首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To identify secreted virulence factors involved in bacterial wilt disease caused by the phytopathogen Ralstonia solanacearum, we mutated tatC, a key component of the twin-arginine translocation (Tat) secretion system. The R. solanacearum tatC mutation was pleiotropic; its phenotypes included defects in cell division, nitrate utilization, polygalacturonase activity, membrane stability, and growth in plant tissue. Bioinformatic analysis of the R. solanacearum strain GMI1000 genome predicted that this pathogen secretes 70 proteins via the Tat system. The R. solanacearum tatC strain was severely attenuated in its ability to cause disease, killing just over 50% of tomato plants in a naturalistic soil soak assay where the wild-type parent killed 100% of the plants. This result suggested that elements of the Tat secretome may be novel bacterial wilt virulence factors. To identify contributors to R. solanacearum virulence, we cloned and mutated three genes whose products are predicted to be secreted by the Tat system: RSp1521, encoding a predicted AcvB-like protein, and two genes, RSc1651 and RSp1575, that were identified as upregulated in planta by an in vivo expression technology screen. The RSc1651 mutant had wild-type virulence on tomato plants. However, mutants lacking either RSp1521, which appears to be involved in acid tolerance, or RSp1575, which encodes a possible amino acid binding protein, were significantly reduced in virulence on tomato plants. Additional bacterial wilt virulence factors may be found in the Tat secretome.  相似文献   

2.
Pseudomonas syringae is a gram-negative bacterium that infects a number of agriculturally important plant species. The ability of the organism to deliver virulence factors across the plant cell wall is a key to its pathogenicity. Deletion mutants in the twin arginine translocation (Tat) pathway of two pathovars of P. syringae, pvs. tomato DC3000 and maculicola ES4326, displayed a range of pleiotropic phenotypic changes, such as defects in fluorescent siderophore production, a decrease in sodium dodecyl sulfate and copper resistance, and a significant loss in fitness using Arabidopsis thaliana or tomato as plant hosts. The genome sequence of P. syringae pv. tomato DC3000 encodes a number of potential virulence factors that are predicted to be translocated via the Tat pathway, including several proteins involved in iron scavenging (two siderophore receptors, PSPTO3474 and PSPTO3294, and an aminotransferase, PSPTO2155, involved in siderophore biosynthesis). Further candidates for Tat-dependent pathogenicity determinants include the homologs of a cell wall amidase (PSPTO5528), an enzyme involved in periplasmic glucans biosynthesis (PSPTO5542), and two putative phospholipases (PSPTO3648 and PSPTOB0005). Translocation of the putative amidase, aminotransferase, glucans biosynthetic enzyme, and the two phospholipases, but not the two siderophore receptors, is shown to be dependent on the Tat pathway. Strains deleted for the genes encoding the probable aminotransferase and amidase enzymes are significantly less infectious than the wild type. We conclude that the incremental effects due to the failure to correctly localize at least two, and possibly more, Tat substrates gives rise to the attenuated fitness phenotype of the P. syringae pv. tomato DC3000 tat strain.  相似文献   

3.
Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) causes bacterial speck disease on tomato. The pathogenicity of Pst DC3000 depends on both the type III secretion system that delivers virulence effector proteins into host cells and the phytotoxin coronatine (COR), which is thought to mimic the action of the plant hormone jasmonic acid (JA). We found that a JA-insensitive mutant (jai1) of tomato was unresponsive to COR and highly resistant to Pst DC3000, whereas host genotypes that are defective in JA biosynthesis were as susceptible to Pst DC3000 as wild-type (WT) plants. Treatment of WT plants with exogenous methyl-JA (MeJA) complemented the virulence defect of a bacterial mutant deficient in COR production, but not a mutant defective in the type III secretion system. Analysis of host gene expression using cDNA microarrays revealed that COR works through Jai1 to induce the massive expression of JA and wound response genes that have been implicated in defense against herbivores. Concomitant with the induction of JA and wound response genes, the type III secretion system and COR repressed the expression of pathogenesis-related (PR) genes in Pst DC3000-infected WT plants. Resistance of jai1 plants to Pst DC3000 was correlated with a high level of PR gene expression and reduced expression of JA/wound response genes. These results indicate that COR promotes bacterial virulence by activating the host's JA signaling pathway, and further suggest that the type III secretion system might also modify host defense by targeting the JA signaling pathway in susceptible tomato plants.  相似文献   

