首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Sisomicin fermentations were carried out in stirred and air lift fermentors, and various concentrations of MgSO4 were supplemented to improve antibiotic yield. The highest antibiotic yield was obtained at 80 mM in an air lift fermentor due to effective liberation of intracellular sisomicin by MgSO4. The presence of high concentrations of MgSO4, along with shear stress due to strong agitation in the stirred fermentor, resulted in low values of cell activity, rheological parameter(n) and cell viability in the stirred fermentor, compared with the air lift fermentor. The better physiological states of cells grown in the air lift fermentor resulted in improved antibiotic yields.  相似文献   

2.
A bubble column (0.05 m(3)) and an air-lift fermentor (1.2 m(3)) were used for the production of the exocellular microbial polysaccharide xanthan with Xanthomonas campestris in a synthetic medium. Upon oxygen depletion in the liquid, the xanthan production rate dropped sharply and then became a linear function of the oxygen transfer rate. The volumetric mass transfer coefficients for oxygen conformed to the correlation of Suh et al. Using this correlation in combination with the model for xanthan batch fermentation suggested by Peters et al., the xanthan fermentations in the bubble column were well described. The model also correctly predicted the time course of the molecular weight of the polysaccharide even when a complex medium was used. In the air-lift fermentor, however, the xanthan production rate and the xanthan yields with respect to oxygen and glucose were lower than expected at the overall oxygen transfer rate. The poor performance of the air lift was traced back to the lack of any oxygen supply in the downcomer.  相似文献   

3.
Summary A high penicillin-producing Penicillium chrysogenum strain immobilized in calcium alginate beads was used for continuous penicillin fermentation in a bubble column and in a conical bubble fermentor. The fermentation was limited by the growth rate, dilution rates and the stability of the alginate beads. The immobilized cells lost their ability to produce penicillin in the bubble column after 48 h from beginning of the continuous fermentation. In the conical bubble fermentor the immobilized cells remained active for more than 7 days. This bioreactor ensured a good distribution of nutrients and oxygen as well as a higher mechanical stability of the alginate beads.  相似文献   

4.
The kinetics of microbial growth and product formation are described as applied to the high cell concentration scheme of the rotorfermentor. A bench scale pilot plant was designed and built in order to demonstrate the operational feasibility of the rotorfermentor. The fermentation of glucose to ethanol by Saccharomyces cerevisiae ATCC 4126 was used. When the rotorfermentor was used with a glucose feed concentration of 104 g/liter almost 100% glucose utilization was obtained and the ethanol productivity rate was 27.3 g ethanol/liter hr which was found to be about 10 times greater than the ethanol productivity obtained from an ordinary continuous stirred tank (CST) fermentor. The ethanol experimental results obtained from the rotorfermentor and an ordinary CST fermentor were used as a basis to assess the economic feasibility of the rotorfermentor. The economics of an industrial scale ordinary CST fermentor with and without cell recycle is compared with a rotorfermentor unit for the same ethanol production throughput. For the process conditions considered in this case, calculations showed that the rotorfermentor may replace both a CST fermentor and cell centrifuge resulting in lower capital equipment costs and lower power consumption requirements.  相似文献   

5.
Summary Operating conditions for our semi-continuous, solid-phase fermentation system were optimized for conversion of fodder beets to fuel ethanol and distiller's wet feed (DWF). This information was then used to estimate operating parameters achievable in a commercial plant, and likely baseline production costs of such a plant. Initial acidification of pulp to pH 2.9–3.2 was effective in controlling bacterial contamination. The maximum operating capacity of the fermentor was approximately 92%, with 75% used for commercial application. A fermentation time of 24 h was sufficient to completely ferment the beet pulp to 8–9% (v/v) ethanol. Based on these parameters, a fodder beet cost of $19.25/metric ton ($17.50/ton), other operating and capital costs, and a PF credit of $0.14/L ($0.53/gal), ethanol production costs were estimated to be $0.49/L ($1.87/gal).  相似文献   

