共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The fraction of living and dead phytoplankton cells in seven Florida lakes was assessed by using the cell digestion assay, a non‐staining membrane permeability test. The cell digestion assay is an effective method to analyse cell viability in complex natural phytoplankton communities. 2. The lakes examined ranged widely in phytoplankton abundance and community composition. The variability in the percentage of living cells (% LC) was high among the taxonomic groups forming the different phytoplankton communities, ranging from 19.7% to 98% LC. 3. All cells within single cyanobacteria filaments were determined to be either dead or alive, suggesting physiological integration of the cells within colonies. 4. Within each lake, the dominant taxa generally exhibited the highest proportion of living cells. A high proportion of living cells was found to be a characteristic of the different taxa forming the communities of eutrophic lakes. The average value for the % LC for all groups comprising the phytoplankton communities in each of the lakes ranged from 29.9 ± 7.2 to 80.4 ± 4.0 (mean ± SE) and varied strongly and positively with chlorophyll a concentration. 5. These results suggest phytoplankton cell death to be an important process structuring phytoplankton communities in lakes, particularly in oligotrophic ones. 相似文献
2.
SUMMARY 1. One of the most controversial issues in biomanipulation research relates to the conditions required for top-down control to cascade down from piscivorous fish to phytoplankton. Numerous experiments have demonstrated that Phytoplankton biomass Top-Down Control (PTDC) occurs under the following conditions: (i) in short-term experiments, (ii) shallow lakes with macrophytes, and (iii) deep lakes of slightly eutrophic or mesotrophic state. Other experiments indicate that PTDC is unlikely in (iv) eutrophic or hypertrophic deep lakes unless severe light limitation occurs, and (v) all lakes characterised by extreme nutrient limitation (oligo to ultraoligotrophic lakes). 2. Key factors responsible for PTDC under conditions (i) to (iii) are time scales preventing the development of slow-growing inedible phytoplankton (i), shallow depth allowing macrophytes to become dominant primary producers (ii), and biomanipulation-induced reduction of phosphorus (P) availability for phytoplankton (iii). 3. Under conditions (iv) and (v), biomanipulation-induced reduction of P-availability might also occur but is insufficient to alter the epilimnetic P-content enough to initiate effective bottom-up control (P-limitation) of phytoplankton. In these cases, P-loading is much too high (iv) or P-content in the lake much too low (v) to initiate or enhance P-limitation of phytoplankton by a biomanipulation-induced reduction of P-availability. However, PTDC may exceptionally result under condition (iv) if high mixing depth and/or light attenuation cause severe light limitation of phytoplankton. 4. Recognition of the five different conditions reconciles previous seemingly contradictory results from biomanipulation experiments and provides a sound basis for successful application of biomanipulation as a tool for water management. 相似文献
3.
The relative importance of local and regional processes in shaping natural communities within a metacommunity context has been a focus of intense debate in recent years. Floodplain lakes provide a good system for testing this theoretical approach, as they undergo seasonal variations in physical, chemical and biological factors, as well as in their degree of connectivity. Here, we investigated how local phytoplankton communities in lakes of a tropical river-floodplain system (Araguaia River floodplain – Central Brazil) were affected by environmental and spatial (dispersal) predictors in two rainy and two dry seasons (two consecutive years). Partial redundancy analysis indicated that during the periods analyzed the effects of neither predictor were significant. Although we cannot exclude the possibility that these tropical phytoplankton communities could be regulated by stochastic events, we suggested that further studies will have greater explanatory power if they include other variables related to biotic interactions (e.g., abundance of grazers) and fine-scale environmental variation. 相似文献
4.
We measured spatial gradients of dissolved oxygen in a eutrophic reservoir from repeated transects over a 5-day period. The equation typically used to compute lake metabolism was extended to the full advection?Cdiffusion?Creaction equation, which includes transport terms. These transport terms were computed and found to be of similar magnitude to the rate of change of dissolved oxygen. We demonstrate that neglecting transport terms in this reservoir could lead to over-estimates in net ecosystem production calculations in the surface layer of up to 100%. We advocate the calculation of nondimensional Peclet and Damkohler numbers in future studies to assist in determining the importance of transport terms on lake metabolism estimates. 相似文献
5.
