首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The half-maximal stimulation of the rates of glycolysis and glycogen synthesis in soleus-muscle strips from sedentary animals occurred at a concentration of insulin of about 100 microunits/ml. In soleus-muscle strips from exercise-trained rats (5 weeks of treadmill training), half-maximal stimulation of the rate of glycolysis occurred at about 10 microunits of insulin/ml, whereas that for glycogen synthesis occurred between 10 and 100 microunits of insulin/ml. The sensitivity of glycolysis to insulin after exercise training is similar to that of adipose tissue from sedentary animals. This finding suggests that, in sedentary animals, the effects of normal changes in insulin concentration may affect muscle primarily indirectly via the anti-lipolytic effect on adipose tissue, whereas after training insulin may effect the rate of glycolysis in muscle directly. A single period of exercise did not change the sensitivity of glycolysis in soleus muscle to insulin, nor probably that of glycogen synthesis. It is suggested that the improvement in insulin sensitivity of glycolysis in muscle caused by exercise-training could account, in part, for the well-established improvement in glucose tolerance and insulin sensitivity observed in man and rats after exercise-training.  相似文献   

2.
The purpose of the present study was to determine in human skeletal muscle whether a single exercise bout and 7 days of consecutive endurance (cycling) training 1) increased insulin-stimulated Akt pSer(473) and 2) altered the abundance of the protein tyrosine phosphatases (PTPases), PTP1B and SHP2. In healthy, untrained men (n = 8; 24 +/- 1 yr), glucose infusion rate during a hyperinsulinemic euglycemic clamp, when compared with untrained values, was not improved 24 h following a single 60-min bout of endurance cycling but was significantly increased ( approximately 30%; P < 0.05) 24 h following completion of 7 days of exercise training. Insulin-stimulated Akt pSer(473) was approximately 50% higher (P < 0.05) 24 h following the acute bout of exercise, with this effect remaining after 7 days of training (P < 0.05). Insulin-stimulated insulin receptor and insulin receptor substrate-1 tyrosine phosphorylation were not altered 24 h after acute exercise and short-term training. Insulin did not acutely regulate the localization of the PTPases, PTP1B or SHP2, although cytosolic protein abundance of SHP2 was increased (P < 0.05; main effect) 24 h following acute exercise and short-term training. In conclusion, insulin-sensitive Akt pSer(473) and cytosolic SHP2 protein abundance are higher after acute exercise and short-term training, and this effect appears largely due to the residual effects of the last bout of prior exercise. The significance of exercise-induced alterations in cytosolic SHP2 and insulin-stimulated Akt pSer(473) on the improvement in insulin sensitivity requires further elucidation.  相似文献   

3.
Borst SE  Snellen HG 《Life sciences》2001,69(13):1497-1507
We assessed the effects of combined metformin treatment and exercise training on body composition, on insulin concentration following glucose loading, on insulin-stimulated glucose transport in skeletal muscle, and on muscle glycogen content. Male Sprague-Dawley rats were treated for 35 days with or without metformin (320 mg/kg/day) and/or treadmill exercise training (20 min at 20 m/min, 5 days/wk). Because metformin reduces food intake, pair-fed controls were included. Metformin, training, and pair-feeding all decreased food intake, body weight, and insulin concentration following glucose loading. Metformin and training reduced intra-abdominal fat, but pair feeding did not. In isolated strips derived from soleus, epitrochlearis and extensor carpi ulnaris muscles, metformin increased insulin-stimulated transport of [3H]-2-deoxyglucose by 90%, 89% and 125%, respectively (P < 0.02) and training increased [3H]-2-deoxyglucose transport in the extensor carpi ulnaris muscle only (66%, P < 0.05). Pair-feeding did not alter [3H]-2-deoxyglucose transport. Training increased gastrocnemius muscle glycogen by 100% (P < 0.001). Metformin and pair-feeding did not alter muscle glycogen. We conclude that metformin reverses the maturation-induced impairment of insulin responsiveness in Sprague-Dawley rats by increasing insulin-stimulated glucose transport in skeletal muscle and that this effect is not secondary to reduced food intake. We also conclude that metformin and exercise training may increase insulin sensitivity by different mechanisms, with training causing increased glucose transport only in some muscles and also causing increased muscle glycogen storage.  相似文献   

