首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N-Terminally and internally labeled analogues of the hormones angiotensin (AII, DRVYIHPF) and bradykinin (BK, RPPGFSPFR) were synthesized containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC). TOAC replaced Asp1 (TOAC1-AII) and Val3 (TOAC3-AII) in AII and was inserted prior to Arg1 (TOAC0-BK) and replacing Pro3 (TOAC3-BK) in BK. The peptide conformational properties were examined as a function of trifluoroethanol (TFE) content and pH. Electron paramagnetic resonance spectra were sensitive to both variables and showed that internally labeled analogues yielded rotational correlation times (tauC) considerably larger than N-terminally labeled ones, evincing the greater freedom of motion of the N-terminus. In TFE, tauC increased due to viscosity effects. Calculation of tau(Cpeptide)/tau(CTOAC) ratios indicated that the peptides acquired more folded conformations. Circular dichroism spectra showed that, except for TOAC1-AII in TFE, the N-terminally labeled analogues displayed a conformational behavior similar to that of the parent peptides. In contrast, under all conditions, the TOAC3 derivatives acquired more restricted conformations. Fluorescence spectra of AII and its derivatives were especially sensitive to the ionization of Tyr4. Fluorescence quenching by the nitroxide moiety was much more pronounced for TOAC3-AII. The conformational behavior of the TOAC derivatives bears excellent correlation with their biological activity, since, while the N-terminally labeled peptides were partially active, their internally labeled counterparts were inactive [Nakaie, C. R., et al., Peptides 2002, 23, 65-70]. The data demonstrate that insertion of TOAC in the middle of the peptide chain induces conformational restrictions that lead to loss of backbone flexibility, not allowing the peptides to acquire their receptor-bound conformation.  相似文献   

2.
Neuropeptide Y (NPY) and the pancreatic polypeptide (PP) are members of the neuropeptide Y family of hormones. They bind to the Y receptors with very different affinities: Whereas PP is highly selective for the Y(4) receptor, NPY displays highest affinites for Y(1), Y(2), and Y(5) receptor subtypes. Introducing the NPY segment 19-23 into PP leads to an increase in affinity at the Y(1) and Y(2) receptor subtypes whereas the exchange of this segment from PP into NPY leads to a large decrease in affinity at all receptor subtypes. PP displays a very stable structure in solution, with the N terminus being back-folded onto the C-terminal alpha-helix (the so-called PP-fold). The helix of NPY is less stable and the N terminus is freely diffusing in solution. The exchange of this segment, however, does not alter the PP-fold propensities of the chimeric peptides in solution. The structures of the phospholipid micelle-bound peptides serving to mimic the membrane-bound species display segregation into a more flexible N-terminal region and a well-defined alpha-helical region. The introduction of the [19-23]-pNPY segment into hPP leads to an N-terminal extension of the alpha-helix, now starting at Pro(14) instead of Met(17). In contrast, a truncated helix is observed in [(19)(-)(23)hPP]-pNPY, starting at Leu(17) instead of Ala(14). All peptides display moderate binding affinities to neutral membranes (K(assoc) in the range of 1.7 to 6.8 x 10(4) mol(-)(1) as determined by surface plasmon resonance) with the differences in binding being most probably related to the exchange of Arg-19 (pNPY) by Glu-23 (hPP). Differences in receptor binding properties between the chimeras and their parental peptides are therefore most likely due to changes in the conformation of the micelle-bound peptides.  相似文献   

