首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rotaviral diarrheal illness is one of the most common infectious diseases in children worldwide, but our understanding of its pathophysiology is limited. This study examines whether the enhanced net chloride secretion during rotavirus infection in young rabbits may occur as a result of hypersecretion in crypt cells that would exceed the substantial Cl(-) reabsorption observed in villi. By using a rapid filtration technique, we evaluated transport of (36)Cl and D-(14)C glucose across brush border membrane (BBM) vesicles purified from villus tip and crypt cells isolated in parallel from the entire small intestine. Rotavirus infection impaired SGLT1-mediated Na(+)-D-glucose symport activity in both villus and crypt cell BBM, hence contributing to the massive water loss along the cryptvillus axis. In the same BBM preparations, rotavirus failed to stimulate the Cl(-) transport activities (Cl(-)/H(+) symport, Cl(-)/anion exchange and voltage-activated Cl(-) conductance) at the crypt level, but not at the villus level, questioning, therefore, the origin of net chloride secretion. We propose that the chloride carrier might function in both normal (absorption) and reversed (secretion) modes in villi, depending on the direction of the chloride electrochemical gradient resulting from rotavirus infection, agreeing with our results that rotavirus accelerated both Cl(-) influx and Cl(-) efflux rates across villi BBM.  相似文献   

2.
The mechanism of rotavirus diarrhea was investigated by infecting young, specific pathogen-free, New Zealand rabbits with a lapine rotavirus, strain La/RR510. With 4-wk-old animals, virus shedding into the intestinal lumen peaked at 72 h postinfection (hpi), and a mild, watery diarrhea appeared at 124 hpi. No intestinal lesions were seen up to 144 hpi, indicating that diarrhea does not follow mucosal damage but can precede it, as if cell dysfunction were the cause, not the consequence, of the histological lesions. Kinetic analyses with brush-border membrane vesicles isolated from infected rabbits revealed strong inhibition of both Na(+)-D-glucose (SGLT1) and Na(+)-L-leucine symport activities. For both symporters, only maximum velocity decreased with time. The density of phlorizin-binding sites and SGLT1 protein antigen in the membrane remained unaffected, indicating that the virus effect on this symporter is direct. Because SGLT1 supports water reabsorption under physiological conditions, the mechanism of rotavirus diarrhea may involve a generalized inhibition of Na(+)-solute symport systems, hence, of water reabsorption. Massive water loss through the intestine may eventually overwhelm the capacity of the organ for water reabsorption, thereby helping the diarrhea to get established.  相似文献   

3.
TNF-alpha is believed to play a pivotal role in the pathogenesis of inflammatory bowel diseases which have diarrhea as one of their symptoms. This work studies the effect of the cytokine on electrolyte and water movements in the rat distal colon using an intestinal perfusion technique and attempts to determine its underlying mechanism of action. TNF-alpha inhibited net water and chloride absorption, down-regulated in both surface and crypt colonocytes the Na+-K+-2Cl- cotransporter, and reduced the protein expression and activity of the Na+-K+ ATPase. Indomethacin up-regulated the pump and the cotransporter in surface cells but not in crypt cells, and in its presence, TNF-alpha could not exert its effect, suggesting an involvement of PGE2 in the cytokine action. The effect of TNF-alpha on the pump and symporter was studied also in cultured Caco-2 cells in isolation of the effect of other cells and tissues, to test whether the cytokine acts directly on intestinal cells. In these cells, TNF-alpha and PGE2 had a similar effect on the pump expression and activity as that observed in crypt cells but were without any effect on the Na+-K+-2Cl- cotransporter. It was concluded that the effect of the cytokine on colonocytes is mediated via PGE2. By inhibiting the Na+-K+ ATPase, it reduces the Na+ gradient needed for NaCl absorption, and by down-regulating the expression of the Na+-K+-2Cl- symporter, it reduces basolateral Cl- entry and luminal Cl- secretion. The inhibitory effect on absorption is more significant than the inhibitory effect on secretion resulting in a decrease in net electrolyte uptake and consequently in more water retention in the lumen.  相似文献   

