexplored. We find that UNC-94 is?enriched within a HMP-1-dependent junctional-actin network at epidermal adherens junctions subject to stress during morphogenesis. Loss of UNC-94 leads to discontinuity of this network, and high-speed filming of hmp-1(fe4);unc-94(RNAi) embryos reveals large junctional displacements that depend on the Rho pathway. In?vitro, UNC-94 acts in combination with HMP-1, leading to longer actin bundles than with HMP-1 alone. Our data suggest that Tmods protect actin filaments recruited by α-catenin from minus-end subunit loss, enabling them to withstand the stresses of morphogenesis.  相似文献   

2.
Ena/VASP proteins mediate the effects of guidance cues on the actin cytoskeleton. The single C. elegans homolog of the Ena/VASP family of proteins, UNC-34, is required for the migrations of cells and growth cones. Here we show that unc-34 mutant alleles also interact genetically with Wnt mutants to reveal a role for unc-34 in the establishment of neuronal polarity along the C. elegans anterior-posterior axis. Our mutant analysis shows that eliminating UNC-34 function results in neuronal migration and polarity phenotypes that are enhanced at higher temperatures, revealing a heat-sensitive process that is normally masked by the presence of UNC-34. Finally, we show that the UNC-34 protein is expressed broadly and accumulates in axons and at the apical junctions of epithelial cells. While most mutants lacked detectable UNC-34, three unc-34 mutants that contained missense mutations in the EVH1 domain produced full-length UNC-34 that failed to localize to apical junctions and axons, supporting the role for the EVH1 domain in localizing Ena/VASP family members.  相似文献   

3.
Adherens and tight junctions play key roles in assembling epithelia and maintaining barriers. In cell culture zonula occludens (ZO)-family proteins are important for assembly/maturation of both tight and adherens junctions (AJs). Genetic studies suggest that ZO proteins are important during normal development, but interpretation of mouse and fly studies is limited by genetic redundancy and/or a lack of null alleles. We generated null alleles of the single Drosophila ZO protein Polychaetoid (Pyd). Most embryos lacking Pyd die with striking defects in morphogenesis of embryonic epithelia including the epidermis, segmental grooves, and tracheal system. Pyd loss does not dramatically affect AJ protein localization or initial localization of actin and myosin during dorsal closure. However, Pyd loss does affect several cell behaviors that drive dorsal closure. The defects, which include segmental grooves that fail to retract, a disrupted leading edge actin cable, and reduced zippering as leading edges meet, closely resemble defects in canoe zygotic null mutants and in embryos lacking the actin regulator Enabled (Ena), suggesting that these proteins act together. Canoe (Cno) and Pyd are required for proper Ena localization during dorsal closure, and strong genetic interactions suggest that Cno, Pyd, and Ena act together in regulating or anchoring the actin cytoskeleton during dorsal closure.  相似文献   

4.
BACKGROUND: The cytoplasmic C. elegans protein MIG-10 affects cell migrations and is related to mammalian proteins that bind phospholipids and Ena/VASP actin regulators. In cultured cells, mammalian MIG-10 promotes lamellipodial growth and Ena/VASP proteins induce filopodia. RESULTS: We show here that during neuronal development, mig-10 and the C. elegans Ena/VASP homolog unc-34 cooperate to guide axons toward UNC-6 (netrin) and away from SLT-1 (Slit). The single mutants have relatively mild phenotypes, but mig-10; unc-34 double mutants arrest early in development with severe axon guidance defects. In axons that are guided toward ventral netrin, unc-34 is required for the formation of filopodia and mig-10 increases the number of filopodia. In unc-34 mutants, developing axons that lack filopodia are still guided to netrin through lamellipodial growth. In addition to its role in axon guidance, mig-10 stimulates netrin-dependent axon outgrowth in a process that requires the age-1 phosphoinositide-3 lipid kinase but not unc-34. CONCLUSIONS: mig-10 and unc-34 organize intracellular responses to both attractive and repulsive axon guidance cues. mig-10 and age-1 lipid signaling promote axon outgrowth; unc-34 and to a lesser extent mig-10 promote filopodia formation. Surprisingly, filopodia are largely dispensable for accurate axon guidance.  相似文献   

