首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isoprene emission from plants is one of the principal ways in which plant processes alter atmospheric chemistry. Despite the importance of this process, few long-term controls over basal emission rates have been identified. Stress-induced changes in carbon allocation within the entire plant, such as those produced by defoliation, have not been examined as potential mechanisms that may control isoprene production and emission. Eastern cottonwood (Populus deltoides) saplings were partially defoliated and physiological and growth responses were measured from undamaged and damaged leaves 7 days following damage. Defoliation reduced isoprene emission from undamaged and damaged leaves on partially defoliated plants. Photosynthetic rates and leaf carbon and nitrogen pools were unaffected by damage. Photosynthetic rate and isoprene emission were highly correlated in undamaged leaves on undamaged plants and damaged leaves on partially defoliated plants. There was no correlation between photosynthetic rate and isoprene emission in undamaged leaves on partially defoliated plants. Isoprene emission was also highly correlated with the number of source leaves on the apical shoot in damage treatments. Increased carbon export from source leaves in response to defoliation may have depleted the amount of carbon available for isoprene synthesis, decreasing isoprene emission. These results suggest that while isoprene emission is controlled at the leaf level in undamaged plants, emission from leaves on damaged plants is controlled by whole-branch allocation patterns. Received: 12 May 1998 / Accepted: 9 November 1998  相似文献   

2.
3.
Isoprene synthase is an enzyme that is responsible for the production of the volatile C5 hydrocarbon, isoprene, in plant leaves. Isoprene formation in numerous C3 plants is interesting because (a) large quantities of isoprene are emitted, 5 x 1014 g of C annually, (b) a plant may release 1 to 8% of its fixed C as isoprene, and (c) the function of plant isoprene production is unknown. Because of the dependence of foliar isoprene emission on light, the existence of a plastidic isoprene synthase has been postulated. To pursue this idea, a method to isolate chloroplasts from Salix discolor was developed and shows a plastidic isoprene synthase that is tightly bound to the thylakoid membrane and accessible to trypsin inactivation. The thylakoid-bound isoprene synthase has catalytic properties similar to known soluble isoprene synthases; however, the relationship between these enzymes is unknown. The discovery of a thylakoid-bound isoprene synthase with a stromal-facing domain places it in the chloroplast, where it may be subject to numerous direct and indirect light-mediated effects. Implications for the light-dependent regulation of foliar isoprene production and its function are presented.  相似文献   

4.
Plants utilize isoprene emission as a thermotolerance mechanism   总被引:1,自引:0,他引:1  
Isoprene is a volatile compound emitted from leaves of many plant species in large quantities, which has an impact on atmospheric chemistry due to its massive global emission rate (5 x 10(14) carbon g year(-1)) and its high reactivity with the OH radical, resulting in an increase in the half-life of methane. Isoprene emission is strongly induced by the increase in isoprene synthase activity in plastids at high temperature in the day time, which is regulated at its gene expression level in leaves, while the physiological meaning of isoprene emission for plants has not been clearly demonstrated. In this study, we have functionally overexpressed Populus alba isoprene synthase in Arabidopsis to observe isoprene emission from transgenic plants. A striking difference was observed when both transgenic and wild-type plants were treated with heat at 60 degrees C for 2.5 h, i.e. transformants revealed clear heat tolerance compared with the wild type. High isoprene emission and a decrease in the leaf surface temperature were observed in transgenic plants under heat stress treatment. In contrast, neither strong light nor drought treatments showed an apparent difference. These data suggest that isoprene emission plays a crucial role in a heat protection mechanism in plants.  相似文献   