4.
The direct effect of a rotavirus nonstructural glycoprotein, NSP4, and certain related peptides on the sodium-coupled transport of D-glucose and of L-leucine was studied by using intestinal brush border membrane vesicles isolated from young rabbits. Kinetic analyses revealed that the NSP4(114-135) peptide, which causes diarrhea in young rodents, is a specific, fully noncompetitive inhibitor of the Na(+)-D-glucose symporter (SGLT1). This interaction involves three peptide-binding sites per carrier unit. In contrast, the Norwalk virus NV(464-483) and mNSP4(131K) peptides, neither of which causes diarrhea, both behave inertly. The NSP4(114-135) and NV(464-483) peptides inhibited Na(+)-L-leucine symport about equally and partially via a different transport mechanism, in that Na(+) behaves as a nonobligatory activator. The selective and strong inhibition caused by the NSP4(114-135) peptide on SGLT1 in vitro suggests that during rotavirus infection in vivo, NSP4 can be one effector directly causing SGLT1 inhibition. This effect, implying a concomitant inhibition of water reabsorption, is postulated to play a mechanistic role in the pathogenesis of rotavirus diarrhea.  相似文献   

5.
Rotavirus diarrhea is a major worldwide cause of infantile gastroenteritis; however, the mechanism responsible for intestinal fluid loss remains unclear. Water transfer across the intestinal epithelial membrane seems to occur because of aquaporins(AQPs). Accumulating evidence indicates that alterations in AQPs may play an important role in pathogenesis. Here, we focus on changes in AQPs in a mouse model of rotavirus diarrhea. In the present study, 32 of 35 mice developed diarrhea and mild dehydration within 24 hours after infection with rotavirus strain SA11. Intestinal epithelial cells demonstrated cytoplasmic vacuolation, malaligned villi, and atrophy. AQP1 expression was significantly attenuated in the ileum and colon in comparison with controls; likewise, AQP4 and-8 protein expression were significantly decreased in the colon of rotavirus diarrhea-infected mice. In contrast, AQP3 protein expression was significantly increased in the colon of rotavirus-infected mice in comparison with controls. These results indicate that rotavirus diarrhea is associated with the downregulation of AQP1,-4, and-8 expression. Therefore, AQPs play an important role in rotavirus diarrhea.  相似文献   

6.
Renal tubular transport and its regulation are reviewed for Na(+) (and Cl(-)), and for fluid and organic anions (including urate). Filtered Na(+) (and Cl(-)) is reabsorbed along the tubules but only in mammals and birds does most reabsorption occur in the proximal tubules. Reabsorption involves active transport of Na(+) and passive reabsorption of Cl(-). The active Na(+) step always involves Na-K-ATPase at the basolateral membrane, but the entry step at luminal membrane varies among tubule segments and among vertebrate classes (except for Na(+)-2Cl(-)-K(+) cotransporter in diluting segment). Regulation can involve intrinsic, neural and endocrine factors. Proximal tubule fluid reabsorption is dependent on Na(+) reabsorption in all vertebrates studied, except ophidian reptiles. Fluid secretion occurs in glomerular and aglomerular fishes, reptiles and even mammals, but its significance is not always clear. A non-specific transport system for net secretion of organic anions (OAs) exists in the proximal renal tubules of almost all vertebrates. Net transepithelial secretion involves: (1) transport into the cells at the basolateral side against an electrochemical gradient by a tertiary active transport process, in which the final step involves OA/alpha-ketoglutarate exchange and (2) movement out of the cells across the luminal membrane down an electrochemical gradient by unknown carrier-mediated process(es). Regulation may involve protein kinase C and mitogen-activated protein kinase. Urate is net secreted in the proximal tubules of birds and reptiles. This process is urate-specific in reptiles but in birds, it may involve both a urate-specific system and the general OA system.  相似文献   

7.
In the normal ileum, coupled NaCl absorption occurs via the dual operation of Na(+)/H(+) and Cl(-)/HCO(-)(3) exchange on the brush-border membrane (BBM) of villus cells. In a rabbit model of chronic small intestinal inflammation we determined the cellular mechanism of inhibition of NaCl absorption and the effect of steroids on this inhibition. Cl(-)/HCO(-)(3) but not Na(+)/H(+) exchange was reduced in the BBM of villus cells during chronic ileitis. Cl(-)/HCO(-)(3) exchange was inhibited secondary to a decrease in the affinity for Cl(-) rather than an alteration in the maximal rate of uptake of Cl(-) (V(max)). Methylprednisolone (MP) stimulated Cl(-)/HCO(-)(3) exchange in the normal ileum by increasing the V(max) of Cl(-) uptake rather than altering affinity for Cl(-). MP reversed the inhibition of Cl(-)/HCO(-)(3) exchange in rabbits with chronic ileitis. However, MP alleviated the Cl(-)/HCO(-)(3) exchange inhibition by restoring the affinity for Cl(-) rather than altering the V(max) of Cl(-) uptake. These data suggest that glucocorticoids mediate the alleviation of Cl(-)/HCO(-)(3) exchange inhibition in chronically inflamed ileum by reversing the same mechanism that was responsible for inhibition of this transporter rather than exerting a direct effect on the transporter itself, as was the case in normal ileum.  相似文献   