4.
We examined the effects of high-fat diet (HFD) and exercise training on insulin-stimulated whole body glucose fluxes and several key steps of glucose metabolism in skeletal muscle. Rats were maintained for 3 wk on either low-fat (LFD) or high-fat diet with or without exercise training (swimming for 3 h per day). After the 3-wk diet/exercise treatments, animals underwent hyperinsulinemic euglycemic clamp experiments for measurements of insulin-stimulated whole body glucose fluxes. In addition, muscle samples were taken at the end of the clamps for measurements of glucose 6-phosphate (G-6-P) and GLUT-4 protein contents, hexokinase, and glycogen synthase (GS) activities. Insulin-stimulated glucose uptake was decreased by HFD and increased by exercise training (P < 0.01 for both). The opposite effects of HFD and exercise training on insulin-stimulated glucose uptake were associated with similar increases in muscle G-6-P levels (P < 0.05 for both). However, the increase in G-6-P level was accompanied by decreased GS activity without changes in GLUT-4 protein content and hexokinase activities in the HFD group. In contrast, the increase in G-6-P level in the exercise-trained group was accompanied by increased GLUT-4 protein content and hexokinase II (cytosolic) and GS activities. These results suggest that HFD and exercise training affect insulin sensitivity by acting predominantly on different steps of intracellular glucose metabolism. High-fat feeding appears to induce insulin resistance by affecting predominantly steps distal to G-6-P (e.g., glycolysis and glycogen synthesis). Exercise training affected multiple steps of glucose metabolism both proximal and distal to G-6-P. However, increased muscle G-6-P levels in the face of increased glucose metabolic fluxes suggest that the effect of exercise training is quantitatively more prominent on the steps proximal to G-6-P (i.e., glucose transport and phosphorylation).  相似文献   

5.
The purpose of this study was to determine the factors contributing to the ability of exercise to enhance insulin-stimulated glucose disposal. Sixteen insulin-resistant nondiabetic and seven Type 2 diabetic subjects underwent two hyperinsulinemic (40 mU x m-2 x min-1) clamps, once without and once with concomitant exercise at 70% peak O2 consumption. Exercise was begun at the start of insulin infusion and was performed for 30 min. Biopsies of the vastus lateralis were performed before and after 30 min of insulin infusion (immediately after cessation of exercise). Exercise synergistically increased insulin-stimulated glucose disposal in nondiabetic [from 4.6 +/- 0.4 to 9.5 +/- 0.8 mg x kg fat-free mass (FFM)-1x min-1] and diabetic subjects (from 4.3 +/- 1.0 to 7.9 +/- 0.7 mg. kg FFM-1x min-1) subjects. The rate of glucose disposal also was significantly greater in each group after cessation of exercise. Exercise enhanced insulin-stimulated increases in glycogen synthase fractional velocity in control (from 0.07 +/- 0.02 to 0.22 +/- 0.05, P < 0.05) and diabetic (from 0.08 +/- 0.03 to 0.15 +/- 0.03, P < 0.01) subjects. Exercise also enhanced insulin-stimulated glucose storage (glycogen synthesis) in nondiabetic (2.9 +/- 0.9 vs. 4.9 +/- 1.1 mg x kg FFM-1x min-1) and diabetic (1.7 +/- 0.5 vs. 4.2 +/- 0.8 mg x kg FFM-1. min-1) subjects. Increased glucose storage accounted for the increase in whole body glucose disposal when exercise was performed during insulin stimulation in both groups; effects of exercise were correlated with enhancement of glucose disposal and glucose storage (r = 0.93, P < 0.001). Exercise synergistically enhanced insulin-stimulated insulin receptor substrate 1-associated phosphatidylinositol 3-kinase activity (P < 0.05) and Akt Ser473 phosphorylation (P < 0.05) in nondiabetic subjects but had little effect in diabetic subjects. The data indicate that exercise, performed in conjunction with insulin infusion, synergistically increases insulin-stimulated glucose disposal compared with insulin alone. In nondiabetic and diabetic subjects, increased glycogen synthase activation is likely to be involved, in part, in this effect. In nondiabetic, but not diabetic, subjects, exercise-induced enhancement of insulin stimulation of the phosphatidylinositol 3-kinase pathway is also likely to be involved in the exercise-induced synergistic enhancement of glucose disposal.  相似文献   