Coral Reefs - Most of the diversity on coral reefs is in the cryptofauna, the hidden organisms that inhabit the interstitial spaces of corals and other habitat-forming benthos. However, little is... 相似文献
6.
Trait-based approaches have become increasingly important and valuable in understanding phytoplankton community assembly and composition. These approaches allow for comparisons between water bodies with different species composition. We hypothesize that similar changes in environmental conditions lead to similar responses with regard to functional traits of phytoplankton communities, regardless of trophic state or species composition. We studied the phytoplankton (species composition, community trait mean and diversity) of five reservoirs in Brazil along a trophic gradient from ultra-oligotrophic to meso-eutrophic. Samples at two seasons (summer/rainy and winter/dry) with a horizontal and vertical resolution were taken. Using multivariate analysis, the five reservoirs separated, despite some overlap, according to their environmental variables (mainly total phosphorus, conductivity, pH, chlorophyll a). However, between the seasonal periods, the reservoirs shifted in a similar direction in the multi-dimensional space. The seasonal response of the overall phytoplankton community trait mean differed between the ultra-oligotrophic and the other reservoirs, with three reservoirs exhibiting a very similar community trait mean despite considerable differences in species composition. Within-season differences between different water layers were low. The functional diversity was also unrelated to the trophic state of the reservoirs. Thus, seasonal environmental changes had strong influence on the functional characteristics of the phytoplankton community in reservoirs with distinct trophic condition and species composition. These results demonstrate that an ataxonomic trait-based approach is a relevant tool for comparative studies in phytoplankton ecology. 相似文献
7.
Phytoplankton preferences for light intensity and colour weredetermined in field experiments using coloured plexiglass cubessuspended at different depths in Heney Lake, Québec.Diatoms and green algae favoured intensities greater than 1%I o (surface irradiance) contrary to dinoflagellates and otherflagellates that preferred lower intensity. Red radiation usuallyincreased the relative proportion of blue-greens, diatoms andgreen algae, whereas it reduced that of dinoflageilates. Wepropose that differential utilization of the light gradientallows certain phytoplankton taxa to partition the water column,thereby reducing potential competition. This is supported bythe general agreement between our findings and the known depthdistribution of algae in lakes. 相似文献
8.
Stable carbon isotopes ( 13C) were determined for phytoplanktonand dissolved inorganic carbon (DIC) from Lake Apopka, a shallow,polymictic and hypereutrophic lake in Florida, USA. Bulk planktondominated by pico- and nanqanobacteria were enriched in 13(13.1± 1.1%) as a result of assimilation of extremely 13C-richDIC ( 13C = 9.6 ± 3.0%). Diatoms ( Aulacoseira spp.) hada 13C of 14.3 ± 0.6% that was slightly more negativethan that of small cyanobacteria. Meroplanktonic diatoms hada 13C (13.6 ± 1.8%), similar to their planktoniccounterparts. The 13C of a colonial cyanobacterium ( Microcystisincerta) was exceptionally heavy (3.0 ± 1.0%)and attributed to localized carbon limitation. Seasonal variationin 13C of bulk plankton was small (4%) relative to reports forother lacustrine systems No difference in the 13C of bulk planktonhorn surface water between stratified and non-stratified periodswas found. No measurable changes in 13C of bulk plankton wereindicated in light and dark incubation experiments Frequentwind mixing of the water column, high DIC concentration, andconsistently high lake productivity were used to explain thetemporal and spatial isotope consistency of phytoplankton inthis lake. 相似文献
9.