8.
The role of Na(+) and Cl(-) in fluid reabsorption by the efferent ducts was examined by perfusing individual ducts in vivo with preparations of 160 mM NaCl in which the ions were replaced, together or individually, with organic solutes while maintaining the osmolality at 300 mmol/kg. Progressively replacing NaCl with mannitol reduced net reabsorption of water and the ions in a concentration-dependent manner, and caused net movement into the lumen at concentrations of NaCl less than 80 mM. The net rates of flux were lower for Na(+) than for Cl(-). In collectates, [Na(+)] was greater than [Cl(-)], indicating that Cl(-) transport is probably linked with another anion. Replacing either Na(+) or Cl(-) in perfusates (with choline and isethionate, respectively) while maintaining the other inorganic ion at 160 mM also reduced net rates of reabsorption in a concentration-dependent manner to zero when either ion was completely replaced. There were no significant differences in the osmolality of perfusate and collectate, and collectates contained a mean of 3.4 mM K(+), indicating a backflux of K(+) into the lumen. It is concluded that fluid reabsorption from the efferent ducts is dependent on the transport of both Na(+) and Cl(-) from the lumen (from a luminal concentration of at least 70-80 mM), and that Cl(-) transport is dependent on another anion. The epithelium is permeable to K(+) and has a higher permeability to a range of organic solutes (mannitol, choline, and isethionate) than epithelium in the proximal kidney tubules.  相似文献   

9.
In the rabbit small intestine, there are three functionally different brush-border membrane (BBM) anion/HCO3- exchangers: 1) Cl/HCO3- exchange on the BBM of villus cells responsible for coupled NaCl absorption; 2) Cl/HCO3- exchange on the BBM of crypt cells possibly involved in HCO3- secretion; and 3) short-chain fatty acid (SCFA)/HCO3- exchange on the BBM of villus cells, which facilitates SCFA absorption. Although constitutive nitric oxide (cNO) has been postulated to alter many gastrointestinal tract functions, how cNO may specifically alter these three transporters is unknown. Inhibition of cNO synthase with NG-nitro-L-arginine methyl ester (L-NAME) 1) did not affect villus cell BBM Cl/HCO3 change, 2) stimulated crypt cell BBM Cl/HCO3- exchange, and 3) inhibited villus cell BBM SCFA/HCO3- exchange. D-NAME, an inactive analog of L-NAME, and L-N6-(1-iminoethyl)lysine, a more selective inhibitor of inducible NO, did not affect these transport processes. Kinetic studies demonstrated that 1) the mechanism of inhibition of crypt cell BBM Cl/HCO3- exchange is secondary to a decrease in the maximal rate of uptake of Cl, without an alteration in the affinity of the transporter for Cl, and 2) the mechanism of stimulation of villus cell BBM SCFA/HCO3- exchange is secondary to an increase in the affinity of the transporter for SCFA without an alteration in the maximal rate of uptake of SCFA. These results indicate that cNO uniquely regulates the three BBM anion/HCO3- transporters in the rabbit small intestine.  相似文献   