3.
Shafer AM  Nakaie CR  Deupi X  Bennett VJ  Voss JC 《Peptides》2008,29(11):1919-1929
To probe the binding of a peptide agonist to a G-protein coupled receptor in native membranes, the spin-labeled amino acid analogue 4-amino-4-carboxy-2,2,6,6-tetramethylpiperidino-1-oxyl (TOAC) was substituted at either position 4 or 9 within the substance P peptide (RPKPQQFFGLM-NH2), a potent agonist of the neurokinin-1 receptor. The affinity of the 4-TOAC analog is comparable to the native peptide while the affinity of the 9-TOAC derivative is approximately 250-fold lower. Both peptides activate receptor signaling, though the potency of the 9-TOAC peptide is substantially lower. The utility of these modified ligands for reporting conformational dynamics during the neurokinin-1 receptor activation was explored using EPR spectroscopy, which can determine the real-time dynamics of the TOAC nitroxides in solution. While the binding of both the 4-TOAC substance P and 9-TOAC substance P peptides to isolated cell membranes containing the neurokinin-1 receptor is detected, a bound signal for the 9-TOAC peptide is only obtained under conditions that maintain the receptor in its high-affinity binding state. In contrast, 4-TOAC substance P binding is observed by solution EPR under both low- and high-affinity receptor states, with evidence of a more strongly immobilized peptide in the presence of GDP. In addition, to better understand the conformational consequences of TOAC substitution into substance P as it relates to receptor binding and activation, atomistic models for both the 4- and 9-TOAC versions of the peptide were constructed, and the molecular dynamics calculated via simulated annealing to explore the influence of the TOAC substitutions on backbone structure.  相似文献   

4.
Neuropeptide Y (NPY) is a 36-amino acid neuropeptide that exerts its activity by at least five different receptor subtypes that belong to the family of G-protein-coupled receptors. We isolated an aptamer directed against NPY from a nuclease-resistant RNA library. Mapping experiments with N-terminally, C-terminally, and centrally truncated analogues of NPY revealed that the aptamer recognizes the C terminus of NPY. Individual replacement of the four arginine residues at positions 19, 25, 33, and 35 by l-alanine showed that arginine 33 is essential for binding. The aptamer does not recognize pancreatic polypeptide, a highly homologous Y4 receptor-specific peptide of the gut. Furthermore, the affinity of the aptamer to the Y5 receptor-selective agonist [Ala(31),Aib(32)]NPY and the Y1/Y5 receptor-binding peptide [Leu(31),Pro(34)]NPY was considerably reduced, whereas Y2 receptor-specific NPY mutants were bound well by the aptamer. Accordingly, the NPY epitope was recognized by the Y2 receptor, and the aptamer was highly similar. This Y2 receptor mimicking effect was further confirmed by competition binding studies. Whereas the aptamer competed with the Y2 receptor for binding of [(3)H]NPY with high affinity, a low affinity displacement of [(3)H]NPY was observed at the Y1 and the Y5 receptors. Consequently, competition at the Y2 receptor occurred with a considerably lower K(i) value compared with the Y1 and Y5 receptors. These results indicate that the aptamer mimics the binding of NPY to the Y2 receptor more closely than to the Y1 and Y5 receptors.  相似文献   

5.
We review work on the paramagnetic amino acid 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, TOAC, and its applications in studies of peptides and peptide synthesis. TOAC was the first spin label probe incorporated in peptides by means of a peptide bond. In view of the rigid character of this cyclic molecule and its attachment to the peptide backbone via a peptide bond, TOAC incorporation has been very useful to analyze backbone dynamics and peptide secondary structure. Many of these studies were performed making use of EPR spectroscopy, but other physical techniques, such as X-ray crystallography, CD, fluorescence, NMR, and FT-IR, have been employed. The use of double-labeled synthetic peptides has allowed the investigation of their secondary structure. A large number of studies have focused on the interaction of peptides, both synthetic and biologically active, with membranes. In the latter case, work has been reported on ligands and fragments of GPCR, host defense peptides, phospholamban, and β-amyloid. EPR studies of macroscopically aligned samples have provided information on the orientation of peptides in membranes. More recent studies have focused on peptide-protein and peptide-nucleic acid interactions. Moreover, TOAC has been shown to be a valuable probe for paramagnetic relaxation enhancement NMR studies of the interaction of labeled peptides with proteins. The growth of the number of TOAC-related publications suggests that this unnatural amino acid will find increasing applications in the future.  相似文献   