4.
Pseudomonas syringae pv. tomato DC3000 causes bacterial speck disease in tomato, and it elicits the hypersensitive response (HR) in non-host plants such as Nicotiana tabacum and Nicotiana benthamiana. The compatible and incompatible interactions of DC3000 with tomato and Nicotiana spp., respectively, result in plant cell death, but the HR cell death occurs more rapidly and is associated with effective plant defense. Both interactions require the Hrp (HR and pathogenicity) type III secretion system (TTSS), which injects Hop (Hrp outer protein) effectors into plant cells. Here, we demonstrate that HopPtoN is translocated into tomato cells via the Hrp TTSS. A hopPtoN mutant produced eightfold more necrotic 'speck' lesions on tomato leaves than did DC3000, but the mutant and the wild-type strain grew to the same level in infected leaves. In non-host N. tabacum leaves, the hopPtoN mutant produced more cell death, whereas a DC3000 strain overexpressing HopPtoN produced less cell death and associated electrolyte leakage in comparison with wild-type DC3000. Transient expression of HopPtoN via infection with a PVX viral vector enabled tomato and N. benthamiana plants to tolerate, with reduced disease lesions, challenge infections with DC3000 and P. syringae pv. tabaci 11528, respectively. HopPtoN showed cysteine protease activity in vitro, and hopPtoN mutants altered in the predicted cysteine protease catalytic triad (C172S, H283A and D299A) lost HR suppression activity. These observations reveal that HopPtoN is a TTSS effector that can suppress plant cell death events in both compatible and incompatible interactions.  相似文献   

5.
6.
Pseudomonas syringae pv. tomato (Pst) strain DC3000 infects the model plants Arabidopsis thaliana and tomato, causing disease symptoms characterized by necrotic lesions surrounded by chlorosis. One mechanism used by Pst DC3000 to infect host plants is the type III protein secretion system, which is thought to deliver multiple effector proteins to the plant cell. The exact number of type III effectors in Pst DC3000 or any other plant pathogenic bacterium is not known. All known type III effector genes of P. syringae are regulated by HrpS, an NtrC family protein, and the HrpL alternative sigma factor, which presumably binds to a conserved cis element (called the "hrp box") in the promoters of type III secretion-associated genes. In this study, we designed a search motif based on the promoter sequences conserved in 12 published hrp operons and putative effector genes in Pst DC3000. Seventy-three predicted genes were retrieved from the January 2001 release of the Pst DC3000 genome sequence, which had 95% genome coverage. The expression of the 73 genes was analysed by microarray and Northern blotting, revealing 24 genes/operons (including eight novel genes), the expression of which was consistently higher in hrp-inducing minimal medium than in nutrient-rich Luria-Bertani broth. Expression of all eight genes was dependent on the hrpS gene. Most were also dependent on the hrpL gene, but at least one was dependent on the hrpS gene, but not on the hrpL gene. An AvrRpt2-based type III translocation assay provides evidence that some of the hrpS-regulated novel genes encode putative effector proteins.  相似文献   

7.
8.
Pseudomonas syringae pv. tomato DC3000 is a pathogen of tomato and Arabidopsis that injects virulence effector proteins into host cells via a type III secretion system (TTSS). TTSS-deficient mutants have a Hrp- phenotype, that is, they cannot elicit the hypersensitive response (HR) in non-host plants or pathogenesis in host plants. Mutations in effector genes typically have weak virulence phenotypes (apparently due to redundancy), but deletion of six open reading frames (ORF) in the DC3000 conserved effector locus (CEL) reduces parasitic growth and abolishes disease symptoms without affecting function of the TTSS. The inability of the DeltaCEL mutant to cause disease symptoms in tomato was restored by a clone expressing two of the six ORF that had been deleted: CEL ORF3 (HopPtoM) and ORF4 (ShcM). A DeltahopPtoM::nptII mutant was constructed and found to grow like the wild type in tomato but to be strongly reduced in its production of necrotic lesion symptoms. HopPtoM expression in DC3000 was activated by the HrpL alternative sigma factor, and the protein was secreted by the Hrp TTSS in culture and translocated into Arabidopsis cells by the Hrp TTSS during infection. Secretion and translocation were dependent on ShcM, which was neither secreted nor translocated but, like typical TTSS chaperones, could be shown to interact with HopPtoM, its cognate effector, in yeast two-hybrid experiments. Thus, HopPtoM is a type III effector that, among known plant pathogen effectors, is unusual in making a major contribution to the elicitation of lesion symptoms but not growth in host tomato leaves.  相似文献   

