首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Although molecular changes accompanying leukocyte extravasation have been investigated intensively, the particular events following leukocyte adhesion and leading to the actual transendothelial migration process remain largely unknown. To characterize intraendothelial signals elicited by leukocyte adhesion and functionally required for their transmigration, we recorded endothelial free cytosolic intracellular Ca(2+)levels ([Ca(2+)]i) during the course of leukocyte adhesion. We show that monocyte and granulocyte adhesion induced Ca(2+)transients in either untreated or TNF-alpha-stimulated microvascular endothelial cells (HMEC-1). The functional significance of these [Ca(2+)]i rises was demonstrated by treating filter-grown endothelial monolayers with BAPTA/AM. This in traendothelial Ca(2+)chelation left monocyte adhesion basically unaffected, but caused a significant and dose-dependent reduction of the transendothelial migration of monocytes. Granulocyte diapedesis, on the other hand, was hardly modified. Thapsigargin-treatment of endothelial cells almost completely inhibited the transmigration of monocytes suggesting that the necessary Ca(2+)transients depended on a release from intracellular Ca(2+)stores. Our results thus show that the transmigration of monocytes through endothelial monolayers of microvascular origin is favoured by an increase of the intraendothelial [Ca(2+)]i induced by leukocyte adhesion to the endothelial cells.  相似文献   

3.
Lymphocyte trafficking and migration through vascular endothelial cells (ECs) in secondary lymphoid tissues is critical for immune protection. In the present study, we investigate the role of nectin cell adhesion molecules for the migration of lymphocytes through ECs. Nectins are key players for the establishment of homotypic and heterotypic cell to cell contacts; they are required for cell to cell adherens junction formation and take part in the transendothelial migration of monocytes during the step of diapedesis, when monocytes migrate through EC junctions. We first show that Nectin-3 (CD113) is the only nectin expressed by T lymphocytes and since nectins are expressed on ECs we explored Nectin-3 potential functions in lymphocyte: EC interactions. We demonstrate that Nectin-2, expressed on ECs, is the major counter-receptor of Nectin-3. A soluble form of Nectin-3 binds to Nectin-2 localized at EC junctions and blocking Nectin-2 trans-interactions with monoclonal antibodies abolishes the binding of soluble Nectin-3 to ECs. Nectin-2 is expressed on High Endothelial venules (HEVs), where lymphocyte homing occurs in vivo. Finally, we show that Nectin-3 trans-interaction with Nectin-2 is essential for the process of lymphocyte transendothelial migration in vitro as targeting with blocking monoclonal antibodies either Nectin-3, expressed on lymphocytes, or Nectin-2, expressed on ECs, inhibits lymphocyte extravasation. The nectin family of CAMs is important for the regulation of endothelial barrier functions and transendothelial migration of immune cells. Our results demonstrate for the first time that Nectin-3 trans-interacts with Nectin-2 to promote lymphocyte and monocyte extravasation.  相似文献   

4.
Human cytomegalovirus (HCMV) pathogenesis is dependent on the hematogenous spread of the virus to host tissue. While data suggest that infected monocytes are required for viral dissemination from the blood to the host organs, infected endothelial cells are also thought to contribute to this key step in viral pathogenesis. We show here that HCMV infection of endothelial cells increased the recruitment and transendothelial migration of monocytes. Infection of endothelial cells promoted the increased surface expression of cell adhesion molecules (intercellular cell adhesion molecule 1, vascular cell adhesion molecule 1, E-selectin, and platelet endothelial cell adhesion molecule 1), which were necessary for the recruitment of na?ve monocytes to the apical surface of the endothelium and for the migration of these monocytes through the endothelial cell layer. As a mechanism to account for the increased monocyte migration, we showed that HCMV infection of endothelial cells increased the permeability of the endothelium. The cellular changes contributing to the increased permeability and increased na?ve monocyte transendothelial migration include the disruption of actin stress fiber formation and the decreased expression of lateral junction proteins (occludin and vascular endothelial cadherin). Finally, we showed that the migrating monocytes were productively infected with the virus, documenting that the virus was transferred to the migrating monocyte during passage through the lateral junctions. Together, our results provide evidence for an active role of the infected endothelium in HCMV dissemination and pathogenesis.  相似文献   