5.
Isoprene is the most abundant of the hydrocarbon compounds emitted from vegetation and plays a major role in tropospheric chemistry. Models predict that future climate change scenarios may lead to an increase in global isoprene emissions as a consequence of higher temperatures and extended drought periods. Tropical rainforests are responsible for more than 80% of global isoprene emissions, so it is important to obtain experimental data on isoprene production and consumption in these ecosystems under control of environmental variables. We explored isoprene emission and consumption in the tropical rainforest model ecosystem of Biosphere 2 laboratory during a mild water stress, and the relationship with light and temperature. Gross isoprene production (GIP) was not significantly affected by mild water stress in this experiment because the isoprene emitters were mainly distributed among the large, canopy layer trees with deep roots in the lower soil profile where water content decreased much less than the top 30 cm. However, as found in previous leaf level and whole canopy studies, the ecosystem gross primary production was reduced by (32%) during drought, and as a consequence the percentage of fixed C lost as isoprene tended to increase during drought, from ca. 1% in wet conditions to ca. 2% when soil water content reached its minimum. GIP correlated very well with both light and temperature. Notably, soil isoprene uptake decreased dramatically during the drought, leading to a large increase in daytime net isoprene fluxes.  相似文献   

6.
Monson RK  Fall R 《Plant physiology》1989,90(1):267-274
Isoprene emission rates from quaking aspen (Populus tremuloides Michx.) leaves were measured simultaneously with photosynthesis rate, stomatal conductance, and intercellular CO2 partial pressure. Isoprene emission required the presence of CO2 or O2, but not both. The light response of isoprene emission rate paralleled that of photosynthesis. Isoprene emission was inhibited by decreasing ambient O2 from 21% to 2%, only when there was oxygen insensitive photosynthesis. Mannose (10 millimolar) fed through cut stems resulted in strong inhibition of isoprene emission rate and is interpreted as evidence that isoprene biosynthesis requires either the export of triose phosphates from the chloroplast, or the continued synthesis of ATP. Light response experiments suggest that photosynthetically generated reductant or ATP is required for isoprene biosynthesis. Isoprene biosynthesis and emission are not directly linked to glycolate production through photorespiration, contrary to previous reports. Isoprene emission rate was inhibited by above-ambient CO2 partial pressures (640 microbar outside and 425 microbar inside the leaf). The inhibition was not due to stomatal closure. This was established by varying ambient humidity at normal and elevated CO2 partial pressures to measure isoprene emission rates over a range of stomatal conductances. Isoprene emission rates were inhibited at elevated CO2 despite no change in stomatal conductance. Addition of abscisic acid to the transpiration stream dramatically inhibited stomatal conductance and photosynthesis rate, with a slight increase in isoprene emission rate. Thus, isoprene emission is independent of stomatal conductance, and may occur through the cuticle. Temperature had an influence on isoprene emission rate, with the Q10 being 1.8 to 2.4 between 35 and 45°C. At these high temperatures the amount of carbon lost through isoprene emission was between 2.5 and 8% of that assimilated through photosynthesis. This represents a significant carbon cost that should be taken into account in determining midsummer carbon budgets for plants that are isoprene emitters.  相似文献   

7.
Isoprene emission from a subarctic peatland under enhanced UV-B radiation   总被引:1,自引:1,他引:0  
Isoprene is a reactive hydrocarbon with an important role in atmospheric chemistry, and emissions from vegetation contribute to atmospheric carbon fluxes. The magnitude of isoprene emissions from arctic peatlands is not known, and it may be altered by increasing UV-B radiation. Isoprene emission was measured with the dynamic chamber method from a subarctic peatland under long-term enhancement of UV-B radiation targeted to correspond to a 20% loss in the stratospheric ozone layer. The site type of the peatland was a flark fen dominated by the moss Warnstorfia exannulata and sedges Eriophorum russeolum and Carex limosa. The relationship between species densities and the emission was also assessed. Isoprene emissions were significantly increased by enhanced UV-B radiation during the second (2004) and the fourth (2006) growing seasons under the UV-B exposure. Emissions were related to the density of E. russeolum. The dominant moss, W. exannulata, proved to emit small amounts of isoprene in a laboratory trial. Subarctic fens, even without Sphagnum moss, are a significant source of isoprene to the atmosphere, especially under periods of warm weather. Warming of the Arctic together with enhanced UV-B radiation may substantially increase the emissions.  相似文献   