The development of eight different species (populations) along temporal and vertical gradients in several lakes was studied. Many populations had an exponential growth phase and a decline phase. The growth rate was often high during the exponential phase. Some species, e.g. Oscillatoria spp. and Synedra cf. acus, often also had a long stationary phase. The growth rate and the sinking rate of these populations were often very low. Laboratory batch experiments with dilute phytoplankton populations were carried out to estimate the degree of growth limitation (L) for different populations sample from different lakes during the three growth phases. L was always low and often zero for populations initially in the exponential phase and always high for populations initially in the decline phase. The biotests also gave results that can help to explain the vertical distribution of Oscillatoria or Asterionella in three lakes investigated. The results indicate that the growth rates and the development of the populations were dependent on the external chemical and physical conditions. The transition between the different growth phases seemed often to be dependent on the external nutrient conditions. P, N, Si and Fe were probably the most growth-limiting nutrients. The growth rate of some diatoms was probably limited directly or indirectly at high pH. Laboratory biotests with natural populations may give valuable information on the growth-properties of different populations in the lakes. The biotests should, however, be carried out in combination with chemical and physical measurements and quantitative determinations of population densities. 相似文献
10.
SUMMARY 1. Spatial correlations between ecological patterns and processes are thought to be scale-dependent, yet surprisingly few studies have evaluated the correspondence between different levels of spatial scale and ecosystem structure and function. 2. We evaluated the strength of relationships between the benthic macroinvertebrate communities of stony littoral habitats and levels of ecological scale and geographical position, using partial constrained ordination. Our hypothesis was that correlation strength would be inversely related to ecological scale, i.e. habitat > ecosystem > riparian > catchment > ecoregion. 3. The effect of habitat was greater than that of other levels of spatial scale: 23% of the variance in taxonomic composition and 11% of that in functional composition was explained by habitat variables alone. However, greater spatial scales were also important. For example, the combined influence of riparian, catchment and ecoregion classification accounted for 24% (taxonomic) and 11% (functional) of the explained variance. 4. Relationships between organisms and scale variables were, however, non-linear and a substantial amount of the functional variance was hidden in joint effects. These findings were not unexpected, and presumably indicate a close interdependence between local and regional-scale variables. 相似文献
11.
An investigation into the spatial and temporal distribution of protozoa in Esthwaite Water, a small eutrophic lake in the English Lake District, was carried out from mid-June until late September, 1977, during the period of summer stratification. Quantitative analyses of planktonic protozoan populations were performed on water samples collected at 1 m intervals throughout the water column and individual depth-time distribution profiles were constructed for the major ciliate species. Population density and species succession of the benthic protozoa was also studied. 相似文献
13.
The phytoplankton productivity over two years in a lake heavily loaded by acid mine drainage was very low. Algal assays indicated that below pH 5.5 the water, if buffered and fertilized with phosphorus, resulted in log growth. Above pH 5.5 algal log growth could be induced with phosphorus addition only. However, an in situ bag experiment was done in the lake and immediate bloom conditions of the indigenous algae resulted from phosphorus addition only, despite pH values below 5. 相似文献
14.
The hyperbenthic fauna of the Westerschelde estuary was sampled in spring, summer and winter of 1990 at 14 stations along the salinity gradient. Mysids dominated the hyperbenthos in each season. Other important species, either permanently ( e.g. amphipods and isopods) or temporarily ( e.g. fish larvae and decapod larvae) hyperbenthic, belong to a variety of faunistic groups. Spatial structure was stable through time: the estuary could be divided in the same geographically defined zones in each season. Each zone had a characteristic fauna. Gradients in salinity, dissolved oxygen and turbidity correlated strongly with the observed variation in community structure. The spatial patterns dominated over the temporal patterns, especially in the brackish part of the estuary. In the marine part, seasonal differences in the communities were more pronounced due to the occurrence of a series of temporary hyperbenthic species in spring and summer. In each season, the upstream (brackish) communities were characterized by few species occurring in very high numbers, whereas the downstream (marine) communities were composed of many species but at lower densities. 相似文献
15.