6.
During ribonucleic acid fermentation, the fermentative processes were researched at pH controlled at 4.0 and under natural conditions. Unstructured models in a 50-L airlift fermentor were established for batch RNA production at pH 4.0 using the Verhulst equation for microbial growth, the Luedeking–Piret equation for product formation and a Luedeking–Piret-like equation for substrate uptake. Parameters of the kinetic models were determined using origin 7.5. Based on the models estimated above, another batch fermentation experiment was conducted in a 300-L airlift fermentor, which demonstrated that the models could be useful for RNA production on an industrial scale. Additionally, continuous fermentation based on kinetic models was proposed to make full use of substrates and reduce the cost of waste water treatment. As a result, although the DCW and RNA concentration were 11.5 and 1.68 g L−1, which were lower than that of batch fermentation, the sugar utilization increased by 14.3%, while the waste water decreased by more than 90%.  相似文献   

7.
The development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model describes the distribution of air in the bed injected via an aeration pipe. The discrete particle model describes the solid phase. In previous work, mixing during SSF was predicted with the discrete particle model, although mixing simulations were not carried out in the current work. Heat and mass transfer between the two phases and biomass growth were implemented in the two-phase model. Validation experiments were conducted in a 28-dm3 drum fermentor. In this fermentor, sufficient aeration was provided to control the temperatures near the optimum value for growth during the first 45-50 hours. Several simulations were also conducted for different fermentor scales. Forced aeration via a single pipe in the drum fermentors did not provide homogeneous cooling in the substrate bed. Due to large temperature gradients, biomass yield decreased severely with increasing size of the fermentor. Improvement of air distribution would be required to avoid the need for frequent mixing events, during which growth is hampered. From these results, it was concluded that the two-phase model developed is a powerful tool to investigate design and scale-up of aerated (mixed) SSF fermentors.  相似文献   

8.
For the purpose of improving ethanol productivity, the effect of air supplement on the performance of continuous ethanol fermentation system was studied. The effect of oxygen supplement on yeast concentration, cell yield, cell viability, extracellular ethanol concentration, ethanol yield, maintenance coefficient, specific rates of glucose assimilation, ethanol production, and ethanol productivity have been evaluated, using a high alcohol tolerant Saccharomyces cerevisiae STV89 strain and employing a continuous fermentor equipped with an accurate air metering system in the flow rate range 0-11 mL air/L/h. It was found that, when a small amount of oxygen up to about 80mu mol oxygen/L/h was supplied, the ethanol productivity was significantly enhanced as compared to the productivity of the culture without any air supplement. It was also found that the oxygen supplement improved cell viability considerably as well as the ethanol tolerance level of yeast. As the air supply rate was increased, from 0 to 11 mL air/L/h while maintaining a constant dilution rate at about 0.06 h(-1), the cell concentration increased from 2.3 to 8.2 g/L and the ethanol productivity increased from 1.7 to 4.1 g ethanol/L/h, although the specific ethanol production rate decreased slightly from 0.75 to 0.5 g ethanol/g cell/h. The ethanol yield was slightly improved also with an increase in air supply rate, from about 0.37 to 0.45 ethanol/g glucose. The maintenance coefficient increased by only a small amount with the air supplement. This kind of air supplement technique may very well prove to be of practical importance to a development of a highly productive ethanol fermentation process system especially as a combined system with a high density cell culture technique.  相似文献   

9.
This paper describes batch and semicontinuous acetic acid fermentations for wine vinegar production carried out with Acetobacter pasteurianus, and an industrial strain using a noncommercial 100-L bubble column reactor equipped with a novel type of gas-liquid dynamic sparger. Results showed acetification rates with this fermentor (i.e., an overall acetic acid productivity of 1. 8 g/L/h and yield of 94%) similar to that of the Frings acetator and higher as compared to others fermentors in current industrial use in Spanish wine vinegar factories, and a linear relationship between overall productivity and kLa with different operating conditions and fermentation scales. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