8.
Abstract: Isoprene is emitted from the leaves of some plants. It was recently reported that exogenous isoprene delays the onset of leaf damage during controlled increases in leaf temperature (Singsaas et al. Plant Physiology 115: 1413–1420 [1997[17). Thylakoid membranes are presumed to be the site of action based upon isoprene's hydrophobicity, production in chloroplasts, and effect upon chlorophyll fluorescence at high temperatures. In an attempt to discern the mechanistic basis for isoprene's thermoprotective role, we studied the effect of exogenous isoprene on the peroxidation, permeability, and stability of spinach thylakoids and phosphatidylcholine liposomes. Isoprene, supplied at either 18 or 21 μ1 L1, had no effect upon the rate of liposome peroxidation in the presence of a hydroxyl radical-generating system. Isoprene also did not affect liposome peroxidation at high temperatures. Neither the proton permeability of thylakoids nor the leakage of a fluorescent probe from liposomes was influenced by exogenous isoprene, when measured at several temperatures. Isoprene did not affect the stability of thylakoid membrane proteins during a temperature increase, as shown by differential scanning calorimetry. Therefore, despite the use of a variety of techniques to investigate fundamental membrane parameters, we were unable to demonstrate an effect of isoprene.  相似文献   

9.
Isoprene synthase is the enzyme responsible for the foliar emission of the hydrocarbon isoprene (2-methyl-1,3-butadiene) from many C3 plants. Previously, thylakoid-bound and soluble forms of isoprene synthase had been isolated separately, each from different plant species using different procedures. Here we describe the isolation of thylakoid-bound and soluble isoprene synthases from a single willow (Salix discolor L.) leaf-fractionation protocol. Willow leaf isoprene synthase appears to be plastidic, with whole-leaf and intact chloroplast fractionations yielding approximately equal soluble (i.e. stromal) and thylakoid-bound isoprene synthase activities. Although thylakoid-bound isoprene synthase is tightly bound to the thylakoid membrane (M.C. Wildermuth, R. Fall [1996] Plant Physiol 112: 171–182), it can be solubilized by pH 10.0 treatment. The solubilized thylakoid-bound and stromal isoprene synthases exhibit similar catalytic properties, and contain essential cysteine, histidine, and arginine residues, as do other isoprenoid synthases. In addition, two regulators of foliar isoprene emission, leaf age and light, do not alter the percentage of isoprene synthase activity in the bound or soluble form. The relationship between the isoprene synthase isoforms and the implications for function and regulation of isoprene production are discussed.  相似文献   

10.
11.
植物源异戊二烯及其生态意义   总被引:7,自引:1,他引:7  
异戊二烯为植物挥的众多有机碳氢化合物中的主要成分,它的合成和释放对全球尺度上的C素平衡、温室效应的大气污染都有极其重要的作用。本文系统论述了影响异戊二烯释放的主要因子,异戊二烯的释放量及其计量方法,以及它可能的生态意义,指出了研究多重环境胁迫与异戊二烯合成和释放的关系的必要性。  相似文献   

12.
Experimental research shows that isoprene emission by plants can improve photosynthetic performance at high temperatures. But whether species that emit isoprene have higher thermal limits than non‐emitting species remains largely untested. Tropical plants are adapted to narrow temperature ranges and global warming could result in significant ecosystem restructuring due to small variations in species' thermal tolerances. We compared photosynthetic temperature responses of 26 co‐occurring tropical tree and liana species to test whether isoprene‐emitting species are more tolerant to high temperatures. We classified species as isoprene emitters versus non‐emitters based on published datasets. Maximum temperatures for net photosynthesis were ~1.8°C higher for isoprene‐emitting species than for non‐emitters, and thermal response curves were 24% wider; differences in optimum temperatures (Topt) or photosynthetic rates at Topt were not significant. Modelling the carbon cost of isoprene emission, we show that even strong emission rates cause little reduction in the net carbon assimilation advantage over non‐emitters at supraoptimal temperatures. Isoprene emissions may alleviate biochemical limitations, which together with stomatal conductance, co‐limit photosynthesis above Topt. Our findings provide evidence that isoprene emission may be an adaptation to warmer thermal niches, and that emitting species may fare better under global warming than co‐occurring non‐emitting species.  相似文献   