1. Lake phytoplankton community structure may be influenced by both internal factors (predation, competition, resource constraints) and external ones, such as dispersal of materials and cells between connected habitats. However, little is known about the importance of cell dispersal for phytoplankton community structure in lakes. 2. We investigated the abundance and dispersal of phytoplankton cells between connected rivers and lakes, and analysed whether similarities in phytoplankton community composition between rivers and lakes were primarily related to cell import rates or to characteristics of the local habitat. We focused on lakes along a gradient of theoretical water retention times (TWRT). Two data sets from Swedish lakes were used; a seasonal study of two connected boreal forest lakes, differing in TWRT, and a multi‐lake study of 13 lakes with a continuous range of TWRTs. 3. Phytoplankton cells were transported and dispersed in all investigated rivers. In the seasonal study, cell import rates and similarities in phytoplankton community composition between the lake and its inlet(s) were much higher in the lake with a shorter TWRT. Phytoplankton community structure in different habitats was associated with total organic carbon (TOC). This indicates that local habitat characteristics may be important in determining lake phytoplankton community composition, even in the presence of substantial cell import. 4. The multi‐lake study also showed a negative relationship between TWRT and similarities in phytoplankton community composition between inlets and lakes. Moreover, similarity in community structure was related to both cell import rates from inlet to lake and differences in habitat characteristics between inlet and lake. However, the variable most strongly correlated with community structure was TOC, indicating that species sorting rather than a mass effect was the most important mechanism underlying the correlation between community structure and retention time. 5. Overall, our data suggest that local habitat characteristics may play a key role in determining community similarity in this set of lakes covering a large range of habitat connectedness. Due to the strong co‐variations between cell dispersal and TOC, it was hard to unequivocally disentangle the different mechanisms; hence, there is a need for further studies of the role of dispersal for phytoplankton community structures. 相似文献
16.
Carabid beetle communities were studied at three levels of spatial scale, i.e. within fields (three sets of traps, mean distance 15 m), between fields (five fields within 1 km from each other) and between patches of farmland (four study areas 4-8 km from each other). We compared carabid assemblages sampled on five crop types in each study area, i.e. ley. set-aside, spring cereal, potato, and sugar beet. Because of small sample sizes, only the community composition was studied within fields with a DCA ordination, but the differences were small. Analyses of species richness, activity density, community composition as revealed by DCA ordinations, dominance structure, diversity, and evenness showed that carabid communities varied significantly among patches of farmland but not between fields with different crops within the patches. Only the communities of potato fields were found lo resemble each other. Only five carabid beetle species showed a preference for crops, and twelve species favoured some study areas. We conclude that the effect of spatial scale should be emphasised in further studies as it seems that carabid beetles may be very localised even in agricultural habitats. 相似文献
17.
1. The structure of lotic macroinvertebrate communities may be strongly influenced by land‐use practices within catchments. However, the relative magnitude of influence on the benthos may depend upon the spatial arrangement of different land uses in the catchment. 2. We examined the influence of land‐cover patterns on in‐stream physico‐chemical features and macroinvertebrate assemblages in nine southern Appalachian headwater basins characterized by a mixture of land‐use practices. Using a geographical information system (GIS)/remote sensing approach, we quantified land‐cover at five spatial scales; the entire catchment, the riparian corridor, and three riparian ‘sub‐corridors’ extending 200, 1000 and 2000 m upstream of sampling reaches. 3. Stream water chemistry was generally related to features at the catchment scale. Conversely, stream temperature and substratum characteristics were strongly influenced by land‐cover patterns at the riparian corridor and sub‐corridor scales. 4. Macroinvertebrate assemblage structure was quantified using the slope of rank‐abundance plots, and further described using diversity and evenness indices. Taxon richness ranged from 24 to 54 among sites, and the analysis of rank‐abundance curves defined three distinct groups with high, medium and low diversity. In general, other macroinvertebrate indices were in accord with rank‐abundance groups, with richness and evenness decreasing among sites with maximum stream temperature. 5. Macroinvertebrate indices were most closely related to land‐cover patterns evaluated at the 200 m sub‐corridor scale, suggesting that local, streamside development effectively alters assemblage structure. 6. Results suggest that differences in macroinvertebrate assemblage structure can be explained by land‐cover patterns when appropriate spatial scales are employed. In addition, the influence of riparian forest patches on in‐stream habitat features (e.g. the thermal regime) may be critical to the distribution of many taxa in headwater streams draining catchments with mixed land‐use practices. 相似文献
18.