5.
Activation of the nonreceptor tyrosine kinase Abelson (Abl) contributes to the development of leukemia, but the complex roles of Abl in normal development are not fully understood. Drosophila Abl links neural axon guidance receptors to the cytoskeleton. Here we report a novel role for Drosophila Abl in epithelial cells, where it is critical for morphogenesis. Embryos completely lacking both maternal and zygotic Abl die with defects in several morphogenetic processes requiring cell shape changes and cell migration. We describe the cellular defects that underlie these problems, focusing on dorsal closure as an example. Further, we show that the Abl target Enabled (Ena), a modulator of actin dynamics, is involved with Abl in morphogenesis. We find that Ena localizes to adherens junctions of most epithelial cells, and that it genetically interacts with the adherens junction protein Armadillo (Arm) during morphogenesis. The defects of abl mutants are strongly enhanced by heterozygosity for shotgun, which encodes DE-cadherin. Finally, loss of Abl reduces Arm and alpha-catenin accumulation in adherens junctions, while having little or no effect on other components of the cytoskeleton or cell polarity machinery. We discuss possible models for Abl function during epithelial morphogenesis in light of these data.  相似文献   

6.
Drosophila Enabled (Ena) was initially identified as a dominant genetic suppressor of mutations in the Abelson tyrosine kinase and, more recently, as a member of the Ena/human vasodilator-stimulated phosphoprotein (VASP) family of proteins. We have used genetic, biochemical, and cell biological approaches to demonstrate the functional relationship between Ena and human VASP. In addition, we have defined the roles of Ena domains identified as essential for its activity in vivo. We have demonstrated that VASP rescues the embryonic lethality associated with loss of Ena function in Drosophila and have shown that Ena, like VASP, is associated with actin filaments and focal adhesions when expressed in cultured cells. To define sequences that are central to Ena function, we have characterized the molecular lesions present in two lethal ena mutant alleles that affected the Ena/VASP homology domain 1 (EVH1) and EVH2. A missense mutation that resulted in an amino acid substitution in the EVH1 domain eliminated in vitro binding of Ena to the cytoskeletal protein zyxin, a previously reported binding partner of VASP. A nonsense mutation that resulted in a C-terminally truncated Ena protein lacking the EVH2 domain failed to form multimeric complexes and exhibited reduced binding to zyxin and the Abelson Src homology 3 domain. Our analysis demonstrates that Ena and VASP are functionally homologous and defines the conserved EVH1 and EVH2 domains as central to the physiological activity of Ena.  相似文献   

7.
Ena/VASP is required for endothelial barrier function in vivo   总被引:3,自引:0,他引:3       下载免费PDF全文
Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are key actin regulators that localize at regions of dynamic actin remodeling, including cellular protrusions and cell–cell and cell–matrix junctions. Several studies have suggested that Ena/VASP proteins are involved in the formation and function of cellular junctions. Here, we establish the importance of Ena/VASP in endothelial junctions in vivo by analysis of Ena/VASP-deficient animals. In the absence of Ena/VASP, the vasculature exhibits patterning defects and lacks structural integrity, leading to edema, hemorrhaging, and late stage embryonic lethality. In endothelial cells, we find that Ena/VASP activity is required for normal F-actin content, actomyosin contractility, and proper response to shear stress. These findings demonstrate that Ena/VASP is critical for actin cytoskeleton remodeling events involved in the maintenance of functional endothelia.  相似文献   