6.
Electron paramagnetic resonance (EPR) was used to optimize the solid-phase peptide synthesis of a membrane-bound peptide labeled with TOAC (2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxylic acid). The incorporation of this paramagnetic amino acid results in a nitroxide spin label coupled rigidly to the alpha-carbon, providing direct detection of peptide backbone dynamics by EPR. We applied this approach to phospholamban, which regulates cardiac calcium transport. The synthesis of this amphipathic 52-amino-acid membrane peptide including TOAC is a challenge, especially in the addition of TOAC and the next several amino acids. Therefore, EPR of synthetic intermediates, reconstituted into lipid bilayers, was used to ensure complete coupling and 9-fluorenylmethoxycarbonyl (Fmoc) deprotection. The attachment of Fmoc-TOAC-OH leads to strong immobilization of the spin label, whereas Fmoc deprotection dramatically mobilizes it, producing an EPR spectral peak that is completely resolved from that observed before deprotection. Similarly, coupling of the next amino acid (Ser) restores the spin label to strong immobilization, giving a peak that is completely resolved from that of the preceding step. For several subsequent steps, the effect of coupling and deprotection is similar but less dramatic. Thus, the sensitivity and resolution of EPR provides a quantitative monitor of completion at each of these critical steps in peptide synthesis. Mass spectrometry, circular dichroism, and Edman degradation were used in concert with EPR to verify the chemistry and characterize the secondary structure. In conclusion, the application of conventional analytical methods in combination with EPR offers an improved approach to optimize the accurate synthesis of TOAC spin-labeled membrane peptides.  相似文献   

7.
The successful use of peptides as potential radiopharmaceuticals essentially requires the modification of the bioactive peptide hormones to introduce chelators for radiolabeling. In this study, four Y 1/Y 2 receptor-selective NPY analogues with different receptor subtype specificities have been investigated. For in vitro studies, the cold metal surrogate was used. Gallium and indium complexes were introduced by using 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid as bifunctional chelator. The peptides were synthesized by solid-phase peptide synthesis (SPPS), the chelator was coupled either at the N-terminus or at the N(epsilon) side chain of Lys(4) of the resin-bound peptide, and the labeling was performed in solution after cleavage. Competitive binding assays showed high binding affinity of the receptor-selective analogues at NPY receptor expressing cells. To test internalization of the novel peptide analogues and the metabolic stability in human blood plasma, the corresponding 5(6)-carboxyfluorescein (CF) analogues were prepared and investigated. One of the most promising analogues, the Y 1-receptor selective [Lys(DOTA)(4), Phe(7), Pro(34)]NPY was labeled with (111)In and injected into nude mice that bear MCF-7 breast cancer xenografts, and biodistribution studies were performed. In vitro and in vivo studies suggest that receptor-selective analogues of NPY have promising characteristics for future applications in nuclear medicine for breast tumor diagnosis and therapy.  相似文献   

8.
Neuropeptide Y (NPY) is one of the most abundant neuropeptides in the mammalian brain and acts in humans via at least three receptor subtypes: Y1, Y2, and Y5. Whereas selective agonists and antagonists are known for the Y2- and Y5-receptors, the Y1-receptor still lacks a highly selective agonist. This work presents the first NPY-based analogues with Y1-receptor preference and agonistic properties. Furthermore, the importance of specific amino acids of NPY for binding to the Y-receptor subtypes is presented. Amongst the analogues tested, [Phe7,Pro34]pNPY (where pNPY is porcine neuropeptide Y) showed the most significant Y1-receptor preference (> 1 : 3000-fold), with subnanomolar affinity to the Y1-receptor, and Ki values of approximately 30 nM for the Y2- and Y5-subtype, respectively. Variations of position 6, especially [Arg6,Pro34]pNPY and variations within positions 20-23 of NPY were found to result in further analogues with significant Y1-receptor preference (1 : 400-1 : 2000). In contrast, cyclo S-S [Cys20,Cys24]pNPY was found to be a highly selective ligand at the Y2-receptor, binding only threefold less efficiently than NPY. Analogues containing variations of positions 31 and 32 showed highly reduced affinity to the Y1-receptor, while binding to the Y5-receptor was affected less. Inhibition of cAMP-accumulation of selected peptides with replacements within position 20-23 of NPY showed preserved agonistic properties. The NPY analogues tested give insights into ligand-receptor interaction of NPY at the Y1-, Y2- and Y5-receptor and contribute to our understanding of subtype selectivity. Furthermore, the Y1-receptor-preferring peptides are novel tools that will provide insight into the physiological role of the Y1-receptor.  相似文献   