9.
10.
AvrRpt2, a Pseudomonas syringae type III effector protein, functions from inside plant cells to promote the virulence of P. syringae pv. tomato strain DC3000 (PstDC3000) on Arabidopsis thaliana plants lacking a functional copy of the corresponding RPS2 resistance gene. In this study, we extended our understanding of AvrRpt2 virulence activity by exploring the hypothesis that AvrRpt2 promotes PstDC3000 virulence by suppressing plant defenses. When delivered by PstDC3000, AvrRpt2 suppresses pathogen-related (PR) gene expression during infection, suggesting that AvrRpt2 suppresses defenses mediated by salicylic acid (SA). However, AvrRpt2 promotes PstDC3000 growth on transgenic plants expressing the SA-degrading enzyme NahG, indicating that AvrRpt2 does not promote bacterial virulence by modulating SA levels during infection. AvrRpt2 general virulence activity does not depend on the RPM1 resistance gene, as mutations in RPM1 had no effect on AvrRpt2-induced phenotypes. Transgenic plants expressing AvrRpt2 displayed enhanced susceptibility to PstDC3000 strains defective in type III secretion, indicating that enhanced susceptibility of these plants is not because of suppression of defense responses elicited by other type III effectors. Additionally, avrRpt2 transgenic plants did not exhibit increased susceptibility to Peronospora parasitica and Erysiphe cichoracearum, suggesting that AvrRpt2 virulence activity is specific to P. syringae.  相似文献   

11.
The HopPtoF locus in Pseudomonas syringae pv. tomato DC3000 harbors two genes, ShcF and HopF2 (previously named ShcF(Pto) and HopF(Pto)), that encode a type III chaperone and a cognate effector protein, respectively. The HopF2 gene has a rare initiation codon, ATA that was reported to be functional only in mitochondrial genes. Here, we report that the native HopPtoF locus of DC3000 confers an avirulence function in tobacco W38 plants, indicating that the ATA start codon directs the synthesis of a functional effector. However, disruption of HopF2 in DC3000 genome did not alter the bacterial virulence in tomato plants. The HopPtoF locus displayed a measurable virulence activity in two strains of P. syringae pv. tomato when the ATA start codon was changed to ATG, and this change also elevated the avirulence function in W38 plants. HopF2 contains a putative myristoylation site. Mutational analysis indicated that this site is required for plasma membrane localization and virulence and avirulence activities of HopF2.  相似文献   

12.
Pseudomonas syringae pv. tomato DC3000 is a pathogen of tomato and Arabidopsis that translocates virulence effector proteins into host cells via a type III secretion system (T3SS). Many effector-encoding hypersensitive response and pathogenicity (Hrp) outer protein (hop) genes have been identified previously in DC3000 using bioinformatic methods based on Hrp promoter sequences and characteristic N-terminal amino acid patterns that are associated with T3SS substrates. To approach completion of the Hop/effector inventory in DC3000, 44 additional candidates were tested by the Bordetella pertussis calmodulin-dependent adenylate cyclase (Cya) translocation reporter assay; 10 of the high-probability candidates were confirmed as T3SS substrates. Several previously predicted hop genes were tested for their ability to be expressed in an HrpL-dependent manner in culture or to be expressed in planta. The data indicate that DC3000 harbors 53 hop/avr genes and pseudogenes (encoding both injected effectors and T3SS substrates that probably are released to the apoplast); 33 of these genes are likely functional in DC3000, 12 are nonfunctional members of valid Hop families, and 8 are less certain regarding their production at functional levels. Growth of DC3000 in tomato and Arabidopsis Col-0 was not impaired by constitutive expression of repaired versions of two hops that were disrupted naturally by transposable elements or of hop genes that are naturally cryptic. In summary, DC3000 carries a complex mixture of active and inactive hop genes, and the hop genes in P. syringae can be identified efficiently by bioinformatic methods; however, a precise inventory of the subset of Hops that are important in pathogenesis awaits more knowledge based on mutant phenotypes and functions within plants.  相似文献   