5.
Leukocyte recruitment in response to inflammatory signals is in part governed by interactions between endothelial cell receptors belonging to the Ig superfamily and leukocyte integrins. In our previous work, the human Ig superfamily glycoprotein Thy-1 (CD90) was identified as an activation-associated cell adhesion molecule on human dermal microvascular endothelial cells. Furthermore, the interaction of Thy-1 with a corresponding ligand on monocytes and polymorphonuclear cells was shown to be involved in the adhesion of these leukocytes to activated Thy-1-expressing endothelial cells. In this study, we have identified the specific interaction between human Thy-1 and the leukocyte integrin Mac-1 (CD11b/CD18; alphaMbeta2) both in cellular systems and in purified form. Monocytes and polymorphonuclear cells were shown to adhere to transfectants expressing human Thy-1 as well as to primary Thy-1-expressing human dermal microvascular endothelial cells. Furthermore, leukocyte adhesion to activated endothelium as well as the subsequent transendothelial migration was mediated by the interaction between Thy-1 and Mac-1. This additional pathway in leukocyte-endothelium interaction may play an important role in the regulation of leukocyte recruitment to sites of inflammation.  相似文献   

6.
Strey A  Janning A  Barth H  Gerke V 《FEBS letters》2002,517(1-3):261-266
Bacterial toxins affecting Rho activity in microvascular endothelial cells were employed to elucidate whether endothelial Rho participates in regulating the migration of monocytes across monolayers of cultured endothelial cells. Inactivation of Rho by the Clostridium C3 exoenzyme resulted in an increased adhesion of peripheral blood monocytes to the endothelium and a decreased rate of transendothelial monocyte migration. Cytotoxic necrotizing factor 1-mediated activation of endothelial Rho also reduced the rate of monocyte transmigration, but did not affect monocyte-endothelium adhesion. Thus, efficient leukocyte extravasation requires Rho signaling not only within the migrating leukocytes but also within the endothelial lining of the vessel wall.  相似文献   

7.
Platelet endothelial cell adhesion molecule (PECAM or CD31) is a cell adhesion molecule expressed on circulating leukocytes and endothelial cells that plays an important role in mediating neutrophil and monocyte transendothelial migration in vivo. In this study, we investigated whether eosinophils, like neutrophils and monocytes, utilize PECAM for tissue recruitment to sites of allergic inflammation in vivo. Eosinophils express similar levels of PECAM as neutrophils as assessed by FACS analysis. RT-PCR studies demonstrate that eosinophils like neutrophils express the six extracellular domains of PECAM. Eosinophils exhibit homophilic binding to recombinant PECAM as assessed in a single-cell micropipette adhesion assay able to measure the biophysical strength of adhesion of eosinophils to recombinant PECAM. The strength of eosinophil adhesion to recombinant PECAM is the same as that of neutrophil binding to recombinant PECAM and can be inhibited with an anti-PECAM Ab. Although eosinophils express functional PECAM, anti-PECAM Abs did not inhibit bronchoalveolar lavage eosinophilia, lung eosinophilia, and airway hyperreactivity to methacholine in a mouse model of OVA-induced asthma in vivo. Thus, in contrast to studies that have demonstrated that neutrophil and monocyte tissue recruitment is PECAM dependent, these studies demonstrate that eosinophil tissue recruitment in vivo in this model is PECAM independent.  相似文献   