9.
Two types of binding sites have previously been described for neuropeptide Y (NPY), called Y1 and Y2 receptors. The intracellular events following Y1 receptor activation was studied in the human neuroblastoma cell line SK-N-MC. Both NPY and the specific Y1 receptor ligand, [Leu31,Pro34]-NPY, caused a rapid and transient increase in the concentration of free calcium in the cytoplasm as measured by the fluorescent probe, Fura-2. The effect of both peptides was independent of extracellular calcium as addition of EGTA or manganese neither changed the size nor the shape of the calcium response. The calcium response to NPY was abolished by pretreatment with thapsigargin, which can selectively deplete a calcium store in the endoplasmic reticulum. Y1 receptor stimulation, by both NPY and [Leu31,Pro34]NPY, also inhibited the forskolin-stimulated cAMP production with an EC50 of 3.5 nM. There was a close relation between the receptor binding and the cellular effects as half-maximal displacement of [125I-Tyr36]monoiodoNPY from the receptor was obtained with 2.1 nM NPY. The Y2-specific ligand NPY(16-36)peptide had no effect on either intracellular calcium or cAMP levels in the SK-N-MC cells. It is concluded that Y1 receptor stimulation is associated with both mobilization of intracellular calcium and inhibition of adenylate cyclase activity.  相似文献   

10.
Paramagnetic relaxation enhancement provides a tool for studying the dynamics as well as the structure of macromolecular complexes. The application of side-chain coupled spin-labels is limited by the mobility of the free radical. The cyclic, rigid amino acid spin-label TOAC (2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid), which can be incorporated straightforwardly by peptide synthesis, provides an attractive alternative. In this study, TOAC was incorporated into a peptide derived from focal adhesion kinase (FAK), and the interaction of the peptide with the Src homology 3 (SH3) domain of Src kinase was studied, using paramagnetic NMR. Placing TOAC within the binding motif of the peptide has a considerable effect on the peptide-protein binding, lowering the affinity substantially. When the TOAC is positioned just outside the binding motif, the binding constant remains nearly unaffected. Although the SH3 domain binds weakly and transiently to proline-rich peptides from FAK, the interaction is not very dynamic and the relative position of the spin-label to the protein is well-defined. It is concluded that TOAC can be used to generate reliable paramagnetic NMR restraints.  相似文献   

11.
Neuropeptide Y (NPY) is one of the most abundant peptides in the central nervous system of mammals. It belongs to the best-conserved peptides in nature, i.e., the amino acid sequences of even evolutionary widely separated species are very similar to each other. Using porcine NPY, which differs from human NPY only at position 17 (a leucine residue exchanged for a methionine), labeled with a TOAC spin probe at the 2nd, 32nd, or 34th positions of the peptide backbone, the membrane binding and penetration of NPY was determined using EPR and NMR spectroscopy. The vesicular membranes were composed of phosphatidylcholine and phosphatidylserine at varying mixing ratios. From the analysis of the EPR line shapes, the spectral contributions of free, dimerized, and membrane bound NPY could be separated. This analysis was further supported by quenching experiments, which selected the contributions of the bound NPY fraction. The results of this study give rise to a model where the α-helical part of NPY (amino acids 13-36) penetrates the membrane interface. The unstructured N-terminal part (amino acids 1-12) extends into the aqueous phase with occasional contacts with the lipid headgroup region. Besides the mixing ratio of zwitterionic and negatively charged phospholipid species, the electrostatic peptide membrane interactions are influenced by the pH value, which determines the net charge of the peptide resulting in a modified membrane binding affinity. The results of these variations indicate that NPY binding to phospholipid membranes depends strongly on the electrostatic interactions. An estimation of the transfer energy of the peptide from aqueous solution to the membrane interface ΔG supports the preferential interaction of NPY with negatively charged membranes.  相似文献   

