首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suei S  Garrill A 《Protoplasma》2008,232(3-4):165-172
The distribution of filamentous actin (F-actin) in invasive and noninvasive hyphae of the ascomycete Neurospora crassa was investigated. Eighty six percent of noninvasive hyphae had F-actin in the tip region compared to only 9% of invasive hyphae. The remaining 91% of the invasive hyphae had no obvious tip high concentration of F-actin staining; instead they had an F-actin-depleted zone in this region, although some F-actin, possibly associated with the Spitzenk?rper, remained at the tip. The size of the F-actin-depleted zone in invasive hyphae increased with an increase in agar concentration. The membrane stain FM 4-64 reveals a slightly larger accumulation of vesicles at the tips of invasive hyphae relative to noninvasive hyphae, although this difference is unlikely to be sufficient to account for the exclusion of F-actin from the depleted zone. Antibodies raised against the actin filament-severing protein cofilin from both yeast and human cells localize to the tips of invasive hyphae. The human cofilin antibody shows a more random distribution in noninvasive hyphae locating primarily at the hyphal periphery but with some diffuse cytoplasmic staining. This antibody also identifies a single band at 21 kDa in immunoblots of whole hyphal fractions. These data suggest that a protein with epitopic similarity to cofilin may function in F-actin dynamics that underlie invasive growth. The F-actin-depleted zone may play a role in the regulation of tip yielding to turgor pressure, thus increasing the protrusive force necessary for invasive growth.  相似文献   

2.
We show that two distinct distributions of F-actin are present in the hyphal apex of the oomycete Achlya bisexualis, that have been chemically fixed with a combination of methylglyoxal and formaldehyde and stained with Alexa phalloidin. In approximately one half of the hyphae examined, an F-actin depleted zone within the apical F-actin cap was observed. The remaining hyphae had a continuous apical cap. In live, growing hyphae two types of cytoplasmic organization were observed at the tips, one in which a clear zone was present which may correlate with the F-actin depleted zone, and one where no such clear zone existed which may represent the continuous cap. We suggest that the F-actin depleted zone may be a structural component of the actin network in a subpopulation of oomycete hyphae and may be comparable to similar F-actin depleted zones at the apices of other tip growing cells such as pollen tubes and root hairs. This observation has implications with regard to models of hyphal extension. Hyphae fixed with formaldehyde alone showed continuous apical F-actin caps. Our ability to resolve the F-actin depleted zone likely reflects the cross-linking capabilities of methylglyoxal. The methylglyoxal-formaldehyde combination fixative gave more stained hyphae, brighter staining and more complete staining of F-actin compared to formaldehyde alone.  相似文献   

3.
Summary The oomyceteSaprolegnia ferax, unlike most walled organisms, does not regulate turgor. When hyphae were subjected to water stress by the addition of sucrose or other solutes to the growth medium, turgor pressure diminished progressively; yet the hyphae continued to extend with deposition of a more plastic apical wall. Even when turgor was no longer measurable with a micropipet-based pressure probe (0.02 MPa or less, compared with 0.4 MPa in unsupplemented medium) they produced regular hyphal tubes and tips. Such turgorless hyphae extended as rapidly, or more rapidly, than normal ones, but they were wider and their tips blunter. Despite the loss of turgor, hyphae put forth branches and cysts germinated. The organization of actin microfilaments was essentially normal, and the response to cytochalasin A was similar in turgorless and standard hyphae. However, as turgor diminished the hyphae's capacity to penetrate solid media was progressively impaired; aerial hyphae were no longer produced, and zoospore formation was inhibited. The results contradict the common belief that turgor supplies the driving force for hyphal extension, tip morphogenesis, and branching. Evidently, these functions do not intrinsically require hydrostatic pressure. Turgorless hyphae are, however, crippled by their inability to exploit solid media.Abbreviations PEG-300 polyethylene glycol-300 - Rh-Phal rhodamine phalloidin - F-actin filamentous actin - DMSO dimethyl sulfoxide - PYG peptone, yeast extract, glucose - MPa megapascals  相似文献   