10.
A laboratory process was established for ethanol production by fermentation of sugar beet molasses with the bacterium Zymomonas mobilis. Sucrose in the molasses was hydrolyzed enzymatically to prevent levan formation. A continuous system was adopted to reduce sorbitol formation and a two-stage fermentor was used to enhance sugar conversion and the final ethanol concentration. This two-stage fermentor operated stably for as long as 18 d. An ethanol concentration of 59.9 g/l was obtained at 97% sugar conversion and at high ethanol yield (0.48 g/g, 94% of theoretical). The volumetric ethanol productivity (3.0 g/l·h) was superior to that of batch fermentation but inferior to that of a single-stage continuous system with the same medium. However, the thanol concentration was increased to a level acceptable for economical recovery. The process proposed in this paper is the first report of successful fermentation of sugar beet molasses in the continuous mode using the bacterium Z. mobilis.  相似文献   

11.
庆大霉素是氨基糖苷类广谱抗生素,其不仅用于临床治病,而且广泛应用于畜牧业。由于其发酵周期长,产素率低,生产成本高,因此改进生产方法势在必行。本文报道了在绛红色小单孢菌产生庆大霉素的培养过程中,添加一定量的甘氨酸、蛋氨酸、赖氨酸、酪氨酸能够有效地提高微生物细胞的代谢能力,缩短发酵培养周期,提高产素率。本方法是在小试(摇瓶)成功基础上,用5L玻璃发酵罐运转一个多月,取一个月的平均罐批数据表明:新方法较原工艺发酵周期缩短30% ~45%,罐批产量增加14% 左右,产素率提高30 % ~95%(因菌种生产能力不同而异),产品质量符合中国药典2000版(CP2000)、英国药典2000版(BP2000)、美国药典26版(USP26),生产成本大幅度降低,具有很强的市场竞争力。  相似文献   

12.
A batch fermentation process for lipase production with the recombinant strain Staphylococcus carnosus (pLipMut2) was studied in a bubble column. The rates of growth and lipase production in this type of fermentor were compared with results from shakeflasks. It was seen that cultivation in the bubble column resulted in a prolonged lag time and a reduced lipase activity in comparison to flask cultures. However, by addition of catalase during the fermentation in the bubble column this different behaviour could be avoided. Correspondence to: E. Wenzig  相似文献   

13.
A reactor configuration consisting of two reactors with an exchange flow was used for the experimental simulation of large-scale conditions. The influence of fluctuations in oxygen concentration on the growth and metabolite production of baker's yeast was investigated by sparging one fermentor with air and one with nitrogen gas. It was found that the biomass yield decreased and the metabolite formation increased with rising circulation time (longer oxygen-unlimited and oxygen-limited periods). Not only was the performance of the oxygen-limited fermentor characterised by (partly) reductive metabolism, but that of the oxygen-unlimited fermentor as well. The results of the experiments in this reactor system were compared with those from the experiments carried out in a one-fermentor system with periodically changing oxygen concentrations. The formation of acetic acid, which is characteristic for transient states, showed a distinct difference between the two reactor systems.  相似文献   

14.
Continuous fermentation by retaining cells with a membrane-integrated fermentation reactor (MFR) system was found to reduce the amount of supplied sub-raw material. If the amount of sub-raw material can be reduced, continuous fermentation with the MFR system should become a more attractive process for industrialization, due to decreased material costs and loads during the refinement process. Our findings indicate that the production rate decreased when the amount of the sub-raw material was reduced in batch fermentation, but did not decrease during continuous fermentation with Sporolactobacillus laevolacticus. Moreover, continuous fermentation with a reduced amount of sub-raw material resulted in a productivity of 11.2 g/L/h over 800 h. In addition, the index of industrial process applicability used in the MFR system increased by 6.3-fold as compared with the conventional membrane-based fermentation reactor previously reported, suggesting a potential for the industrialization of this D-lactic acid continuous fermentation process.  相似文献   

15.
The gibberellins (GAs) are an important group of hormones which exert various effects on promoter and regulator of plant growth. Gibberellic acid (GA(3)) is a natural plant hormone, with great economical and industrial importance. It affects stem elongation, germination, elimination of dormancy, flowering, sex expression, enzyme induction and leaf and fruit senescence. Despite its diverse applications, the use of GA(3) is limited due to its high production costs. The industrial process currently used for the production of GA(3) is based on submerged fermentation (SmF) techniques. As an alternative for its production, solid state fermentation (SSF) has also been investigated for its ability to increase the yields of GA(3) with the use of agro-industrial wastes as support/substrate, which contributes to the decreased production costs. This review describes GA(3)'s physical, chemical and biological properties, its production by fermentation and new advances that are being carried out with special interest on the SSF technique.  相似文献   