8.
Under inflammatory conditions (including HIV-1 encephalitis and multiple sclerosis), activated brain endothelium enhances the adhesion and transmigration of monocytes across the blood-brain barrier (BBB). Synthetic ligands that activate the peroxisome proliferator-activated receptors (PPARs) have anti-inflammatory properties, and PPAR stimulation prevents the interaction of leukocytes with cytokine stimulated-endothelium. However, the mechanism underlying these effects of PPAR ligands and their ability to intervene with leukocyte adhesion and migration across brain endothelial cells has yet to be explored. For the first time, using primary human brain endothelial cells (BMVEC), we demonstrated that monocyte adhesion and transendothelial migration across inflamed endothelium were markedly reduced by PPARgamma activation. In contrast to non-brain-derived endothelial cells, PPARalpha activation in the BMVEC had no significant effect on monocyte-endothelial interaction. Previously, our work indicated a critical role of Rho GTPases (like RhoA) in BMVEC to control migration of HIV-1 infected monocytes across BBB. In this study, we show that in the BMVEC PPARgamma stimulation prevented activation of two GTPases, Rac1 and RhoA, which correlated with decreased monocyte adhesion to and migration across brain endothelium. Relevant to HIV-1 neuropathogenesis, enhanced adhesion and migration of HIV-1 infected monocytes across the BBB were significantly reduced when BMVEC were treated with PPARgamma agonist. These findings indicate that Rac1 and RhoA inhibition by PPARgamma agonists could be a new approach for treatment of neuroinflammation by preventing monocyte migration across the BBB.  相似文献   

9.
Role of integrin-linked kinase in leukocyte recruitment   总被引:3,自引:0,他引:3  
Chemokines modulate leukocyte integrin avidity to coordinate adhesion and subsequent transendothelial migration, although the sequential signaling pathways involved remain poorly characterized. Here we show that integrin-linked kinase (ILK), a 59-kDa serine-threonine protein kinase that interacts principally with beta(1) integrins, is highly expressed in human mononuclear cells and is activated by exposure of leukocytes to the chemokine monocyte chemoattractant protein-1. Biochemical inhibitor studies show that chemokine-triggered activation of ILK is downstream of phosphoinositide 3-kinase. In functional assays under physiologically relevant flow conditions, overexpression of wild-type ILK in human monocytic cells diminishes beta(1) integrin/vascular cell adhesion molecule-1-dependent firm adhesion to human endothelial cells. These data implicate ILK in the dynamic signaling events involved in the regulation of leukocyte integrin avidity for endothelial substrates.  相似文献   

10.
The passage of leukocytes out of the blood circulation and into tissues is necessary for the normal inflammatory response, but it also occurs inappropriately in many pathological situations. This process is limited by the barrier presented by the junctions between adjacent endothelial cells that line blood vessels. Here we show that activation of the Rap1 GTPase in endothelial cells accelerated de novo assembly of endothelial cell-cell junctions and increased the barrier function of endothelial monolayers. In contrast, depressing Rap1 activity by expressing Rap1GAP led to disassembly of these junctions and increased their permeability. We also demonstrate that endogenous Rap1 was rapidly activated at early stages of junctional assembly, confirming the involvement of Rap1 during junctional assembly. Intriguingly, elevating Rap1 activity selectively within endothelial cells decreased leukocyte transendothelial migration, whereas inhibiting Rap1 activity by expression of Rap1GAP increased leukocyte transendothelial migration, providing physiological relevance to our hypothesis that Rap1 augments barrier function of inter-endothelial cell junctions. Furthermore, these results suggest that Rap1 may be a novel therapeutic target for clinical conditions in which an inappropriate inflammatory response leads to disease.  相似文献   

11.
BackgroundWe previously demonstrated that the activated leukocyte cell adhesion molecule (ALCAM/CD166) can interact with galectin-8 (Gal-8) in endothelial cells. ALCAM is a member of the immunoglobulin superfamily that promotes homophilic and heterophilic cell–cell interactions. Gal-8 is a “tandem-repeat”-type galectin, known as a matricellular protein involved in cell adhesion. Here, we analyzed the physical interaction between both molecules in breast cancer cells and the functional relevance of this phenomenon.MethodsWe performed binding assays by surface plasmon resonance to study the interaction between Gal-8 and the recombinant glycosylated ALCAM ectodomain or endogenous ALCAM from MDA-MB-231 breast cancer cells. We also analyzed the binding of ALCAM-silenced or control breast cancer cells to immobilized Gal-8 by SPR. In internalization assays, we evaluated the influence of Gal-8 on ALCAM surface localization.ResultsWe showed that recombinant glycosylated ALCAM and endogenous ALCAM from breast carcinoma cells physically interacted with Gal-8 in a glycosylation-dependent fashion displaying a differential behavior compared to non-glycosylated ALCAM. Moreover, ALCAM-silenced breast cancer cells exhibited reduced binding to Gal-8 relative to control cells. Importantly, exogenously added Gal-8 provoked ALCAM segregation, probably trapping this adhesion molecule at the surface of breast cancer cells.ConclusionsOur data indicate that Gal-8 interacts with ALCAM at the surface of breast cancer cells through glycosylation-dependent mechanisms.General significanceA novel heterophilic interaction between ALCAM and Gal-8 is demonstrated here, suggesting its physiologic relevance in the biology of breast cancer cells.  相似文献   