8.
Variations in cell migration and morphology are consequences of changes in underlying cytoskeletal organization and dynamics. We investigated how these large-scale cellular events emerge as direct consequences of small-scale cytoskeletal molecular activities. Because the properties of the actin cytoskeleton can be modulated by actin-remodeling proteins, we quantitatively examined how one such family of proteins, enabled/vasodilator-stimulated phosphoprotein (Ena/VASP), affects the migration and morphology of epithelial fish keratocytes. Keratocytes generally migrate persistently while exhibiting a characteristic smooth-edged “canoe” shape, but may also exhibit less regular morphologies and less persistent movement. When we observed that the smooth-edged canoe keratocyte morphology correlated with enrichment of Ena/VASP at the leading edge, we mislocalized and overexpressed Ena/VASP proteins and found that this led to changes in the morphology and movement persistence of cells within a population. Thus, local changes in actin filament dynamics due to Ena/VASP activity directly caused changes in cell morphology, which is coupled to the motile behavior of keratocytes. We also characterized the range of natural cell-to-cell variation within a population by using measurable morphological and behavioral features—cell shape, leading-edge shape, filamentous actin (F-actin) distribution, cell speed, and directional persistence—that we have found to correlate with each other to describe a spectrum of coordinated phenotypes based on Ena/VASP enrichment at the leading edge. This spectrum stretched from smooth-edged, canoe-shaped keratocytes—which had VASP highly enriched at their leading edges and migrated fast with straight trajectories—to more irregular, rounder cells migrating slower with less directional persistence and low levels of VASP at their leading edges. We developed a mathematical model that accounts for these coordinated cell-shape and behavior phenotypes as large-scale consequences of kinetic contributions of VASP to actin filament growth and protection from capping at the leading edge. This work shows that the local effects of actin-remodeling proteins on cytoskeletal dynamics and organization can manifest as global modifications of the shape and behavior of migrating cells and that mathematical modeling can elucidate these large-scale cell behaviors from knowledge of detailed multiscale protein interactions.  相似文献   

9.
Adherens junctions, which are cadherin-mediated junctions between cells, and focal adhesions, which are integrin-mediated junctions between cells and the extracellular matrix, are protein complexes that link the actin cytoskeleton to the plasma membrane and, in turn, to the extracellular environment. Zyxin is a LIM domain protein that is found in vertebrate adherens junctions and focal adhesions. Zyxin's molecular architecture and binding partner repertoire suggest roles in actin assembly and dynamics, cell motility, and nuclear-cytoplasmic communication. In order to study the function of zyxin in development, we have identified a zyxin orthologue in Drosophila melanogaster that we have termed Zyx102. Like its vertebrate counterparts, Zyx102 displays three carboxy-terminal LIM domains, a potential nuclear export signal, and three proline-rich motifs, one of which matches the consensus for mediating an interaction with Ena/VASP (Drosophila Enabled/Vasodilator-stimulated phosphoprotein) proteins. Here we show that Zyx102 and Enabled (Ena), the Drosophila member of the Ena/VASP family, can interact specifically in vitro and that this interaction does not occur when a particular mutant form of Ena, encoded by the lethal ena210 allele, is used. Lastly, we show that the zyx102 gene and Drosophila Ena are co-expressed during oogenesis and early embryogenesis, indicating that the two proteins may be able to interact during the development of the Drosophila egg chamber and early embryo.  相似文献   

10.
The Eph receptor tyrosine kinases (RTKs) are regulators of cell migration and axon guidance. However, our understanding of the molecular mechanisms by which Eph RTKs regulate these processes is still incomplete. To understand how Eph receptors regulate axon guidance in Caenorhabditis elegans, we screened for suppressors of axon guidance defects caused by a hyperactive VAB-1/Eph RTK. We identified NCK-1 and WSP-1/N-WASP as downstream effectors of VAB-1. Furthermore, VAB-1, NCK-1, and WSP-1 can form a complex in vitro. We also report that NCK-1 can physically bind UNC-34/Enabled (Ena), and suggest that VAB-1 inhibits the NCK-1/UNC-34 complex and negatively regulates UNC-34. Our results provide a model of the molecular events that allow the VAB-1 RTK to regulate actin dynamics for axon guidance. We suggest that VAB-1/Eph RTK can stop axonal outgrowth by inhibiting filopodia formation at the growth cone by activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex and by inhibiting UNC-34/Ena activity.  相似文献   