16.
Although air-lift fermentors have been employed industrially and in the laboratory, little information has been published on the effects of design on performance. With respect to both liquid circulation and mass transfer, not only the actual rates but the efficiency in relation to power consumption is strongly influenced by lift height and diameter, submergence ratio, and air-flow rate. Relatively wide tubes, operating at high submergence ratios and rather low air-flow rates favor high efficiency. Since these conditions lead to rather low absolute values of circulation and mass-transfer rates, the microbial population which can be supported will also be rather small. Mass transfer can be increased by the insertion of an orifice some distance; above the air-inlet point and by suitable arrangement of the discharge from the air lift into the headspace of the fermentor.  相似文献   

17.
Immense interest has been devoted to the production of bulk chemicals from lignocellulose biomass. Diluted sulfuric acid treatment is currently one of the main pretreatment methods. However, the low total sugar concentration obtained via such pretreatment limits industrial fermentation systems that use lignocellulosic hydrolysate. Sugarcane bagasse hemicellulose hydrolysate is used as the carbon and nitrogen sources to achieve a green and economical production of succinic acid in this study. Sugarcane bagasse was ultrasonically pretreated for 40 min, with 43.9 g/L total sugar obtained after dilute acid hydrolysis. The total sugar concentration increased by 29.5 %. In a 3-L fermentor, using 30 g/L non-detoxified total sugar as the carbon source, succinic acid production increased to 23.7 g/L with a succinic acid yield of 79.0 % and a productivity of 0.99 g/L/h, and 60 % yeast extract in the medium could be reduced. Compared with the detoxified sugar preparation method, succinic acid production and yield were improved by 20.9 and 20.2 %, respectively.  相似文献   

18.
Countercurrent fermentation is a high performing process design for mixed-acid fermentation. However, there are high operating costs associated with moving solids, which is an integral component of this configuration. This study investigated the effect of volatile solid loading rate (VSLR) and agitation in propagated fixed-bed fermentation, a configuration which may be more commercially viable. To evaluate the role of agitation on fixed-bed configuration performance, continuous mixing was compared with periodic mixing. VSLR was also varied and not found to affect acid yields. However, increased VSLR and liquid retention time did result in higher conversions, productivity, acid concentrations, but lower selectivities. Agitation was demonstrated to be important for this fermentor configuration, the periodically-mixed fermentation had the lowest conversion and yields. Operating at a high pH (~9) contributed to the high selectivity to acetic acid, which might be industrially desirable but at the cost of lower yield compared to a neutral pH.  相似文献   

19.
It is shown that the performance evaluation using a vector-valued objection function whose components are the product productivity, the product concentration, and the substrate conversion is quite useful in getting deeper insight into the development of new processes and in determining the operating point. Particular attention is focused on the ethanol fermentation using variety of systems such as the conventional chemostat system, multiple fermentor system, cell recycle system, extractive fermentor system, cell recycle system, extractive fermentor system, and immobilized cell system. The contour map and the projection of the noninferior set are used in investigating the performance improvement and the trade-offs among performance indexes.  相似文献   

20.
A number of industrial processes require the addition of materials to the fermentation broth that are hazardous to health and environment. Agitation of broths inoculated with microorganisms can potentially release aerosols large enough to carry the microorganisms. The influence of agitation, air flow, and bacterial growth on aerosol size distribution, air flow, and bacterial growth on aerosol size distribution was investigated in an industrial pilot scale fermentor. A decrease in particle concentration was observed with increase in bacterial growth; this change was more pronounced in the size range above 2 mum. The aerosol size distribution was found to be practically independent of air flow rate and agitation rate for sizes less than 2 mum. However, for particles largar than 2 mum, the concentration was found to increase with an increase in air flow rate and agitation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号