6.
1. Soleus, extensor digitorum longus (EDL) or hemi-diaphragm muscles of the rat were incubated in the presence of insulin and rates of the processes of glycolysis and glycogen synthesis were measured. 2. The concentrations of insulin required to cause half-maximal stimulation of glycolysis in both soleus and EDL preparations were significantly decreased by the presence of adenosine deaminase in the medium. 3. Adenosine deaminase increased the sensitivity of the process of hexose transport to insulin (in an identical manner to the change in sensitivity of glycolysis) in the EDL preparation. 4. None of the adenosine mediated effects on insulin-stimulated rates of glycolysis were observed in the hemi-diaphragm preparation or on the rates of glycogen synthesis in any of the three muscle preparations. 5. Therefore, changes in the adenosine system in skeletal muscle influence insulin sensitivity regardless of fibre type composition of the muscle.  相似文献   

7.
Two groups of male Wistar endurance- and sprint-acclimatized rats were used to study the time course of uridine uptake into skeletal muscle RNA following acute exercise. Endurance and sprint animals were killed at 0, 2, 18, 24, and 48 hr following 1 hr of either endurance (30 m X min-1) or sprint running (90 m X min-1). Red vastus (RV) and white vastus (WV) muscle samples were incubated for 30 min in a medium containing 1 microCi 5-[14C]uridine. Uridine uptake was determined in the myofibrillar-nuclear, mitochondrial, microsomal, and soluble fractions of skeletal muscle via liquid scintillation counting. A significant decrease in whole muscle uridine uptake into RNA was observed in RV muscles following endurance exercise as well as in WV of sprint-exercised rats. Sprint-exercised RV had significantly greater uridine uptake into RNA in the homogenate and myofibrillar-nuclear fraction 2-18 hr post exercise. Increased mitochondrial uridine incorporation into RNA was observed in endurance- and sprint-exercised muscles between 18 and 48 hr post exercise. A very large increment in microsomal uridine uptake was observed in sprint-exercised WV at 24 hr. These data suggest that while whole muscle RNA synthesis may decline immediately following acute exercise overload, increases are observed in specific muscle fractions. These changes appear to coincide with protein-specific adaptations to sprint and endurance exercise.  相似文献   

8.
The purpose of this investigation was to determine whether endurance exercise training increases the ability of human skeletal muscle to accumulate glycogen after exercise. Subjects (4 women and 2 men, 31 +/- 8 yr old) performed high-intensity stationary cycling 3 days/wk and continuous running 3 days/wk for 10 wk. Muscle glycogen concentration was measured after a glycogen-depleting exercise bout before and after endurance training. Muscle glycogen accumulation rate from 15 min to 6 h after exercise was twofold higher (P < 0.05) in the trained than in the untrained state: 10.5 +/- 0.2 and 4.5 +/- 1.3 mmol. kg wet wt(-1). h(-1), respectively. Muscle glycogen concentration was higher (P < 0.05) in the trained than in the untrained state at 15 min, 6 h, and 48 h after exercise. Muscle GLUT-4 content after exercise was twofold higher (P < 0.05) in the trained than in the untrained state (10.7 +/- 1.2 and 4.7 +/- 0.7 optical density units, respectively) and was correlated with muscle glycogen concentration 6 h after exercise (r = 0.64, P < 0.05). Total glycogen synthase activity and the percentage of glycogen synthase I were not significantly different before and after training at 15 min, 6 h, and 48 h after exercise. We conclude that endurance exercise training enhances the capacity of human skeletal muscle to accumulate glycogen after glycogen-depleting exercise.  相似文献   