4.
Frensch J  Hsiao TC 《Plant physiology》1994,104(1):247-254
Transient responses of cell turgor (P) and root elongation to changes in water potential were measured in maize (Zea mays L.) to evaluate mechanisms of adaptation to water stress. Changes of water potential were induced by exposing roots to solutions of KCl and mannitol (osmotic pressure about 0.3 MPa). Prior to a treatment, root elongation was about 1.2 mm h-1 and P was about 0.67 MPa across the cortex of the expansion zone (3-10 mm behind the root tip). Upon addition of an osmoticum, P decreased rapidly and growth stopped completely at pressure below approximately 0.6 MPa, which indicated that the yield threshold (Ytrans,1) was just below the initial turgor. Turgor recovered partly within the next 30 min and reached a new steady value at about 0.53 MPa. The root continued to elongate as soon as P rose above a new threshold (Ytrans,2) of about 0.45 MPa. The time between Ytrans,1 and Ytrans,2 was about 10 min. During this transition turgor gradients of as much as 0.15 MPa were measured across the cortex. They resulted from a faster rate of turgor recovery of cells deeper inside the tissue compared with cells near the root periphery. Presumably, the phloem was the source of the compounds for the osmotic adjustment. Turgor recovery was restricted to the expansion zone, as was confirmed by measurements of pressure kinetics in mature root tissue. Withdrawal of the osmoticum caused an enormous transient increase of elongation, which was related to only a small initial increase of P. Throughout the experiment, the relationship between root elongation rate and turgor was nonlinear. Consequently, when Y were calculated from steady-state conditions of P and root elongation before and after the osmotic treatment, Yss was only 0.21 MPa and significantly smaller compared with the values obtained from direct measurements (0.42-0.64 MPa). Thus, we strongly emphasize the need for measurements of short-term responses of elongation and turgor to determine cell wall mechanics appropriately. Our results indicate that the rate of solute flow into the growth zone could become rate-limiting for cell expansion under conditions of mild water stress.  相似文献   

5.
Abstract This study reports on the effect of water deficit on the tissue water relations and leaf growth of six corn cultivars, growing in glasshouse conditions, in order to understand growth responses to drought of tropical corn. A mild water-stress treatment was imposed slowly; plants reached a minimum pre-dawn leaf water potential of about –1.5 MPa by day 12 after watering was withheld. Analysis of the water relation characteristics of growing leaves using the pressure–volume technique demonstrated that under water deficits all the cultivars changed their moisture-release curves compared with irrigated plants. Osmotic potential at full turgor was lowered in water-stressed plants of all the genotypes and the degree of such change was between 0.34 MPa and 0.58 MPa. Thus, turgor pressure was lost at a lower water potential in water-stressed plants than in irrigated plants of all the varieties. Volumetric elastic moduli were also increased under water deficits and the increase ranged between 10% and 141% among the cultivars. In all the genotypes, the stress imposed led to a reduction of leaf area and dry matter accumulation. Leaf expansion was very sensitive to low turgor pressure and it ceased when turgor reached 0.2 MPa. Thus, varieties able to maintain a higher degree of turgor pressure (i.e. by osmotic adjustment) under water deficits may be able to prolong leaf growth.  相似文献   

6.
Hyphae of Saprolegnia ferax growing under normal or low-turgor conditions were exposed to 0.1-10 &mgr;g/ml latrunculin B, an actin inhibitor. In the first 10 s of addition, hyphae with normal turgor levels accelerated while those with low turgor decelerated, consistent with the suggestion that actin restrains or protrudes tips under these respective turgor conditions. Both sets of hyphae then decelerated and eventually ceased extension within 60 s. These changes were reflected in rhodamine-phalloidin staining patterns, which showed that actin caps were disrupted progressively under both conditions in a time-dependent manner. After 60 s, normal-turgored hyphae started to swell rapidly while low-turgored hyphae showed little or no swelling. Swelling was characteristically subapical, which is best explained by tip growth models which incorporate actin-mediated exocytosis.  相似文献   