12.
Members of the neuropeptide Y (NPY) family regulate many physiological processes via interaction with at least four functional, pharmacologically distinct Y-receptors. However, selective antagonists developed for several subtypes have not been useful in defining particular Y-receptor functions in vivo. To identify critical residues within members of the NPY family required for Y-receptor subtype-selectivity we have determined the contribution of each residue within NPY to receptor binding by replacing them with L-alanine. In a second study, chimeric peptides where single or stretches of residues were interchanged between members of the NPY family were generated and tested in radioligand binding studies. Overall, substituted alanine analogues exhibited similar orders of affinities at each Y-receptor subtype with no obvious subtype-selectivity. Residues of particular interest are Leu30 which exhibited selectivity for the Y4-receptor, whereas Asp16 does not appear to play any role in ligand binding. Several chimeric peptides, e.g., [K4]pancreatic polypeptide ([K4]PP) and [RYYSA(19-23)]PP clearly showed higher affinity at the Y4 and Y5 subtypes compared to the Y1 and Y2 subtypes. In addition, the transfer of a proline residue from position 14 to 13 in peptide YY decreases its affinity at the Y1-, Y4- and Y5-receptors but is unchanged at the Y2 subtype. Combining these results, and with the help of molecular modelling, second generation chimeras were designed. The most significant improvement was achieved in chimera 2-36[K4,RYYSA(19-23)]PP where the affinity for the Y5 subtype increased by ninefold over that from NPY. Several of these compounds were also tested for their ability to stimulate food intake in a rat model. Interestingly, again 2-36[K4,RYYSA(19-23)]PP showed the most dramatic effect with a major increase on food intake over a range of doses compared to NPY suggesting a possible synergistic effect of several Y-receptors on feeding behaviour.  相似文献   

13.
2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino4-carboxylic acid (TOAC) is a nitroxide spin-labeled, achiral Calpha-tetrasubstituted amino acid recently shown to be not only an effective beta-turn and 3(10)/alpha-helix promoter in peptides, but also an excellent rigid electron paramagnetic resonance probe and fluorescence quencher. Here, we demonstrate that TOAC can be effectively incorporated into internal positions of peptide sequences using Fmoc chemistry and solid-phase synthesis in an automated apparatus.  相似文献   

14.
The accumulation of beta-amyloid peptides into senile plaques is one of the hallmarks of Alzheimer's disease (AD). There is mounting evidence that the lipid matrix of neuronal cell membranes plays an important role in the beta-sheet oligomerization process of beta-amyloid. Abeta(25-35), the sequence of which is GSNKGAIIGLM, is a highly toxic segment of amyloid beta (Abeta)-peptides, which forms fibrillary aggregates. In the present work, two spin-labelled Abeta(25-35) analogues containing the nitroxide group of the amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) as a paramagnetic probe at the N- or the C-terminus of the peptide sequence, respectively, were synthesized in order to investigate the peptide-membrane interaction. The orientation and associated changes of the peptide conformation in the presence of different artificial membrane models (micelles, liposomes) were evaluated by electron paramagnetic resonance and circular dichroism techniques. The results of this study allowed us to propose a model in which the C-terminal portion of the peptide is highly associated to the membrane, while the N-terminal part extends into the aqueous phase with occasional contacts with the lipid head-group region. Interestingly, the interaction of the C-terminal portion of the peptide is particularly enhanced in the presence of sodium dodecyl sulfate (SDS) molecules.  相似文献   