10.
The effect of circulating passive antibody on immunity to bovine rotavirus infections in neonatal calves was investigated. In the first experiment, rotavirus antibody titers in the small intestinal lumina of 5- and 10-day-old calves with a wide range of serum rotavirus antibody titers were determined. Neutralizing antibody was present in the small intestinal lumina in titers that correlated with the calves' serum titers (r = +0.84, P less than 0.01). Immunoglobulin G1 was the predominant isotype of intestinal luminal rotavirus antibody. Calves not fed colostrum during the absorptive period lacked rotavirus antibody in circulation and in the intestinal lumen at 7 days of age, even when they were fed large volumes of colostrum with a high rotavirus antibody titer at 48 h after birth. Therefore, rotavirus antibody is not retained in the intestinal lumen for 5 days following a colostrum meal, and the luminal antibody in the 5- and 10-day-old seropositive calves were probably derived from circulating antibody. In a second experiment, calves were passively immunized by subcutaneous injection of colostral whey with a high immunoglobulin G1 rotavirus antibody titer and challenged with virulent bovine rotavirus 48 h later. The passively immunized calves were protected from rotavirus infection and diarrhea compared with calves with comparable serum immunoglobulin concentrations but with lower serum rotavirus with lower serum rotavirus antibody titers. The results of these experiments indicate that circulating immunoglobulin G1 antibody appears in the gastrointestinal tract of neonatal calves and that circulating rotavirus antibody can prevent infection and diarrhea after rotavirus challenge.  相似文献   

11.
In contrast to humans, adult but not infant small animals are resistant to rotavirus diarrhea. The pathophysiological mechanism behind this age-restricted diarrhea is currently unresolved, and this question was investigated by studying the secretory state of the small intestines of adult mice infected with rotavirus. Immunohistochemistry and histological examinations revealed that rotavirus (strain EDIM) infects all parts of the small intestines of adult mice, with significant numbers of infected cells in the ilea at 2 and 4 days postinfection. Furthermore, quantitative PCR revealed that 100-fold more viral RNA was produced in the ilea than in the jejuna or duodena of adult mice. In vitro perfusion experiments of the small intestine did not reveal any significant changes in net fluid secretion among mice infected for 3 days or 4 days or in those that were noninfected (37 +/- 9 microl . h(-1) . cm(-1), 22 +/- 13 microl . h(-1) . cm(-1), and 33 +/- 6 microl . h(-1) . cm(-1), respectively) or in transmucosal potential difference (4.0 +/- 0.3 mV versus 3.9 +/- 0.4 mV), a marker for active chloride secretion, between control and rotavirus-infected mice. In vivo experiments also did not show any differences in potential difference between uninfected and infected small intestines. Furthermore, no significant differences in weight between infected and uninfected small intestines were found, nor were any differences in fecal output observed between infected and control mice. Altogether, these data suggest that rotavirus infection is not sufficient to stimulate chloride and water secretion from the small intestines of adult mice.  相似文献   

12.
The epithelial cell response to rotavirus infection.   总被引:14,自引:0,他引:14  
Rotavirus is the most important worldwide cause of severe gastroenteritis in infants and young children. Intestinal epithelial cells are the principal targets of rotavirus infection, but the response of enterocytes to rotavirus infection is largely unknown. We determined that rotavirus infection of HT-29 intestinal epithelial cells results in prompt activation of NF-kappaB (<2 h), STAT1, and ISG F3 (3 h). Genetically inactivated rotavirus and virus-like particles assembled from baculovirus-expressed viral proteins also activated NF-kappaB. Rotavirus infection of HT-29 cells induced mRNA for several C-C and C-X-C chemokines as well as IFNs and GM-CSF. Mice infected with simian rotavirus or murine rotavirus responded similarly with the enhanced expression of a profile of C-C and C-X-C chemokines. The rotavirus-stimulated increase in chemokine mRNA was undiminished in mice lacking mast cells or lymphocytes. Rotavirus induced chemokines only in mice <15 days of age despite documented infection in older mice. Macrophage inflammatory protein-1beta and IFN-stimulated protein 10 mRNA responses occurred, but were reduced in p50-/- mice. Macrophage inflammatory protein-1beta expression during rotavirus infection localized to the intestinal epithelial cell in murine intestine. These results show that the intestinal epithelial cell is an active component of the host response to rotavirus infection.  相似文献   