7.
Two water molds can grow without measurable turgor pressure   总被引:1,自引:0,他引:1  
The water molds Achlya bisexualis Coker and Saprolegnia ferax (Gruithuisen) Thuret (Class: Oomycetes) normally grow in the form of slender hyphae with up to 0.8 MPa (8 bar) of internal pressure. Models of plant cell growth indicate that this turgor pressure drives the expansion of the cell wall. However, under conditions of prolonged osmotic stress, these species were able to grow in the absence of measurable turgor. Unpressurized cells of A. bisexualis grew in the form of a plasmodium-like colony on solid media, and produced a multinucleate yeast-like phase in liquid. By contrast, the morphology of S. ferax was unaffected by the loss of turgor, and the mold continued to generate tip-growing hyphae. Measurements of cell wall strength indicate that these microorganisms produce a very fluid wall in the region of surface growth, circumventing the usual requirement for turgor.Abbreviations DAPI 4,6-diamidino-2-phenylindole - PEG polyethylene glycol This work was supported by National Science Foundation grant DCB 90-17130.  相似文献   

8.
The turgor pressure in cells of chickpea (Cicer arietinum L.) and faba bean (Vicia faba L.) seed coats was measured with a pressure probe. Measurements were made under in situ conditions by removing a section of wall from a pod, which remained attached to the plant, and exposing the intact seed. If the pod wall was removed and the turgor measurements made under ambient laboratory conditions of 50% to 70% relative humidity (RH), cell turgor pressure declined over time, typically reaching 0 MPa. If the pod wall was removed and the turgor measurements made under conditions of 100% RH, however, cell turgor pressure was stable over time, relatively uniform within the seed coat tissue, and was found to be 0.1-0.3 MPa for chickpea, and 0.1-0.2 MPa for faba bean. In both species there was a marked decline in cell turgor, beginning within about 60 s, when humidification was discontinued. The decline in cell turgor occurred regardless of the depth of the cell within the seed coat tissue, and this decline could be stopped, but not entirely reversed, when humidification was restored. An increase in cell turgor could also be caused by wetting of the seed. These responses indicate that a very rapid water exchange can occur within the seed coat tissue in situ. The rapid and, in some cases, relatively permanent loss of seed coat cell turgor in the absence of humidification raises serious concerns regarding desiccation artefacts which may be involved in the empty seed coat technique, often used to study seed carbon and water relations in grain legumes.  相似文献   

9.
Summary The cell walls of plants and fungi are thought to provide the strength required to resist turgor and thus maintain the integrity and morphology of these cells. However, during growth, walls must undergo rapid expansion which requires them to be plastic and therefore weak. In most tip-growing cells there is an apical concentration of F-actin associated with the rapidly expanding cell wall. Disruption of F-actin in the growing tips of hyphae ofSaprolegnia ferax by a localized irradiation, beginning 2–6 m behind the apex, with actin-selective 270 nm uv light caused the hyphae to burst, suggesting that actin supports the weak apical wall against turgor pressure. Bursting was pH dependent and Ca2+ independent at neutral pH. Hyphae burst in the very tip, where the cell wall is expected to be weakest and actin is most concentrated, as opposed to the lower part of the apical taper where osmotic shock induces bursting when actin is intact. When hyphae were irradiated with a wavelength of light that is less effective at disrupting actin, growth was slowed but they failed to burst, demonstrating that bursting was most likely due to F-actin damage. We conclude that F-actin reinforces the expanding apical wall in growing hyphae and may be the prime stress bearing structure resisting turgor pressure in tip growing cells.Abbreviations RP rhodamine phalloidin - F-actin filamentous actin - EGTA ethylene-glycol-bis-(-amino-ethyl ether) N,N-tetra-acetic acid - PIPES piperazine-N,N-bis-(2-ethanesulfonic acid) - uv ultraviolet  相似文献   

10.
《Experimental mycology》1992,16(1):64-75
Linear growth rate ofSaprolegnia was reduced in direct proportion to increased osmotic pressure (II) of the medium, when sorbitol or PEG-400 was used as osmotica. However, increasing medium II reduced hyphal turgor only to a minimum positive level, which was maintained while extension rates continued to decline. TPA, a K+-channel agonist effective onSaprolegnia protoplasts, also caused dose-dependent linear growth rate reductions but did not substantially affect turgor. When turgor was compared with linear growth rate in the osmoticum experiments, there was a positive correlation only for hyphae growing faster than 12 μm/min; below this, there was a twofold range in extension rate despite essentially constant turgor. As well, TPA-treatments produced a twofold reduction in hyphal extension rate without substantially affecting turgor. Turgor should be consistent within a coenocyte, and is steady under constant growth conditions. However, under such conditions, we found average variations of fivefold in extension rate between hyphae, and twofold for hyphae over time. These results suggest that turgor is not the prime determinant of tip extension rate, and they are consistent with cytoskeletal regulation of that rate. Linear growth rates ofSaprolegnia colonies were similar on basal medium containing 1% (w/v) glucose, sorbitol, or PEG and only slightly faster than without added carbohydrate. Increasing medium II with glucose also reduced hyphal extension rate.  相似文献   