11.
The metameric organization of the vertebrate body plan is established during somitogenesis as somite pairs sequentially form along the anteroposterior axis. Coordinated regulation of cell shape, motility and adhesion are crucial for directing the morphological segmentation of somites. We show that members of the Ena/VASP family of actin regulatory proteins are required for somitogenesis in Xenopus. Xenopus Ena (Xena) localizes to the cell periphery in the presomitic mesoderm (PSM), and is enriched at intersomitic junctions and at myotendinous junctions in somites and the myotome, where it co-localizes with beta1-integrin, vinculin and FAK. Inhibition of Ena/VASP function with dominant-negative mutants results in abnormal somite formation that correlates with later defects in intermyotomal junctions. Neutralization of Ena/VASP activity disrupts cell rearrangements during somite rotation and leads to defects in the fibronectin (FN) matrix surrounding somites. Furthermore, inhibition of Ena/VASP function impairs FN matrix assembly, spreading of somitic cells on FN and autophosphorylation of FAK, suggesting a role for Ena/VASP proteins in the modulation of integrin-mediated processes. We also show that inhibition of FAK results in defects in somite formation, blocks FN matrix deposition and alters Xena localization. Together, these results provide evidence that Ena/VASP proteins and FAK are required for somite formation in Xenopus and support the idea that Ena/VASP and FAK function in a common pathway to regulate integrin-dependent migration and adhesion during somitogenesis.  相似文献   

12.
Studies in cultured cells and in vitro have identified many actin regulators and begun to define their mechanisms of action. Among these are Enabled (Ena)/VASP proteins, anti-Capping proteins that influence fibroblast migration, growth cone motility, and keratinocyte cell adhesion in vitro. However, partially redundant family members in mammals and maternal Ena contribution in Drosophila previously prevented assessment of the roles of Ena/VASP proteins in embryonic morphogenesis in flies or mammals. We used several approaches to remove maternal and zygotic Ena function, allowing us to address this question. We found that inactivating Ena does not disrupt cell adhesion or epithelial organization, suggesting its role in these processes is cell type-specific. However, Ena plays an important role in many morphogenetic events, including germband retraction, segmental groove retraction and head involution, whereas it is dispensable for other morphogenetic movements. We focused on dorsal closure, analyzing mechanisms by which Ena acts. Ena modulates filopodial number and length, thus influencing the speed of epithelial zippering and the ability of cells to match with correct neighbors. We also explored filopodial regulation in cultured Drosophila cells and embryos. These data provide new insights into developmental and mechanistic roles of this important actin regulator.  相似文献   

13.
Mena [mammalian Ena (Enabled)]/VASP (vasodilator-stimulated phosphoprotein) proteins are the homologues of Drosophila Ena. In Drosophila, Ena is a substrate of the tyrosine kinase DAbl (Drosophila Abl). However, the link between Abl and the Mena/VASP family is not fully understood in mammals. We previously reported that Abi-1 (Abl interactor 1) promotes phosphorylation of Mena and BCAP (B-cell adaptor for phosphoinositide 3-kinase) by bridging the interaction between c-Abl and the substrate. In the present study we have identified VASP, another member of the Mena/VASP family, as an Abi-1-bridged substrate of Abl. VASP is phosphorylated by Abl when Abi-1 is co-expressed. We also found that VASP interacted with Abi-1 both in vitro and in vivo. VASP was tyrosine-phosphorylated in Bcr-Abl-positive leukaemic cells in an Abi-1-dependent manner. Co-expression of c-Abl and Abi-1 or the phosphomimetic Y39D mutation in VASP resulted in less accumulation of VASP at focal adhesions. VASP Y39D had a reduced affinity to the proline-rich region of zyxin. Interestingly, overexpression of both phosphomimetic and unphosphorylated forms of VASP, but not wild-type VASP, impaired adhesion of K562 cells to fibronectin. These results suggest that the phosphorylation and dephosphorylation cycle of VASP by the Abi-1-bridged mechanism regulates association of VASP with focal adhesions, which may regulate adhesion of Bcr-Abl-transformed leukaemic cells.  相似文献   