12.
The third member of the family of junctional adhesion molecules (JAMs), JAM-3, also called JAM-C, was recently shown to be a novel counter-receptor on platelets for the leukocyte beta(2)-integrin Mac-1 (alphaMbeta(2), CD11b/CD18). Here, new functional aspects of the role of endothelial cell JAM-C were investigated. Endothelial cells express JAM-C, which is predominantly localized within junctions at interendothelial contacts, since it codistributes with a tight junction component, zonula occludens-1. Whereas JAM-C does not participate in neutrophil adhesion to endothelial cells, it mediates neutrophil transmigration in a Mac-1-dependent manner. In particular, inhibition of JAM-C significantly reduced neutrophil transendothelial migration, and the combination of JAM-C and platelet/endothelial cell adhesion molecule-1 blockade almost completely abolished neutrophil transendothelial migration in vitro. In vivo, inhibition of JAM-C with soluble mouse JAM-C resulted in a 50% reduction of neutrophil emigration in the mouse model of acute thioglycollate-induced peritonitis. Thus, JAM-C participates in neutrophil transmigration and thereby provides a novel molecular target for antagonizing interactions between vascular cells that promote inflammatory vascular pathologies.  相似文献   

13.
14.
The cell adhesion molecule CD146 is normally located at the endothelial cell-to-cell junction and colocalizes with actin cytoskeleton. The soluble form of CD146 (sCD146) has been identified in the endothelial cell supernatant and in normal human plasma, and is increased in pathologic conditions with altered endothelial function. Soluble CD146 binding to monocytes promotes their transendothelial migration, which represents a central step in the development of atherosclerotic plaque. Since peripheral blood monocytes are characterized by a phenotypic and functional heterogeneity, with different transendothelial migration capacity, we hypothesized that monocyte subsets differently bind sCD146. Based on surface CD14 and CD16 expression monocytes were distinguished by flow cytometry (FACS) into three subsets: CD14++/CD16−, CD14++/CD16+ and CD14+/CD16+. CD16+ monocytes have been found to possess higher transendothelial migration ability. FACS analysis on blood monocytes from 30 healthy subjects revealed that higher percentages of CD14++/CD16+ (median, first and third quartile: 2.26, 1.62–3.87) and of CD14+/CD16+ (2.59, 1.28–4.80) were positive for CD146 (both p < 0.01), in comparison to CD14++/CD16− (0.66, 0.47–1.01). Moreover, in vitro treatment of ficoll separated monocytes with recombinant CD146 showed that both CD16+ subsets increased their percentage of CD146-positive events compared to CD16− monocytes (p < 0.01). Soluble CD146 levels were evaluated by ELISA in plasma samples of subjects from our study group and showed a correlation with percentage of CD146-positive CD14+/CD16+ monocyte subset. In this work we have demonstrated that monocyte subsets behave differently with regard to their sCD146 binding activity; because binding of CD146 influences transendothelial migration of monocytes, modulation of monocyte-CD146 interaction may represent a potential target to limit atherosclerotic plaque development.  相似文献   