13.
Isoprene is emitted from leaves of numerous plant species and has important implications for plant metabolism and atmospheric chemistry. The ability to use stored carbon (alternative carbon sources), as opposed to recently assimilated photosynthate, for isoprene production may be important as plants routinely experience photosynthetic depression in response to environmental stress. A CO2‐labelling study was performed and stable isotopes of carbon were used to examine the role of alternative carbon sources in isoprene production in Populus deltoides during conditions of water stress and high leaf temperature. Isotopic fractionation during isoprene production was higher in heat‐ and water‐stressed leaves (?8.5 and ?9.3‰, respectively) than in unstressed controls (?2.5 to ?3.2‰). In unstressed plants, 84–88% of the carbon in isoprene was derived from recently assimilated photosynthate. A significant shift in the isoprene carbon composition from photosynthate to alternative carbon sources was observed only under severe photosynthetic limitation (stomatal conductance < 0.05 mol m?2 s?1). The contribution of photosynthate to isoprene production decreased to 77 and 61% in heat‐ and water‐stressed leaves, respectively. Across water‐ and heat‐stress experiments, allocation of photosynthate was negatively correlated to the ratio of isoprene emission to photosynthesis. In water‐stressed plants, the use of alternative carbon was also related to stomatal conductance. It has been proposed that isoprene emission may be regulated by substrate availability. Thus, understanding carbon partitioning to isoprene production from multiple sources is essential for building predictive models of isoprene emission.  相似文献   

14.
Isoprene is emitted from the leaves of many plants in a light‐dependent and temperature‐sensitive manner. Plants lose a large fraction of photo‐assimilated carbon as isoprene but may benefit from improved recovery of photosynthesis following high‐temperature episodes. The capacity for isoprene emission of plants in natural conditions (assessed as the rate of isoprene emission under standard conditions) varies with weather. Temperature‐controlled greenhouses were used to study the role of temperature and light in influencing the capacity of oak leaves for isoprene synthesis. A comparison was made between the capacity for isoprene emission and the accumulation of other compounds suggested to increase thermotolerance of photosynthesis under two growth temperatures and two growth light intensities. It was found that the capacity for isoprene emission was increased by high temperature or high light. Xanthophyll cycle intermediates increased in high light, but not in high temperature, and the chloroplast small heat‐shock protein was not expressed in any of the growth conditions. Thus, of the three thermotolerance‐enhancing compounds studied, isoprene was the only one induced by the temperature used in this study.  相似文献   

15.
Isoprene (C5H8) emissions by terrestrial vegetation vary with temperature and light intensity, and play an important role in biosphere–chemistry–climate interactions. Such interactions were probably substantially modified by Pleistocene climate and CO2 cycles. Central to understanding the nature of these modifications is assessment and analysis of how emissions changed under glacial environmental conditions. Currently, even the net direction of change is difficult to predict because a CO2‐depleted atmosphere may have stimulated emissions compensating for the negative impacts of a cooler climate. Here, we address this issue and attempt to determine the direction of change from an experimental standpoint by investigating the interaction between isoprene emissions and plant growth of two known isoprene‐emitting herbaceous species (Mucuna pruriens and Arundo donax) grown at glacial (180 ppm) to present (366 ppm) CO2 levels. We found a significant enhancement of isoprene emissions per unit leaf area in M. pruriens under subambient CO2 concentrations relative to ambient controls but not for A. donax. In contrast, canopy emissions remained unaltered for both plant species because enhanced leaf emissions were offset by reductions in biomass and leaf area. Separate growth experiments with M. pruriens revealed that lowering day/night temperatures by 5°C decreased canopy isoprene emissions irrespective of the CO2 level. Incorporation of these results into a simple canopy emissions model highlights their potential to attenuate reductions in the total isoprene flux from forests under glacial conditions predicted by standard models.  相似文献   