14.
Negative regulation of fibroblast motility by Ena/VASP proteins   总被引:23,自引:0,他引:23  
Ena/VASP proteins have been implicated in cell motility through regulation of the actin cytoskeleton and are found at focal adhesions and the leading edge. Using overexpression, loss-of-function, and inhibitory approaches, we find that Ena/VASP proteins negatively regulate fibroblast motility. A dose-dependent decrease in movement is observed when Ena/VASP proteins are overexpressed in fibroblasts. Neutralization or deletion of all Ena/VASP proteins results in increased cell movement. Selective depletion of Ena/VASP proteins from focal adhesions, but not the leading edge, has no effect on motility. Constitutive membrane targeting of Ena/VASP proteins inhibits motility. These results are in marked contrast to current models for Ena/VASP function derived mainly from their role in the actin-driven movement of Listeria monocytogenes.  相似文献   

15.
Filopodia are long plasma membrane extensions involved in the formation of adhesive, contractile, and protrusive actin-based structures in spreading and migrating cells. Whether filopodia formed by different molecular mechanisms equally support these cellular functions is unresolved. We used Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP)–deficient MVD7 fibroblasts, which are also devoid of endogenous mDia2, as a model system to investigate how these different actin regulatory proteins affect filopodia morphology and dynamics independently of one another. Filopodia initiated by either Ena/VASP or mDia2 contained similar molecular inventory but differed significantly in parameters such as number, length, F-actin organization, lifetime, and protrusive persistence. Moreover, in the absence of Ena/VASP, filopodia generated by mDia2 did not support initiation of integrin-dependent signaling cascades required for adhesion and subsequent lamellipodial extension, thereby causing a defect in early cell spreading. Coexpression of VASP with constitutively active mDia2M/A rescued these early adhesion defects. We conclude that Ena/VASP and mDia2 support the formation of filopodia with significantly distinct properties and that Ena/VASP regulates mDia2-initiated filopodial morphology, dynamics, and function.  相似文献   

16.
This study shows that L1-like adhesion (LAD-1), the sole Caenorhabditis elegans homologue of the L1 family of neuronal adhesion molecules, is required for proper development of the germline and the early embryo and embryonic and gonadal morphogenesis. In addition, the ubiquitously expressed LAD-1, which binds to ankyrin-G, colocalizes with the C. elegans ankyrin, UNC-44, in multiple tissues at sites of cell-cell contact. Finally, we show that LAD-1 is phosphorylated in a fibroblast growth factor receptor (FGFR) pathway-dependent manner on a tyrosine residue in the highly conserved ankyrin-binding motif, FIGQY, which was shown previously to abolish the L1 family of cell adhesion molecule (L1CAM) binding to ankyrin in cultured cells. Immunofluorescence studies revealed that FIGQY-tyrosine-phosphorylated LAD-1 does not colocalize with nonphosphorylated LAD-1 or UNC-44 ankyrin but instead is localized to sites that undergo mechanical stress in polarized epithelia and axon-body wall muscle junctions. These findings suggest a novel ankyrin-independent role for LAD-1 related to FGFR signaling. Taken together, these results indicate that L1CAMs constitute a family of ubiquitous adhesion molecules, which participate in tissue morphogenesis and maintaining tissue integrity in metazoans.  相似文献   