13.
The enterobacterium Erwinia amylovora is a devastating plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. In an attempt to identify genes induced during infection of host plants, we identified and cloned a putative effector gene, avrRpt2EA. The deduced amino-acid sequence of the translated AvrRpt2EA protein is homologous to the effector protein AvrRpt2 previously reported in Pseudomonas syringae pv. tomato. These two proteins share 58% identity (70% similarity) in the functional domain; however, the secretion and translocation signal domain varied. The avrRpt2EA promoter region contains a typical 'hrp box,' which suggests that avrRpt2EA is regulated by the alternative sigma factor, HrpL. avrRpt2EA was detected in all E. amylovora strains tested but not in other closely related Erwinia species. An avrRpt2EA deletion mutant was reduced in its ability to cause systemic infection on immature pear fruits as compared with the wild-type strain, indicating that avrRpt2EA acts as a virulence factor on its native host. Growth of P. syringae pv. tomato DC3000 expressing avrRpt2EA was 10-fold higher than that of P. syringae pv. tomato DC3000 in an Arabidopsis rps2 mutant, indicating that avrRpt2EA promotes virulence of P. syringae pv. tomato DC3000 on Arabidopsis similar to P. syringae pv. tomato avrRpt2. When avrRpt2EA was expressed in P. syringae pv. tomato DC3000 in its native form, a weak hypersensitive response (HR) was induced in Arabidopsis; however, a hybrid protein containing the P. syringae pv. tomato avrRpt2 signal sequence, when expressed from the P syringae pv. tomato avrRpt2 promoter, caused a strong HR. Thus, the signal sequence and promoter of avrRpt2EA may affect its expression, secretion, or translocation, singly or in combination, in P. syringae pv. tomato DC3000. These results indicated that avrRpt2EA is genetically recognized by the RPS2 disease resistance gene in Arabidopsis when expressed in P. syringae pv. tomato DC3000. The results also suggested that although distinct pathogens such as E. amylovora and P. syringae may contain similar effector genes, expression and secretion of these effectors can be under specific regulation by the native pathogen.  相似文献   

14.
AvrPto and AvrPtoB are type III effector proteins expressed by Pseudomonas syringae pv. tomato strain DC3000, a pathogen of both tomato and Arabidopsis spp. Each effector physically interacts with the tomato Pto kinase and elicits a hypersensitive response when expressed in tomato leaves containing Pto. An avrPto deletion mutant of DC3000 previously was shown to retain avirulence activity on Pto-expressing tomato plants. We developed an avrPtoB deletion mutant of DC3000 and found that it also retains Pto-specific avirulence on tomato. These observations suggested that avrPto and avrPtoB both contribute to avirulence. To test this hypothesis, we developed an deltaavrPtodeltaavrPtoB double mutant in DC3000. This double mutant was able to cause disease on a Pto-expressing tomato line. Thus, avrPto and avrPtoB are the only avirulence genes in DC3000 that elicit Pto-mediated defense responses in tomato. When inoculated onto susceptible tomato leaves and compared with wild-type DC3000, the mutants DC3000deltaavrPto and DC3000deltaavrPtoB each caused slightly less severe disease symptoms, although their growth rate was unaffected. However, DC3000deltaavr PtodeltaavrPtoB caused even less severe disease symptoms than the single mutants and grew more slowly than them on susceptible leaves. Our results indicate that AvrPto and AvrPtoB have phenotypically redundant avirulence activity on Pto-expressing tomato and additive virulence activities on susceptible tomato plants.  相似文献   