9.
Endurance exercise training as well as leucine supplementation modulates glucose homeostasis and protein turnover in mammals. Here, we analyze whether leucine supplementation alters the effects of endurance exercise on these parameters in healthy mice. Mice were distributed into sedentary (C) and exercise (T) groups. The exercise group performed a 12-week swimming protocol. Half of the C and T mice, designated as the CL and TL groups, were supplemented with leucine (1.5 % dissolved in the drinking water) throughout the experiment. As well known, endurance exercise training reduced body weight and the retroperitoneal fat pad, increased soleus mass, increased VO2max, decreased muscle proteolysis, and ameliorated peripheral insulin sensitivity. Leucine supplementation had no effect on any of these parameters and worsened glucose tolerance in both CL and TL mice. In the soleus muscle of the T group, AS-160Thr-642 (AKT substrate of 160 kDa) and AMPKThr-172 (AMP-Activated Protein Kinase) phosphorylation was increased by exercise in both basal and insulin-stimulated conditions, but it was reduced in TL mice with insulin stimulation compared with the T group. Akt phosphorylation was not affected by exercise but was lower in the CL group compared with the other groups. Leucine supplementation increased mTOR phosphorylation at basal conditions, whereas exercise reduced it in the presence of insulin, despite no alterations in protein synthesis. In trained groups, the total FoxO3a protein content and the mRNA for the specific isoforms E2 and E3 ligases were reduced. In conclusion, leucine supplementation did not potentiate the effects of endurance training on protein turnover, and it also reduced its positive effects on glucose homeostasis.  相似文献   

10.
1. The effects of aging on the sensitivity and responsiveness of glucose transport, lactate formation and glycogen synthesis to insulin were studied in the incubated stripped soleus muscle isolated from aging Sprague-Dawley and Wistar rats. 2. As Sprague-Dawley rats aged from 5 to 13 weeks, there were marked increases in the concentrations of insulin that were required for half-maximal stimulation (i.e. EC50 value, which is a measure of sensitivity) of glucose transport, lactate formation and glycogen synthesis. 3. In marked contrast, there were no alterations in sensitivities of any of these processes to insulin in soleus muscle prepared from Wistar rats aged between 6 and 12 weeks. 4. However, in soleus muscles from 85-week-old Wistar rats the rates of glycogen synthesis in response to basal, sub-maximal and maximal concentrations of insulin were markedly decreased. The insulin EC50 value of glycogen synthesis was increased 4-fold, but was unchanged for lactate formation. 5. The insulin-stimulated rates of glucose transport in soleus muscles from 5- or 85-week-old Wistar rats were not significantly different.  相似文献   

11.
The effects of sprint training on muscle metabolism and ion regulation during intense exercise remain controversial. We employed a rigorous methodological approach, contrasting these responses during exercise to exhaustion and during identical work before and after training. Seven untrained men undertook 7 wk of sprint training. Subjects cycled to exhaustion at 130% pretraining peak oxygen uptake before (PreExh) and after training (PostExh), as well as performing another posttraining test identical to PreExh (PostMatch). Biopsies were taken at rest and immediately postexercise. After training in PostMatch, muscle and plasma lactate (Lac(-)) and H(+) concentrations, anaerobic ATP production rate, glycogen and ATP degradation, IMP accumulation, and peak plasma K(+) and norepinephrine concentrations were reduced (P<0.05). In PostExh, time to exhaustion was 21% greater than PreExh (P<0.001); however, muscle Lac(-) accumulation was unchanged; muscle H(+) concentration, ATP degradation, IMP accumulation, and anaerobic ATP production rate were reduced; and plasma Lac(-), norepinephrine, and H(+) concentrations were higher (P<0.05). Sprint training resulted in reduced anaerobic ATP generation during intense exercise, suggesting that aerobic metabolism was enhanced, which may allow increased time to fatigue.  相似文献   