11.
Frensch J  Hsiao TC 《Plant physiology》1995,108(1):303-312
Responses of cortical cell turgor (P) following rapid changes in osmotic pressure ([pi]m) were measured throughout the elongation zone of maize (Zea mays L.) roots using a cell pressure probe and compared with simultaneously measured root elongation to evaluate: yield threshold (Y) (minimum P for growth), wall extensibility, growth-zone radial hydraulic conductivity (K), and turgor recovery rate. Small increases in [pi]m (0.1 MPa) temporarily decreased P and growth, which recovered fully in 5 to 10 min. Under stronger [pi]m (up to 0.6 MPa), elongation stopped for up to 30 min and then resumed at lower rates. Recoveries in P through solute accumulation and lowering of Y enabled growth under water stress. P recovery was as much as 0.3 MPa at [pi]m = 0.6 MPa, but recovery rate declined as water stress increased, suggesting turgor-sensitive solute transport into the growth zone. Under strong [pi]m, P did not recover in the basal part of the growth zone, in conjunction with a 30% shortening of the growth zone. Time courses showed Y beginning to decrease within several minutes after stress imposition, from about 0.65 MPa to a minimum of about 0.3 MPa in about 15 min. The data concerning Y were not confounded significantly by elastic shrinkage. K was high (1.3 x 10-10 m2 s-1 MPa-1), suggesting very small growth-induced water potential gradients.  相似文献   

12.
The organization and roles of F-actin and microtubules in the maintenance and initiation of hyphal tip growth have been analyzed in Saprolegnia ferax and Neurospora crassa. In hyphae of both species, the apex is depleted of microtubules relative to subapical regions and near-normal morphogenesis occurs in concentrations of nocodazole or MBC which remove microtubules, slow growth, and disrupt nuclear positioning. In contrast, each species contains characteristic tip-high arrays of plasma membrane-adjacent F-actin, whose organization is largely unaltered by the loss of microtubules but disruption of which by latrunculin B disrupts tip morphology. Hyphal initiation and subsequent normal morphogenesis from protoplasts of both species and spores of S. ferax are independent of microtubules, but at least in S. ferax obligatorily involve the formation of F-actin caps adjacent to the hyphal tip plasma membrane. These observations indicate an obligatory role for F-actin in hyphal polarization and tip morphogenesis and only an indirect role for microtubules.  相似文献   

13.
《Experimental mycology》1990,14(4):416-425
Cellular turgor pressure is thought to provide the driving force for hyphal extension and for a variety of other fungal processes. This study was conducted to evaluate three different approaches to the measurement of hyphal turgor in the aquatic fungus Achlya bisexualis. Turgor was determined indirectly from measurements of the osmotic potential of hyphal extracts using an osmometer and by a refined incipient plasmolysis technique. Turgor was also measured directly from individual growing hyphae using a micropipet-based pressure probe. Osmometry provided an estimate of the mean turgor of hyphae grown in liquid culture of 0.74 MPa, while the incipient plasmolysis technique indicated turgor pressures of between 1.0 and 1.2 MPa (10 to 12 bars). With the pressure probe, turgors ranging from 0.8 to 1.2 MPa were measured from 49 hyphae in the same difined medium. The low turgor estimates from the osmometric approach probably reflected dilution of the cell contents by cell wall and extracellular fluid during sample extraction. Recordings with the pressure probe showed that turgor did not vary along the length of the coenocytic hyphae and was independent of hyphal diameter. This paper presents the first report of the direct measurement of hyphal turgor pressure.  相似文献   

14.
Spatial distribution of cell turgor pressure, cell osmotic pressure and relative elemental growth rate were measured in growing tall fescue leaves ( Festuca arundinacea ). Cell turgor pressure (measured with a pressure probe) was c . 0.55 MPa in expanding cells but increased steeply (+0.3 MPa) in cells where elongation had stopped. However, cell osmotic pressure (measured with a picolitre osmometer) was almost constant at 0.85 MPa throughout the leaf. The water potential difference between the growth zone and the mature zone (0.3 MPa) was interpreted as a growth-induced water potential gradient. This and further implications for the mechanism of growth control are discussed.  相似文献   