15.
The ability of Pseudomonas syringae pv. phaseolicola to cause halo blight of bean is dependent on its ability to translocate effector proteins into host cells via the hypersensitive response and pathogenicity (Hrp) type III secretion system (T3SS). To identify genes encoding type III effectors and other potential virulence factors that are regulated by the HrpL alternative sigma factor, we used a hidden Markov model, weight matrix model, and type III targeting-associated patterns to search the genome of P. syringae pv. phaseolicola 1448A, which recently was sequenced to completion. We identified 44 high-probability putative Hrp promoters upstream of genes encoding the core T3SS machinery, 27 candidate effectors and related T3SS substrates, and 10 factors unrelated to the Hrp system. The expression of 13 of these candidate HrpL regulon genes was analyzed by real-time polymerase chain reaction, and all were found to be upregulated by HrpL. Six of the candidate type III effectors were assayed for T3SS-dependent translocation into plant cells using the Bordetella pertussis calmodulin-dependent adenylate cyclase (Cya) translocation reporter, and all were translocated. PSPPH1855 (ApbE-family protein) and PSPPH3759 (alcohol dehydrogenase) have no apparent T3SS-related function; however, they do have homologs in the model strain P. syringae pv. tomato DC3000 (PSPTO2105 and PSPTO0834, respectively) that are similarly upregulated by HrpL. Mutations were constructed in the DC3000 homologs and found to reduce bacterial growth in host Arabidopsis leaves. These results establish the utility of the bioinformatic or candidate gene approach to identifying effectors and other genes relevant to pathogenesis in P. syringae genomes.  相似文献   

16.
Pseudomonas syringae pv. tomato strain DC3000 is a pathogen of tomato and Arabidopsis: The hrp-hrc-encoded type III secretion system (TTSS), which injects bacterial effector proteins (primarily called Hop or Avr proteins) into plant cells, is required for pathogenicity. In addition to being regulated by the HrpL alternative sigma factor, most avr or hop genes encode proteins with N termini that have several characteristic features, including (i) a high percentage of Ser residues, (ii) an aliphatic amino acid (Ile, Leu, or Val) or Pro at the third or fourth position, and (iii) a lack of negatively charged amino acids within the first 12 residues. Here, the well-studied effector AvrPto was used to optimize a calmodulin-dependent adenylate cyclase (Cya) reporter system for Hrp-mediated translocation of P. syringae TTSS effectors into plant cells. This system includes a cloned P. syringae hrp gene cluster and the model plant Nicotiana benthamiana. Analyses of truncated AvrPto proteins fused to Cya revealed that the N-terminal 16 amino acids and/or codons of AvrPto are sufficient to direct weak translocation into plant cells and that longer N-terminal fragments direct progressively stronger translocation. AvrB, tested because it is poorly secreted in cultures by the P. syringae Hrp system, was translocated into plant cells as effectively as AvrPto. The translocation of several DC3000 candidate Hop proteins was also examined by using Cya as a reporter, which led to identification of three new intact Hop proteins, designated HopPtoQ, HopPtoT1, and HopPtoV, as well as two truncated Hop proteins encoded by the naturally disrupted genes hopPtoS4::tnpA and hopPtoAG::tnpA. We also confirmed that HopPtoK, HopPtoC, and AvrPphE(Pto) are translocated into plant cells. These results increased the number of Hrp system-secreted proteins in DC3000 to 40. Although most of the newly identified Hop proteins possess N termini that have the same features as the N termini of previously described Hop proteins, HopPtoV has none of these characteristics. Our results indicate that Cya should be a useful reporter for exploring multiple aspects of the Hrp system in P. syringae.  相似文献   

17.
Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors.  相似文献   

18.
Many plant pathogens suppress antimicrobial defenses using virulence factors that modulate endogenous host defenses. The Pseudomonas syringae phytotoxin coronatine (COR) is believed to promote virulence by acting as a jasmonate analog, because COR-insensitive 1 (coil) Arabidopsis thaliana and tomato mutants are impaired in jasmonate signaling and exhibit reduced susceptibility to P. syringae. To further investigate the role of jasmonate signaling in disease development, we analyzed several jasmonate-insensitive A. thaliana mutants for susceptibility to P. syringae pv. tomato strain DC3000 and sensitivity to COR. Jasmonate-insensitive 1 (jin1) mutants exhibit both reduced susceptibility to P. syringae pv. tomato DC3000 and reduced sensitivity to COR, whereas jasmonate-resistant 1 (jar1) plants exhibit wild-type responses to both COR and P. syringae pv. tomato DC3000. A jin1 jar1 double mutant does not exhibit enhanced jasmonate insensitivity, suggesting that JIN1 functions downstream of jasmonic acid-amino acid conjugates synthesized by JAR1. Reduced disease susceptibility in jin1 mutants is correlated with elevated expression of pathogenesis-related 1 (PR-1) and is dependent on accumulation of salicylic acid (SA). We also show that JIN1 is required for normal P. syringae pv. tomato DC3000 symptom development through an SA-independent mechanism. Thus, P. syringae pv. tomato DC3000 appears to utilize COR to manipulate JIN1-dependent jasmonate signaling both to suppress SA-mediated defenses and to promote symptom development.  相似文献   