15.
The low-molecular-mass, cyclic analog of neuropeptide Y, [Ahx5-24, gamma-Glu2-epsilon-Lys30] NPY (YESK-Ahx-RHYINKITRQRY; Ahx, 6-aminohexanoic acid; NPY, neuropeptide Y), was synthesized and investigated for receptor binding, inhibition of forskolin-stimulated cAMP accumulation, inhibition of electrically stimulated rat vas deferens contractions and ability to increase blood pressure. Like the linear peptide [Ahx5-24] NPY (YPSK-Ahx-RHYINLITRQRY), the more rigid, cyclic analog showed good correlation between receptor binding to rabbit kidney membranes and biological activity in the vas deferens assay. Binding of this peptide to a new Y2-receptor-expressing cell line was slightly reduced, compared to the linear peptide [Ahx5-24] NPY, however inhibition of cAMP accumulation was even more efficient. Unlike the linear peptide [Ahx5-24] NPY, the cyclic analog did not induce a blood pressure increase in rats. Reduced binding to Y1 receptor-expressing SK-N-MC cells, as well as the loss of capability of signal transduction, suggest that only Y2-mediated activity is preserved after cyclization. The selectivity of the cyclic compound for Y2 subtypes of NPY receptors with respect to inhibition of cAMP accumulation is more than fortyfold increased, as compared to the linear NPY-(13-36) peptide, which has been used to determine Y2 selectivity so far.  相似文献   

16.
We report here the isolation and functional expression of a neuropeptide Y (NPY) receptor from the river lamprey, Lampetra fluviatilis. The receptor displays approximately 50% amino-acid sequence identity to all previously cloned Y1-subfamily receptors including Y1, Y4, and y6 and the teleost subtypes Ya, Yb and Yc. Phylogenetic analyses point to a closer relationship with Y4 and Ya/b/c suggesting that the lamprey receptor could possibly represent a pro-orthologue of some or all of those gnathostome receptors. Our results support the notion that the Y1 subfamily increased in number by genome or large-scale chromosome duplications, one of which may have taken place prior to the divergence of lampreys and gnathostomes whereas the second duplication probably occurred in the gnathostome lineage after this split. Functional expression of the lamprey receptor in a cell line facilitated specific binding of the three endogenous lamprey peptides NPY, peptide YY and peptide MY with picomolar affinities. Binding studies with a large panel of NPY analogues revealed indiscriminate binding properties similar to those of another nonselective Y1-subfamily receptor, zebrafish Ya. RT-PCR detected receptor mRNA in the central nervous system as well as in several peripheral organs suggesting diverse functions. This lamprey receptor is evolutionarily the most distant NPY receptor that clearly belongs to the Y1 subfamily as defined in mammals, which shows that subtypes Y2 and Y5 arose even earlier in evolution.  相似文献   

17.
FMRFamide and related peptides (RFamides) were found to inhibit the association binding of iodinated human pancreatic polypeptide ([125I]hPP) to Y5-like neuropeptide Y (NPY) receptor in rodent tissues. An allosteric regulation of the activity of the rodent kidney PP-sensitive neuropeptide Y (NPY) receptor by RFamides was indicated by potency decrease with particle concentration in the inhibition of the association binding of 125I-labeled human pancreatic polypeptide (hPP) by RFamides at rabbit kidney membranes. The competition by C-terminal hexapeptide of hPP (LTRPRY.NH2) did not show such affinity change. The steady-state binding of hPP showed little sensitivity to any of the RFamides tested. The Y1-selective binding of [125I][Leu31,Pro34]hPYY (at 2 nM hPP) was much less sensitive to RFamides than the binding of [125I]hPP, albeit with some differences across tissue or cell types. The binding of Y2-selective agonist 125I-labeled human peptide YY (3-36) was quite insensitive to RFamides. The presence of a unique component in the inhibition of hPP binding by RFamides was further indicated by a degree of antagonism with phospholipase C inhibitor U-73122, and by an only limited cooperation with a N5-amiloride compound, and with alkylator chloroethylclonidine. Change of the chirality of individual residues in the FMRFamide molecule produced a significant reduction of inhibitory potency only with D-Phe in the C-terminal position. Substitution of the (C-3) L-Met by L-Leu greatly increased the inhibitory potency of RFamides relative to otherwise identical congeners. RFamides could act both as ligands of membrane neighbors of the PP receptor, and as competitors of Y5-like NPY receptor epitopes that accommodate the C-terminal aspects of agonist peptides.  相似文献   