15.
This study on expansive growth of the first leaf of maize has two goals: one is to determine how the sensitivity of growth to changes in water status varies with the initial water status of the leaf, and the other is to adapt the pressure-jump technique of Okamoto et al. (1989 , Plant and Cell Physiology 30, 979–985), developed for studying growth of excised stem segments, for use on whole seedlings. Initial water status was varied by using: transpiring vs. non-transpiring conditions, seedlings differing in emerged leaf length and hence transpiring area, and root medium without mannitol vs. medium with added mannitol (to –0·3 MPa). The results show that growth changed with changes in plant water status when the water status was low, but was unaffected when water status was very high. A stepwise change in hydrostatic pressure on the root medium was quickly and fully transmitted to the base of the leaf. The increase in leaf elongation due to a pressure step of 0·025 MPa was negligible under conditions of high plant water status and became substantial under conditions of low water status. In adapting the pressure-jump method to the whole seedling, there was some loss of resolution, and the yield threshold Y of the Lockhart equation could not be estimated directly. Nonetheless, the data were suitable for the calculation of volumetric extensibility m and the estimation of growth effective turgor (turgor above Y ). Extensibility was shown to increase 3- to 4-fold when leaf water status was reduced from the maximum to the point where elongation rate was halved, while growth effective turgor was calculated to diminish even more markedly.  相似文献   

16.
Under water stress conditions, induced by mannitol solutions (0 to 0.66 M ) applied to the apical 12 mm of intact roots of Zea mays L. (cv. LG 11), a growth inhibition, a decrease in the osmotic potential of the cell sap and a significant accumulation of abscisic acid (ABA) were observed. When the roots were placed in a humid atmosphere after the stress, the growth rate increased again, even if elongation had been totally inhibited. Under a stress corresponding to an osmotic potential of -1.09 MPa in the solution, growth was totally inhibited, which means that the root cell turgor pressure was reduced to the yield threshold. These conditions led to the largest accumulation of ABA. The effect of water stress on the level of ABA was studied for three parts of the root. The greatest increase in ABA (about 10 fold) was obtained in the growth zone and this increase was apparently independent of the hydrolysis of the conjugated form. With a mannitol treatment of 1 h equivalent to a stress level of -1.39 MPa, a 4-fold increase in ABA efflux into the medium was obtained. These results suggest that there are interactions between water stress, root growth, osmotic potential and the ABA level. The growth under conditions of stress and the role of endogenous ABA in the control of plant metabolism, specially in the growth zone, are discussed.  相似文献   

17.
We have dissected the influences of apoplastic pH and cell turgor on short-term responses of leaf growth to plant water status, by using a combination of a double-barrelled pH-selective microelectrodes and a cell pressure probe. These techniques were used, together with continuous measurements of leaf elongation rate (LER), in the (hidden) elongating zone of the leaves of intact maize plants while exposing roots to various treatments. Polyethylene glycol (PEG) reduced water availability to roots, while acid load and anoxia decreased root hydraulic conductivity. During the first 30 min, acid load and anoxia induced moderate reductions in leaf growth and turgor, with no effect on leaf apoplastic pH. PEG stopped leaf growth, while turgor was only partially reduced. Rapid alkalinization of the apoplast, from pH 4.9 ± 0.3 to pH 5.8 ± 0.2 within 30 min, may have participated to this rapid growth reduction. After 60 min, leaf growth inhibition correlated well with turgor reduction across all treatments, supporting a growth limitation by hydraulics. We conclude that apoplastic alkalinization may transiently impair the control of leaf growth by cell turgor upon abrupt water stress, whereas direct hydraulic control of growth predominates under moderate conditions and after a 30-60 min delay following imposition of water stress.  相似文献   