16.
Isoprene synthesis protects transgenic tobacco plants from oxidative stress   总被引:1,自引:0,他引:1  
Isoprene emission represents a significant loss of carbon to those plant species that synthesize this highly volatile and reactive compound. As a tool for studying the role of isoprene in plant physiology and biochemistry, we developed transgenic tobacco plants capable of emitting isoprene in a similar manner to and at rates comparable to a naturally emitting species. Thermotolerance of photosynthesis against transient high-temperature episodes could only be observed in lines emitting high levels of isoprene; the effect was very mild and could only be identified over repetitive stress events. However, isoprene-emitting plants were highly resistant to ozone-induced oxidative damage compared with their non-emitting azygous controls. In ozone-treated plants, accumulation of toxic reactive oxygen species (ROS) was inhibited, and antioxidant levels were higher. Isoprene-emitting plants showed remarkably decreased foliar damage and higher rates of photosynthesis compared to non-emitting plants immediately following oxidative stress events. An inhibition of hydrogen peroxide accumulation in isoprene-emitting plants may stall the programmed cell death response which would otherwise lead to foliar necrosis. These results demonstrate that endogenously produced isoprene provides protection from oxidative damage.  相似文献   

17.
The effects of high temperature on isoprene synthesis in oak leaves   总被引:3,自引:0,他引:3  
Isoprene emission from plants is highly temperature sensitive and is common in forest canopy species that experience rapid leaf temperature fluctuations. Isoprene emission declines with temperature above 35 °C but the temperature at which the decline begins varies between 35 and 44 °C. This variability is caused by the rate at which leaf temperature is increased during measurement with lower temperatures associated with longer measurement cycles. To investigate this we exposed leaves of red oak (Quercus rubra L.) to temperature regimes of 35–45 °C for periods of 20–60 min. Isoprene emission increased during the first 10 min of high temperature exposure and then decreased over the next 10 min until it reached steady state. This phenomenon was common at temperatures above 35 °C but was not noticeable at temperatures below that. The response was reversible within 30 min by lowering leaf temperature to 30 °C. Because there is no storage of isoprene inside the leaf, this behaviour indicates regulation of isoprene synthesis in the leaf. We demonstrated that the variability in isoprene decline results from regulation and explains the variability in the temperature response. This is consistent with our theory that isoprene protects leaves from damage caused by rapid temperature fluctuations.  相似文献   

18.
Biogenic emission of isoprene (2-methyl-1,3-butadiene) by many plant species plays an important role in atmospheric chemistry. Its rapid breakdown in the atmosphere substantially affects the oxidation potential of the atmosphere. Leaves of Quercus petraea were found to contain an enzyme which catalyses the conversion of dimethylallyl pyrophosphate (DMAPP) to isoprene. A standard enzyme assay was established and the isoprene synthase activity was characterized in purified leaf extracts. Optimum enzyme activity was observed at pH 8.5. The enzyme had an apparent Km of 0.97 mM for its substrate DMAPP, but isopentenyl pyrophosphate (IPP), the isomeric form of DMAPP, was not converted to isoprene by the enzyme extract. The temperature optimum of the enzyme activity was 35 °C. Isoprene synthase activity was strictly dependent on the presence of bivalent cations, with magnesium being most effective. Molecular weight determination by FPLC revealed the presence of a single protein with a native molecular weight of approximately 90–100 kDa.  相似文献   