17.
BACKGROUND: During embryonic development, epithelia with free edges must join together to create continuous tissues that seal the interior of the organism from the outside environment; failure of epithelial sealing underlies several common human birth defects. Sealing of epithelial sheets in embryos can be extremely rapid, dramatically exceeding the rate of adherens junction formation by epithelial cells in culture or during healing of epithelial wounds. Little is known about the dynamic redistribution of cellular junctional components during such events in living embryos. RESULTS: We have used time-lapse, multiphoton laser-scanning microscopy and green fluorescent protein fusion proteins to analyze the sealing of the Caenorhabditis elegans epidermis in living embryos. Rapid recruitment of alpha-catenin to sites of filopodial contact between contralateral migrating epithelial cells, concomitant with clearing of cytoplasmic alpha-catenin, resulted in formation of nascent junctions; this preceded the formation of mature junctions. Surprisingly, upon inactivation of the entire cadherin-catenin complex, only adhesive strengthening between filopodia was reproducibly affected. Other ventral epidermal cells, which did not extend filopodia and appeared to seal along the ventral midline by coordinated changes in cell shape, successfully adhered in the absence of these proteins. CONCLUSIONS: We propose that 'filopodial priming' - prealignment of bundled actin in filopodia combined with the rapid recruitment of alpha-catenin from cytoplasmic reserves at sites of filopodial contact - accounts for the rapid rate of sealing of the embryonic epidermis of C. elegans. Filopodial priming may provide a general mechanism for rapid creation of adherens junctions during epithelial-sheet sealing in embryos.  相似文献   

18.
19.
Filopodia have been implicated in a number of diverse cellular processes including growth-cone path finding, wound healing, and metastasis. The Ena/VASP family of proteins has emerged as key to filopodia formation but the exact mechanism for how they function has yet to be fully elucidated. Using cell spreading as a model system in combination with small interfering RNA depletion of Capping Protein, we determined that Ena/VASP proteins have a role beyond anticapping activity in filopodia formation. Analysis of mutant Ena/VASP proteins demonstrated that the entire EVH2 domain was the minimal domain required for filopodia formation. Fluorescent recovery after photobleaching data indicate that Ena/VASP proteins rapidly exchange at the leading edge of lamellipodia, whereas virtually no exchange occurred at filopodial tips. Mutation of the G-actin-binding motif (GAB) partially compromised stabilization of Ena/VASP at filopodia tips. These observations led us to propose a model where the EVH2 domain of Ena/VASP induces and maintains clustering of the barbed ends of actin filaments, which putatively corresponds to a transition from lamellipodial to filopodial localization. Furthermore, the EVH1 domain, together with the GAB motif in the EVH2 domain, helps to maintain Ena/VASP at the growing barbed ends.  相似文献   

20.
The Listeria monocytogenes surface protein ActA mediates actin-based motility by interacting with a number of host cytoskeletal components, including Ena/VASP family proteins, which in turn interact with actin and the actin-binding protein profilin. We employed a bidirectional genetic approach to study Ena/VASP's contribution to L. monocytogenes movement and pathogenesis. We generated an ActA allelic series within the defined Ena/VASP-binding sites and introduced the resulting mutant L. monocytogenes into cell lines expressing different Ena/VASP derivatives. Our findings indicate that Ena/VASP proteins contribute to the persistence of both speed and directionality of L. monocytogenes movement. In the absence of the Ena/VASP proline-rich central domain, speed consistency decreased by sixfold. In addition, the Ena/VASP F-actin-binding region increased directionality of bacterial movement by fourfold. We further show that both regions of Ena/VASP enhanced L. monocytogenes cell-to-cell spread to a similar degree, although the Ena/VASP F-actin-binding region did so in an ActA-independent manner. Surprisingly, our ActA allelic series enabled us to uncouple L. monocytogenes speed from directionality although both were controlled by Ena/VASP proteins. Lastly, we showed the pathogenic relevance of these findings by the observation that L. monocytogenes lacking ActA Ena/VASP-binding sites were up to 400-fold less virulent during an adaptive immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号