18.
Arbuscular mycorrhizal fungi alleviate drought stress in their host plants via the direct uptake and transfer of water and nutrients through the fungal hyphae to the host plants. To quantify the contribution of the hyphae to plant water uptake, a new split-root hyphae system was designed and employed on barley grown in loamy soil inoculated with Glomus intraradices under well-watered and drought conditions in a growth chamber with a 14-h light period and a constant temperature (15 degrees C; day/night). Drought conditions were initiated 21 days after sowing, with a total of eight 7-day drying cycles applied. Leaf water relations, net photosynthesis rates, and stomatal conductance were measured at the end of each drying cycle. Plants were harvested 90 days after sowing. Compared to the control treatment, the leaf elongation rate and the dry weight of the shoots and roots were reduced in all plants under drought conditions. However, drought resistance was comparatively increased in the mycorrhizal host plants, which suffered smaller decreases in leaf elongation, net photosynthetic rate, stomatal conductance, and turgor pressure compared to the non-mycorrhizal plants. Quantification of the contribution of the arbuscular mycorrhizal hyphae to root water uptake showed that, compared to the non-mycorrhizal treatment, 4 % of water in the hyphal compartment was transferred to the root compartment through the arbuscular mycorrhizal hyphae under drought conditions. This indicates that there is indeed transport of water by the arbuscular mycorrhizal hyphae under drought conditions. Although only a small amount of water transport from the hyphal compartment was detected, the much higher hyphal density found in the root compartment than in the hyphal compartment suggests that a larger amount of water uptake by the arbuscular mycorrhizal hyphae may occur in the root compartment.  相似文献   

19.
C. M. Deom  S. Quan  X. Z. He 《Protoplasma》1997,198(1-2):1-8
Summary The turgor pressure of growing pollen tubes of the lily (Lilium longiflorum Thunb.) has been recorded using a turgor pressure probe. Insertion of the probe's micropipette was routinely accomplished, providing recording periods of 20 to 30 min. Probe insertion did not affect tube growth. The stable turgor values ranged between 0.1 and 0.4 MPa, the mean value being 0.209 ± 0.064 MPa (n=106). A brief increase in turgor, generated by injection of oil through the pressure probe, caused the tube to burst at its tip. Burst pressures ranged between 0.19 and 0.58 MPa, that is, individual lily pollen tubes do not withstand turgor pressure approaching twice their regular turgor pressure. In contrast, parallel experiments using the incipient plasmolysis technique yielded a mean putative turgor pressure of 0.79 MPa either using sucrose (n=24) or mannitol (n=25). Surprisingly, turgor pressure was not significantly correlated with tube growth rate which ranged from zero to 13 m/min. Nor did it correlate with tube length over the tested range of 100 to 1600 m. In addition the influence of the medium's osmolality was surprisingly low: raising the external osmotic pressure from 0.36 to 1.08 MPa, with sucrose or mannitol, only caused mean turgor pressure to decline from 0.27 to 0.18 MPa. We conclude that growing lily pollen regulates its turgor pressure remarkably well despite substantial variation in tube growth rate, tube length, and osmotic milieu.  相似文献   

20.
The possibility was considered that osmotic adjustment, the ability to accumulate solutes in response to water stress, may contribute to growth rate differences among closely-related genotypes of trees. Progeny variation in osmotic adjustment and turgor regulation was investigated by comparing changes in osmotic and pressure potentials, soluble carbohydrates, and amino acids in osmotically stressed seedlings in 4 full-sib progenies of black spruce [ Picea mariana (Mill.) B. S. P.] that differed in growth rate under drought. Osmotic stress was induced by a stepwise increase in the concentration of polyethylene glycol (PEG)-3350 from 10 (w/v) to 18 and 25%, which provided osmotic potentials in solution culture of -0.4, -1.0 and -2.0 MPa each for 3 days. All 4 progenies maintained a positive cell turgor even at 25% PEG, due to a significant decline in osmotic potential. Although total amino acids, principally proline, increased, ca 60% of the decrease in osmotic potential was attributable to soluble carbohydrates and glucose was the major osmoregulating solute. There was little progeny variation in any of measured parameters in unstressed seedlings. Compared to two slower-growing progenies, the two progenies capable of more vigorous growth under drought in the field accumulated more soluble carbohydrates (mainly glucose and fructose), developed lower osmotic potential and maintained higher turgor pressure when osmotically-stressed in solution culture. The ability to adjust osmotically and maintain turgor under drought stress could thus be a useful criterion for the early selection of faster-growing, drought-tolerant genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号