19.
The model plant pathogen Pseudomonas syringae pv. tomato DC3000 grows and produces necrotic lesions in the leaves of its host, tomato. Both abilities are dependent upon the hypersensitive response and pathogenicity (Hrp) type III secretion system (TTSS), which translocates multiple effector proteins into plant cells. A previously constructed DC3000 mutant with a 9.3-kb deletion in the Hrp pathogenicity island conserved effector locus (CEL) was strongly reduced in growth and lesion formation in tomato leaves. The ACEL mutation affects three putative or known effector genes: avrE1, hopM1, and hopAA1-1. Comparison of genomic sequences of DC3000, P. syringae pv. phaseolicola 1448A, and P. syringae pv. syringae B728a revealed that these are the only effector genes present in the CEL of all three strains. AvrEl was shown to carry functional TTSS translocation signals based on the performance of a fusion of the first 315 amino acids of AvrE1 to the Cya translocation reporter. A DC3000 delta avrE1 mutant was reduced in its ability to produce lesions but not in its ability to grow in host tomato leaves. AvrE1 expressed from the 35S promoter elicited cell death in nonhost Nicotiana tabacum leaves and host tomato leaves in Agrobacterium-mediated transient expression experiments. Mutations involving combinations of avrE1, hopM1, and hopAA1-1 revealed that deletion of both avrE1 and hopM1 reproduced the strongly reduced growth and lesion phenotype of the delta CEL mutant. Furthermore, quantitative assays involving different levels of inoculum and electrolyte leakage revealed that the avrE1/hopM1 and deltaCEL mutants both were partially impaired in their ability to elicit the hypersensitive response in nonhost N. benthamiana leaves. However, the avrE1/hopM1 mutant was not impaired in its ability to deliver AvrPto1(1-100)-Cya to nonhost N. benthamiana or host tomato leaves during the first 9 h after inoculation. These data suggest that AvrE1 acts within plant cells and promotes lesion formation and that the combined action of AvrE1 and HopM1 is particularly important in promoting bacterial growth in planta.  相似文献   

20.
The bacterial plant pathogen Pseudomonas syringae possesses a type III protein secretion system that delivers many virulence proteins into plant cells. A subset of these proteins (called Avr proteins) is recognized by the plant's innate immune system and triggers defences. One defence-associated response is the hypersensitive response (HR), a programmed cell death (PCD) of plant tissue. We have previously identified HopPtoD2 as a type III secreted protein from P. s. pv. tomato DC3000. Sequence analysis revealed that an N-terminal domain shared homology with AvrPphD and a C-terminal domain was similar to protein tyrosine phosphatases (PTPs). We demonstrated that purified HopPtoD2 possessed PTP activity and this activity required a conserved catalytic Cys residue (Cys(378)). Interestingly, HopPtoD2 was capable of suppressing the HR elicited by an avirulent P. syringae strain on Nicotiana benthamiana. HopPtoD2 derivatives that lacked Cys(378) no longer suppressed the HR indicating that HR suppression required PTP activity. A constitutively active MAPK kinase, called NtMEK2DD, is capable of eliciting an HR-like cell death when transiently expressed in tobacco. When NtMEK2DD and HopPtoD2 were co-delivered into plant cells, the HR was suppressed indicating that HopPtoD2 acts downstream of NtMEK2DD. DC3000 hopPtoD2 mutants were slightly reduced in their ability to multiply in planta and displayed an enhanced ability to elicit an HR. The identification of HopPtoD2 as a PTP and a PCD suppressor suggests that the inactivation of MAPK pathways is a virulence strategy utilized by bacterial plant pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号