15.
Platelet/endothelial cell adhesion molecule-1 (PECAM-1, CD31), expressed on the surfaces of leukocytes and concentrated in the junctions between endothelial cells plays an important role in transendothelial migration of neutrophils and monocytes. Soluble recombinant PECAM-IgG injected i.v. into mice blocks acute leukocyte emigration by 80%. To study the role of PECAM in models of chronic inflammation, we generated transgenic mice constitutively expressing soluble full-length murine PECAM as an IgG chimera. Three founder lines expressed this transgene and constitutively secreted murine PECAM-IgG into the plasma where it was maintained at characteristic concentrations for each line. All mice had similar hematologic profiles to wild-type littermates and were healthy when maintained in the standard laboratory animal facility. Both the leukocytes and the endothelium of mice of all transgenic lines expressed the same levels of endogenous PECAM-1 as wild-type littermates. Similarly, there were no detectable differences in the expression of several other common leukocyte and endothelial cell adhesion molecules. Mice that produced moderate (10-20 microg/ml) concentrations of PECAM-IgG demonstrated a severely blunted acute inflammatory response, despite mobilizing appropriate numbers of circulating leukocytes. Surprisingly, mice that constitutively produced high (400-1,000 microg/ml) concentrations of PECAM-IgG were unresponsive to its anti-inflammatory effects. This is the first demonstration that a soluble form of a cell adhesion molecule can be stably expressed and retain efficacy in vivo over prolonged periods. This approach is applicable to many other extracellular molecules. However, the plasma concentrations of such constitutively produced inhibitors may greatly influence the resulting phenotype.  相似文献   

16.
Human leukocyte endothelial adhesion and transmigration occur in the early stage of the pathogenesis of atherosclerosis. Vascular endothelial cells are targeted by pro-inflammatory cytokines modulating many gene proteins responsible for cell adhesion, thrombosis and inflammatory responses. This study examined the potential of compound K to inhibit the pro-inflammatory cytokine TNF-α induction of monocyte adhesion onto TNF-α-activated human umbilical vein endothelial cells (HUVEC). HUVEC were cultured with 10 ng/ml TNF-α with individual ginsenosides of Rb1, Rc, Re, Rh1 and compound K (CK). Ginsenosides at doses of ?50 μM did not show any cytotoxicity. TNF-α induced THP-1 monocyte adhesion to HUVEC, and such induction was attenuated by Rh1 and CK. Consistently, CK suppressed TNF-α-induced expression of HUVEC adhesion molecules of VCAM-1, ICAM-1 and E-selectin, and also Rh1 showed a substantial inhibition. Rh1 and CK dampened induction of counter-receptors, α4/β1 integrin VLA-4 and αL/β2 integrin LFA-1 in TNF-α-treated THP-1 cells. Additionally, CK diminished THP-1 secretion of MMP-9 required during transmigration, inhibiting transendothelial migration of THP-1 cells. CK blunted TNF-α-promoted IL-8 secretion of HUVEC and CXCR1 expression of THP-1 monocytes. Furthermore, TNF-α-activated endothelial IκB phosphorylation and NF-κB nuclear translocation were disturbed by CK, and TNF-α induction of α4/β1 integrin was abrogated by the NF-κB inhibitor SN50. These results demonstrate that CK exerts anti-atherogenic activity with blocking leukocyte endothelial interaction and transmigration through negatively mediating NF-κB signaling.  相似文献   

17.
A sequential model involving chemokines has been proposed for leukocyte extravasation into areas of inflammation; however, site-specific aspects remain to be elucidated. Hence, we studied the role of chemokines produced by mesangial (MC) or glomerular endothelial cells (GEC) and their receptors in glomerular recruitment of monocytes. Stimulation of MC with TNF-alpha up-regulated mRNA and protein of CC and CXC chemokines but not constitutive expression of the CX(3)C chemokine fractalkine. While growth-related activity (GRO)-alpha was immobilized to MC proteoglycans, monocyte chemotactic protein (MCP)-1 was secreted into the soluble phase. Firm adhesion and sequestration of monocytes on activated MC was supported by the GRO-alpha receptor CXCR2 and to a lesser extent by CX(3)CR, whereas the MCP-1 receptor CCR2 contributed to their transendothelial chemotaxis toward activated MC. In contrast, fractalkine mRNA and protein was induced by TNF-alpha in transformed rat GEC, and both CXCR2 and CX(3)CR mediated monocyte arrest on GEC in shear flow. The relevance of these mechanisms was confirmed in a rat nephrotoxic nephritis model where acute glomerular macrophage recruitment was profoundly inhibited by blocking CXCR2 or CCR2. In conclusion, our results epitomize a combinatorial model in which chemokines play specialized roles in driving glomerular monocyte recruitment and emphasize an important role for CXCR2 in macrophage infiltration during early phases of nephrotoxic nephritis.  相似文献   