12.
Since there are data to indicate that heavy exercise decreases insulin binding to skeletal muscle at a point when glucose uptake is known to be augmented, we tested the hypothesis that insulin-stimulated glucose uptake and metabolism are dissociated from insulin binding after exercise. Therefore, insulin binding, 2-deoxy-d-glucose (2-DOG) uptake and glucose incorporation into glycogen and glycolysis were compared in soleus and EDL muscles of intensively exercised (2-3 h) mice and non-exercised mice. Basal 2-DOG uptake was increased in the exercised EDL (P less than 0.05) but not in the exercised soleus (P greater than 0.05). However, in both muscles intense exercise increased insulin-stimulated (0.1-16 nM) 2-DOG uptake (P less than 0.05). The rates of glycogenesis were increased in both the exercised muscles (P less than 0.05) as was the rate of glycolysis in the exercise soleus (P less than 0.05). Glycolysis was not altered in the EDL (P greater than 0.05). In the face of the increased 2-DOG uptake and glucose metabolism in the exercised muscles, insulin binding was not altered in the exercised soleus muscle (P greater than 0.05) and was decreased in the exercised EDL (P less than 0.05). These results indicate that after intense exercise there is a dissociation of insulin binding from insulin action on glucose uptake and metabolism in skeletal muscles.  相似文献   

13.
Endurance exercise training induces a rapidincrease in the GLUT-4 isoform of the glucose transporter in muscle. Infasted rats, insulin-stimulated muscle glucose transport is increased in proportion to the increase in GLUT-4. There is evidence that highmuscle glycogen may decrease insulin-stimulated glucose transport. Thisstudy was undertaken to determine whether glycogen supercompensation interferes with the increase in glucose transport associated with anexercise-induced increase in GLUT-4. Rats were trained by means ofswimming for 6 h/day for 2 days. Rats fasted overnight after the lastexercise bout had an approximately twofold increase in epitrochlearismuscle GLUT-4 and an associated approximately twofold increase inmaximally insulin-stimulated glucose transport activity. Epitrochlearismuscles of rats fed rodent chow after exercise were glycogensupercompensated (86.4 ± 4.8 µmol/g wet wt) and showed nosignificant increase in maximally insulin-stimulated glucose transportabove the sedentary control value despite an approximately twofoldincrease in GLUT-4. Fasting resulted in higher basal muscle glucosetransport rates in both sedentary and trained rats but did notsignificantly increase maximally insulin-stimulated transport in thesedentary group. We conclude that carbohydrate feeding that results inmuscle glycogen supercompensation prevents the increase in maximallyinsulin-stimulated glucose transport associated with an exercisetraining-induced increase in muscle GLUT-4.

  相似文献   

14.
1. The effects of hypothyroidism (caused by surgical thyroidectomy followed by treatment for 1 month with propylthiouracil) and of hyperthyroidism [induced by subcutaneous administration of L-tri-iodothyronine (T3)] on glucose tolerance and skeletal-muscle sensitivity to insulin were examined in rats. Glucose tolerance was estimated during 2 h after subcutaneous glucose injection (1 g/kg body wt.). The sensitivity of the soleus muscle to insulin was studied in vitro in sedentary and acutely exercised animals. 2. Glucose tolerance was impaired in both hypothyroid and hyperthyroid rats in comparison with euthyroid controls. 3. In the soleus muscle, responsiveness of the rate of lactate formation to insulin was abolished in hypothyroid rats, whereas the sensitivity of the rate of glycogen synthesis to insulin was unchanged. In hyperthyroid animals, opposite changes were found, i.e. responsiveness of the rate of glycogen synthesis was inhibited and the sensitivity of the rate of lactate production did not differ from that in control sedentary rats. 4. A single bout of exercise for 30 min potentiated the stimulatory effect of insulin on lactate formation in hyperthyroid rats and on glycogen synthesis in hypothyroid animals. 5. The data suggest that thyroid hormones exert an interactive effect with insulin in skeletal muscle. This is likely to be at the post-receptor level, inhibiting the effect of insulin on glycogen synthesis and stimulating oxidative glucose utilization.  相似文献   