18.
We have previously shown that neuropeptide Y (NPY) increases cytosolic free Ca2+ concentration [( Ca2+]i) in porcine aortic smooth muscle cells. In this study, specific NPY receptor binding sites were identified in the cells by use of [125I]Bolton-Hunter NPY [( 125I]BH-NPY). Binding was to a single population of the sites with a Kd of 1.1 +/- 0.2 nM and a Bmax of 0.68 +/- 0.10 pmol/mg protein. [125I]BH-NPY binding was displaced by NPY-related peptides including members of the pancreatic polypeptide (PP) family. The potency of these peptides other than human PP for displacing [125I]BH-NPY binding was substantially consistent with their potency for increasing [Ca2+]i. Human PP had no effect on [Ca2+]i even at 10(-5) M, but it inhibited the NPY-induced increase in [Ca2+]i with a potency comparable to that for displacing [125I]BH-NPY binding. NPY(13-36) was about 500 and 300 times less effective than porcine NPY in increasing [Ca2+]i and in displacing [125I]BH-NPY binding, respectively, showing that the NPY receptor in cultured vascular smooth muscle cells is of the Y1-type.  相似文献   

19.
Monoiodinated radioligands of the homologous 36-amino acid peptides, neuropeptide Y (NPY) and peptide YY, were prepared by reverse phase high performance liquid chromatography with isocratic elution. [125I-Tyr1]- and [125I-Tyr36]monoiodoNPY bound equally well to a single class of high affinity binding sites on synaptosomal membranes prepared from porcine hippocampus (Kd = 1.0 X 10(-10) M) whereas iodine substitution in Tyr27, for example, partly interfered with the receptor binding. The receptors on the hippocampal membranes did not distinguish between neuropeptide Y and peptide YY either in their monoiodinated or in their unlabeled forms. Six out of twelve human neuroblastoma cell lines had high affinity binding sites for monoiodinated NPY ranging from 2 to 145 X 10(3) sites per cell. The NPY binding to three of the cell lines, SMS-MSN, SMS-KAN, and CHP-234 was of relatively high affinity (Kd = 1.3 to 6.1 X 10(-10) M), and, as in the hippocampal membranes, the long C-terminal fragment, NPY(13-36)peptide was also a relatively potent ligand for these receptors. Two other neuroblastoma cell lines, MC-IXC and CHP-212, expressed NPY receptors characterized by a lower affinity (Kd = 4.8 and 24.6 X 10(-9) M) and negligible cross-reactivity with the C-terminal fragment. It is concluded that monoiodinated radioligands of the tyrosine-rich neuropeptide Y can be prepared and that receptors for these ligands in two apparently different subtypes are found on a series of human neuroblastoma cell lines.  相似文献   

20.
A three-dimensional model of the human neuropeptide Y(NPY)Y1 receptor (hY1) was constructed, energy refined and used to simulate molecular receptor interactions of the peptide ligands NPY, [L31, P34]NPY, peptide YY (PYY) and pancreatic polypeptide (PP), and of the nonpeptide antagonist R-N2-(diphenylacetyl)-N-(4-hydroxyphenyl)methyl-argininamide (BIBP3226) and its S-enantiomer BIBP3435. The best complementarity in charges between the receptor and the peptides, and the best structural accordance with experimental studies, was obtained with amino acid 1–4 of the peptides interacting with Asp194, Asp200, Gln201, Phe202 and Trp288 in the receptor. Arg33 and Arg35 of the peptides formed salt bridges with Asp104 and Asp287, respectively, while Tyr36 interacted in a binding pocket formed by Phe41, Thr42, Tyr100, Asn297, His298 and Phe302. Calculated electrostatic potentials around NPY and hY1 molecules indicated that ligand binding is initiated by electrostatic interactions between a highly positive region in the N- and C-terminal parts of the peptides, and a negative region in the extracellular receptor domains. Molecular dynamics simulations of NPY and BIBP3226 interactions with the receptor indicated rigid body motions of TMH5 and TMH6 upon NPY binding as mechanisms of receptor activation, and that BIBP3226 may act as an antagonist by constraining these motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号