19.
Thermotolerance induced by isoprene has been assessed during heat bursts but there is little information on the ability of endogenous isoprene to confer thermotolerance under naturally elevated temperature, on the interaction between isoprene-induced thermotolerance and light stress, and on the persistence of this protection in leaves recovering at lower temperatures. Moderately high temperature treatment (38 °C for 1.5 h) reduced photosynthesis, stomatal conductance, and photochemical efficiency of photosystem II in isoprene-emitting, but to a significantly lower extent than in isoprene-inhibited Phragmites australis leaves. Isoprene inhibition and high temperature independently, as well as together, induced lipid peroxidation, increased level of H2O2, and increased catalase and peroxidase activities. However, leaves in which isoprene emission was previously inhibited developed stronger oxidative stress under high temperature with respect to isoprene-emitting leaves. The heaviest photosynthetic stress was observed in isoprene-inhibited leaves exposed to the brightest illumination (1500 µmol m−2 s−1) and, in general, there was also a clear additive effect of light excess on the formation of reactive oxygen species, antioxidant enzymes, and membrane damage. The increased thermotolerance capability of isoprene-emitting leaves may be due to isoprene ability to stabilize membranes or to scavenge reactive oxygen species. Irrespective of the mechanism by which isoprene reduces thermal stress, isoprene-emitting leaves are able to quickly recover after the stress. This may be an important feature for plants coping with frequent and transient temperature changes in nature.  相似文献   

20.
Isoprene emission from plants represents one of the principal biospheric controls over the oxidative capacity of the continental troposphere. In the study reported here, the seasonal pattern of isoprene emission, and its underlying determinants, were studied for aspen trees growing in the Rocky Mountains of Colorado. The springtime onset of isoprene emission was delayed for up to 4 weeks following leaf emergence, despite the presence of positive net photosynthesis rates. Maximum isoprene emission rates were reached approximately 6 weeks following leaf emergence. During this initial developmental phase, isoprene emission rates were negatively correlated with leaf nitrogen concentrations. During the autumnal decline in isoprene emission, rates were positively correlated with leaf nitrogen concentration. Given past studies that demonstrate a correlation between leaf nitrogen concentration and isoprene emission rate, we conclude that factors other than the amount of leaf nitrogen determine the early-season initiation of isoprene emission. The late-season decline in isoprene emission rate is interpreted as due to the autumnal breakdown of metabolic machinery and loss of leaf nitrogen. In potted aspen trees, leaves that emerged in February and developed under cool, springtime temperatures did not emit isoprene until 23 days after leaf emergence. Leaves that emrged in July and developed in hot, midsummer temperatures emitted isoprene within 6 days. Leaves that had emerged during the cool spring, and had grown for several weeks without emitting isoprene, could be induced to emit isoprene within 2 h of exposure to 32°C. Continued exposure to warm temperatures resulted in a progressive increase in the isoprene emission rate. Thus, temperature appears to be an important determinant of the early season induction of isoprene emission. The seasonal pattern of isoprene emission was examined in trees growing along an elevational gradient in the Colorado Front Range (1829–2896 m). Trees at different elevations exhibited staggered patterns of bud-break and initiation of photosynthesis and isoprene emission in concert with the staggered onset of warm, springtime temperatures. The springtime induction of isoprene emission could be predicted at each of the three sites as the time after bud break required for cumulative temperatures above 0°C to reach approximately 400 degree days. Seasonal temperature acclimation of isoprene emission rate and photosynthesis rate was not observed. The temperature dependence of isoprene emission rate between 20 and 35°C could be accurately predicted during spring and summer using a single algorithm that describes the Arrhenius relationship of enzyme activity. From these results, it is concluded that the early season pattern of isoprene emission is controlled by prevailing temperature and its interaction with developmental processes. The late-season pattern is determined by controls over leaf nitrogen concentration, especially the depletion of leaf nitrogen during senescence. Following early-season induction, isoprene emission rates correlate with photosynthesis rates. During the season there is little acclimation to temperature, so that seasonal modeling simplifies to a single temperature-response algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号