15.
Effect of exercise on insulin action in human skeletal muscle   总被引:10,自引:0,他引:10  
The effect of 1 h of dynamic one-legged exercise on insulin action in human muscle was studied in 6 healthy young men. Four hours after one-legged knee extensions, a three-step sequential euglycemic hyperinsulinemic clamp combined with arterial and bilateral femoral vein catheterization was performed. Increased insulin action on glucose uptake was found in the exercised compared with the rested thigh at mean plasma insulin concentrations of 23, 40, and 410 microU/ml. Furthermore, prior contractions directed glucose uptake toward glycogen synthesis and increased insulin effects on thigh O2 consumption and at some insulin concentrations on potassium exchange. In contrast, no change in insulin effects on limb exchange of free fatty acids, glycerol, alanine or tyrosine were found after exercise. Glycogen concentration in rested vastus lateralis muscle did not increase measurably during the clamp even though indirect estimates indicated net glycogen synthesis. In contrast, in exercised muscle estimated and biopsy-verified increases in muscle glycogen concentration agreed. Local contraction-induced increases in insulin sensitivity and responsiveness play an important role in postexercise recovery of human skeletal muscle.  相似文献   

16.
Relating intramuscular fuel use to endurance in juvenile rainbow trout   总被引:5,自引:0,他引:5  
This study examined fuel depletion in white muscle of juvenile rainbow trout sprinted to fatigue to determine whether the onset of fatigue is associated with a measurable metabolic change within the muscle and whether muscle glycogen levels influence endurance. In this study, "fuels" refer to any energy-supplying compounds and include glycogen, phosphocreatine (PCr), and ATP. Fuel depletion in white muscle was estimated by the calculation of the anaerobic energy expenditure (AEE; in micromol ATP equivalents g(-1)) from the reduction of PCr and ATP and the accumulation of lactate. Progression of fuel use during sprinting was examined by sampling fish before they showed signs of fatigue and following fatigue. Most of the AEE before fatigue was due to PCr depletion. However, at the first signs of fatigue, there was a 32% drop in ATP. Similarly, when fish were slowly accelerated to a fatiguing velocity, the only significant change at fatigue was a 30% drop in ATP levels. Muscle glycogen levels were manipulated by altering ration (1% vs. 4% body weight ration per day) combined with either daily or no exercise. Higher ration alone led to significantly greater muscle glycogen but had no effect on sprint performance, whereas sprint training led to higher glycogen and an average threefold improvement in sprint performance. In contrast, periodic chasing produced a similar increase in glycogen but had no effect on sprint performance. Taken together, these observations suggest that (i) a reduction in ATP in white muscle could act as a proximate signal for fatigue during prolonged exercise in fish and (ii) availability of muscle glycogen does not limit endurance.  相似文献   