18.
The vascular endothelial cell cadherin complex (VE-cadherin, alpha-, beta-, and gamma-catenin, and p120/p100) localizes to adherens junctions surrounding vascular endothelial cells and may play a critical role in the transendothelial migration of circulating blood leukocytes. Previously, we have reported that neutrophil adhesion to human umbilical vein endothelial cell (HUVEC) monolayers, under static conditions, results in a dramatic loss of the VE-cadherin complex. Subsequent studies by us and others (Moll, T., E. Dejana, and D. Vestweber. 1998. J. Cell Biol. 140:403-407) suggested that this phenomenon might reflect degradation by neutrophil proteases released during specimen preparation. We postulated that some form of disruption of the VE-cadherin complex might, nonetheless, be a physiological process during leukocyte transmigration. In the present study, the findings demonstrate a specific, localized effect of migrating leukocytes on the VE-cadherin complex in cytokine-activated HUVEC monolayers. Monocytes and in vitro differentiated U937 cells induce focal loss in the staining of VE-cadherin, alpha-catenin, beta-catenin, and plakoglobin during transendothelial migration under physiological flow conditions. These events are inhibited by antibodies that prevent transendothelial migration and are reversed following transmigration. Together, these data suggest that an endothelial-dependent step of transient and focal disruption of the VE-cadherin complex occurs during leukocyte transmigration.  相似文献   

19.
Galectin-8 (Gal-8), a ‘tandem-repeat’-type galectin, has been described as a modulator of cellular functions including adhesion, spreading, growth arrest, apoptosis, pathogen recognition, autophagy, and immunomodulation. We have previously shown that activated leukocyte cell adhesion molecule (ALCAM), also known as CD166, serves as a receptor for endogenous Gal-8. ALCAM is a member of the immunoglobulin superfamily involved in cell-cell adhesion through homophilic (ALCAM-ALCAM) and heterophilic (i.e. ALCAM-CD6) interactions in different tissues. Here we investigated the physiologic relevance of ALCAM-Gal-8 association and glycosylation-dependent mechanisms governing these interactions. We found that silencing of ALCAM in MDA-MB-231 triple negative breast cancer cells decreases cell adhesion and migration onto Gal-8-coated surfaces in a glycan-dependent fashion. Remarkably, either Gal-8 or ALCAM silencing also disrupted cell-cell adhesion, and led to reduced tumor growth in a murine model of triple negative breast cancer. Moreover, structural characterization of endogenous ALCAM N-glycosylation showed abundant permissive structures for Gal-8 binding. Importantly, we also found that cell sialylation controls Gal-8-mediated cell adhesion. Altogether, these findings demonstrate a central role of either ALCAM or Gal-8 (or both) in controlling triple negative breast cancer.  相似文献   

20.
Infiltration of activated monocytes into the brain is a prerequisite for the development of various neurological disorders such as HIV-associated dementia, multiple sclerosis, and other inflammatory processes. In these pathologies, the chemokine SDF-1alpha (CXCL12) is over-expressed and might attract monocytes into the CNS. We demonstrate here that SDF-1alpha stimulates migration of monocytes through its receptor, CXCR4, and decreases monocyte adherence to surfaces coated with ICAM-1, a ligand for beta(2) integrins. SDF-1alpha also decreases monocyte adherence to brain microvascular endothelial cells (BMVEC) that are activated with TNF-alpha, IL-1beta, or recombinant envelope glycoprotein from HIV-1, which increase BMVEC expression of ICAM-1. The decreased adherence is linked to down-regulation on monocytes of the activation-dependent epitope of the beta(2) integrin LFA-1 by SDF-1alpha. Knockdown of Lyn in monocytes using small interfering RNA decreases SDF-1alpha-mediated migration and prevents the inhibition of monocyte attachment to ICAM-1 and activated BMVEC. Thus, in SDF-1alpha-stimulated monocytes, Lyn acts as a positive regulator of migration and a negative regulator of adhesion to BMVEC through the LFA-1 integrin. These results provide a novel Lyn-mediated signaling mechanism for the regulation of monocyte movement at the blood-brain barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号