The seasonal distributions of phytoplankton biovolume and chlorophyll a content were monitored for 14 months in a deep oligotrophic,high mountain lake (Redó, Pyrenees). An allometric relationshipof chlorophyll with biovolume was found throughout the periodstudied, with a correlation coefficient of 0.66. However, therelationship changed with season and the taxonomic compositionof the phytoplankton. Both parameters showed a similar seasonalpattern, but differences in space and time were observed. Thechlorophyll maximum was recorded deeper and later than thatof phytoplankton biovolume. While the biovolume maximum wasrelated to an improvement in conditions for growth (nutrientinput during column mixing periods), and reflected an increasein biomass, the chlorophyll maximum was related to changes incell pigment content, and to spatial or successional trendsin species dominance. Flagellated chrysophytes predominatedat the chlorophyll maxima. Chlorophyll content per unit of phytoplanktonbiovolume fluctuated greatly throughout the year, dependingon light intensity, temperature and phytoplankton composition.Of the main groups of phytoplankton in the lake, the dinoflagellates,which dominated the summer epilimnion phytoplankton community,recorded the lowest pigment content per biovolume (which isconsistent with their size). Higher chlorophyll contents perbiovolume were found in the deep hypolimnion and during thewinter cover period associated with small cells such as somespecies of chlorococcales chlorophytes. When flagellated chrysophyteswere predominant, a broad range of chlorophyll values per biovolumewas found and there was no significant correlation between thetwo biomass indices. These findings reaffirm the need to treatphytoplankton biomass estimates with caution, in particularwhen conducting primary production studies. While our resultsshow that changes in chlorophyll content per cell occur as aphotoacclimation response along a vertical profile, they alsopoint out a component of the successional trends which appearin a phytoplankton growth phase in a lake. 相似文献
19.
The composition and dynamics of plankton communities are critically affected by human-induced environmental changes. We analysed 33 years of phytoplankton monthly data collected in Lake Zurich (Switzerland), assigning organisms (genus level) to taxonomic groups (class, family), Reynolds associations and size categories. The aim was to understand how eutrophication and climate change have influenced taxa co-occurrence patterns within and between groups over the lake water column (14 depths, 0–135 m), using null-models to test for non-random spatial (depth) assembly. We found that the whole community showed high taxa co-occurrence levels, significantly deviating over time from random assembly concurrently with lake warming and reduced nutrient loading. This pattern was driven mostly by the depth structure of metalimnetic assemblages during summer and autumn. The prevalence of non-random spatial patterns changed for different taxonomic and functional groups, with only few significant deviations from null-model expectations. Within taxonomic and functional groups (particularly Classes and size categories), the frequency of spatial overdispersion of taxa decreased over time while the frequency of clustering increased. Our data suggest that the relative importance of mechanisms determining phytoplankton metacommunity dynamics have changed along with environmental gradients shaping water column structure. 相似文献
20.
Despite two centuries of exploration, our understanding of factors determining the distribution of life on Earth is in many ways still in its infancy. Much of the disagreement about governing processes of variation in species richness may be the result of differences in our perception of species‐richness patterns. Until recently, most studies of large‐scale species‐richness patterns assumed implicitly that patterns and mechanisms were scale invariant. Illustrated with examples and a quantitative analysis of published data on altitudinal gradients of species richness ( n = 204), this review discusses how scale effects (extent and grain size) can influence our perception of patterns and processes. For example, a hump‐shaped altitudinal species‐richness pattern is the most typical ( c. 50%), with a monotonic decreasing pattern ( c. 25%) also frequently reported, but the relative distribution of patterns changes readily with spatial grain and extent. If we are to attribute relative impact to various factors influencing species richness and distribution and to decide at which point along a spatial and temporal continuum they act, we should not ask only how results vary as a function of scale but also search for consistent patterns in these scale effects. The review concludes with suggestions of potential routes for future analytical exploration of species‐richness patterns. 相似文献
|