17.
Seven endurance-trained subjects [maximal O2 consumption (VO2max) 64 +/- 1 (SE) ml.min-1.kg-1] were subjected to three sequential hyperinsulinemic euglycemic clamps 15 h after having performed their last training session (T). Results were compared with findings in seven untrained subjects (VO2max 44 +/- 2 ml.min-1.kg-1) studied both at rest (UT) and after 60 min of bicycle exercise at 150 W (UT-ex). In T and UT-ex compared with UT, sensitivity for insulin-mediated whole-body glucose uptake was higher [insulin concentrations eliciting half-maximal glucose uptake being 44 +/- 2 (T) and 43 +/- 4 (UT-ex) vs. 52 +/- 3 microU/ml (UT), P less than 0.05] and responsiveness was higher [13.4 +/- 1.2 (T) and 10.9 +/- 0.7 (UT-ex) vs. 9.5 +/- 0.7 mg.min-1.kg-1 (UT), P less than 0.05]. Furthermore, responsiveness was higher (P less than 0.05) in T than in UT-ex. Insulin-stimulated O2 uptake and maximal glucose oxidation rate were higher in T than in UT and UT-ex. Insulin-stimulated conversion or glucose to glycogen and muscle glycogen synthase was higher in T than in UT and UT-ex. However, glycogen storage in vastus lateralis muscle was found only in UT-ex. No change in any glucoregulatory hormone or metabolite could explain the increased insulin action in trained subjects. It is concluded that physical training induces an adaptive increase in insulin responsiveness of whole-body glucose uptake, which does not reflect increased glycogen deposition in muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The present study was undertaken to determine the effects of endurance training on glycogen kinetics during exercise. A new model describing glycogen kinetics was applied to quantitate the rates of synthesis and degradation of glycogen. Trained and untrained rats were infused with a 25% glucose solution with 6-3H-glucose and U-14C-lactate at 1.5 and 0.5 μCi · min−1 (where 1 Ci = 3.7 × 1010 Bq), respectively, during rest (30 min) and exercise (60 min). Blood samples were taken at 10-min intervals starting just prior to isotopic infusion, until the cessation of exercise. Tissues harvested after the cessation of exercise were muscle (soleus, deep, and superficial vastus lateralis, gastrocnemius), liver, and heart. Tissue glycogen was quantitated and analyzed for incorporation of 3H and 14C via liquid scintillation counting. There were no net decreases in muscle glycogen concentration from trained rats, whereas muscle glycogen concentration decreased to as much as 64% (P < 0.05) in soleus in muscles from untrained rats after exercise. Liver glycogen decreased in both trained (30%) and untrained (40%) rats. Glycogen specific activity increased in all tissues after exercise indicating isotope incorporation and, thus, glycogen synthesis during exercise. There were no differences in muscle glycogen synthesis rates between trained and untrained rats after exercise. However, training decreased muscle glycogen degradation rates in total muscle (i.e., the sum of the degradation rates of all of the muscles sampled) tenfold (P < 0.05). We have applied a model to describe glycogen kinetics in relation to glucose and lactate metabolism during exercise in trained and untrained rats. Training significantly decreases muscle glycogen degradation rates during exercise. Accepted: 22 May 1998  相似文献   

19.
Peripheral effects of endurance training in young and old subjects   总被引:4,自引:0,他引:4  
The effects of 12 wk of endurance training at 70% peak O2 consumption (VO2) were studied in 10 elderly (65.1 +/- 2.9 yr) and 10 young (23.6 +/- 1.8 yr) healthy men and women. Training had no effect on weight or body composition in either group. The elderly had more adipose tissue and less muscle mass than the young. Initial peak VO2 was lower in the elderly, but the absolute increase of 5.5-6.0 ml.kg-1.min-1 after training was similar for both groups. Muscle biopsies taken at rest showed that, before training, muscle glycogen stores were 61% higher in the young. Before training, glycogen utilization per joule during submaximal exercise was higher in the elderly. Glycogen stores and muscle O2 consumption increased significantly in response to training in the elderly only. After training, the proportion of energy derived from whole body carbohydrate oxidation during submaximal exercise declined in the young only. The absolute changes that training produced in peak VO2 were similar in both age groups, but the 128% increase in muscle oxidative capacity was greater in the elderly, suggesting that peripheral factors play an important role in the response of the elderly to endurance exercise.  相似文献   

20.
The purpose of this study was to ascertain the time course of changes, whilst suspending the hindlimb and physical exercise training, of myosin light chain (LC) isoform expression in rat soleus and vastus lateralis muscles. Two groups of six rats were suspended by their tails for 1 or 2 weeks, two other groups of ten rats each were subjected to exercise training on a treadmill for 9 weeks, one to an endurance training programme (1-h running at 20 m.min-1 5 days.week-1), and the other to a sprint programme (30-s bouts of running at 60 m.min-1 with rest periods of 5 min). At the end of these experimental procedures, soleus and vastus lateralis superficialis muscles were removed for myosin LC isoform determination by two-dimensional gel electrophoresis. Hindlimb suspension for 2 weeks significantly increased the proportion of fast myosin LC and decreased slow myosin LC expression in the soleus muscle. The pattern of myosin LC was unchanged in the vastus lateralis muscle. Sprint training or endurance training for 9 weeks increased the percentage of slow myosin LC in vastus lateralis muscle, whereas soleus muscle myosin LC was not modified. These data indicate that hindlimb suspension influences myosin LC expression in postural muscle, whereas physical training acts essentially on phasic muscle. There were no differences in myosin LC observed under the influence of sprint- or endurance-training programme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号