13.
IL-1beta is suspected to be involved in the diarrhea that always accompanies inflammatory bowel disease. This work was aimed at studying the in vivo effect of IL-1beta on the net absorption of fluid, Na(+) and Cl(-) from the rat colon, and at delineating its mechanism of action. Rats were injected i.p. with IL-1beta (1 mug/kg body weight) and the colon was perfused, four hours later, with Krebs-Ringer buffer. Net fluid absorption was calculated as the difference between the total volume of the buffer infused and collected per cm(2) of perfused intestine. Chloride in both buffers was determined by titration according to Mohr's method and net Cl- absorption was calculated in the same way. IL-1beta reduced the net absorption of water and chloride. The cytokine also reduced the percentage recovery of the Na(+)-K(+) ATPase activity in crude homogenates of membranes from surface and crypt colonic cells as revealed by the determination of inorganic phosphate released. In addition IL-1beta decreased the protein expression of the Na(+)-K(+) pump and increased that of the NaKCl(2) symporter. It is concluded that IL-1beta has a dual effect: it inhibits the Na(+)-K(+) pump and consequently NaCl absorption, and up-regulates the NaKCl(2) transporter and increases Cl(-) secretion. The ultimate effect of the two processes is a net decrease in Na(+)+ and Cl(-) absorption and an increase in water retention in the colon leading to the observed diarrhea in inflammatory bowel disease.  相似文献   

14.
Group A rotaviruses are major pathogens causing acute gastroenteritis in children and animals. To determine if group A rotavirus replicates and induces disease in rats, antibody-negative Lewis neonatal or adult rats were inoculated orally with tissue culture-adapted human (Wa, WI61, and HAL1166), simian (rhesus rotavirus [RRV] and SA11), bovine (WC3), lapine (ALA), or porcine (OSU) rotavirus strains, wild-type murine (EC(wt)) rotavirus strain, or phosphate-buffered saline (PBS). Rotavirus infection in rats was evaluated by (i) clinical findings, (ii) virus antigen shedding or infectious virus titers in the feces or intestinal contents measured by enzyme-linked immunosorbent assay or fluorescent-focus assay, (iii) histopathological changes in the small intestine, (iv) distribution of rotavirus antigen in small-intestine sections by immunofluorescence, and (v) growth rate. Rotavirus infection of 5-day-old but not > or =21-day-old rats resulted in diarrhea that lasted from 1 to 10 days postinoculation. The severity of disease and spread of infection to naIve littermates differed depending on the virus strain used for inoculation. The duration of virus antigen shedding following infection was considerably prolonged (up to 10 days) in neonatal rats compared to that in 21-day-old rats (1 or 2 days). Based on lack of virus antigen shedding and disease induction, the murine EC(wt) rotavirus was the only strain tested that did not infect rats. Histopathological changes in the small-intestine mucosa of 5-day-old RRV-inoculated rats but not of PBS-inoculated rats was limited to extensive enterocyte vacuolation in the ileum. In RRV-inoculated neonatal rats, rotavirus antigen was detected in the epithelial cells on the upper half of the intestinal villi of the jejunum and ileum. In addition, infection of neonatal rats with RRV but not with PBS resulted in reduced weight gain. Rats infected with group A rotaviruses provide a new animal model with unique features amenable to investigate rotavirus pathogenesis and the molecular mechanisms of intestinal development, including physiological factors that may regulate age-dependent rotavirus-induced diarrhea.  相似文献   

15.
Lactase-phlorizin hydrolase (LPH, EC 3.2.1.23-62) is a brush border membrane (BBM)-associated enzyme in intestinal cells that hydrolyse lactose, the most important sugar in milk. Impairing in lactase activity during rotavirus infection has been described in diseased infants but the mechanism by which the functional lesion occurs remains unknown. We undertook a study to elucidate whether rotavirus impairs the lactase enzymatic activity in BBM of human enterocyte cells. In this study we use cultured human intestinal fully differentiated enterocyte-like Caco-2 cells to demonstrate how the lactase enzymatic activity at BBM is significantly decreased in rhesus monkey rotavirus (RRV)-infected cells. We found that the decrease in enzyme activity is not dependent of the Ca(2+)- and cAMP-dependent signalling events triggered by the virus. The LPH biosynthesis, stability, and expression of the protein at the BBM of infected cells were not modified. We provide evidence that in RRV-infected cells the kinetic of lactase enzymatic activity present at the BBM was modified. Both BBM(control) and BBM(RRV) have identical K(m) values, but hydrolyse the substrate at different rates. Thus, the BBM(RRV) exhibits almost a 1.5-fold decreased V(max) than that of BBM(control) and is therefore enzymatically less active than the latter. Our study demonstrate conclusively that the impairment of lactase enzymatic activity at the BBM of the enterocyte-like Caco-2 cells observed during rotavirus infection results from an inhibitory action of the secreted non-structural rotavirus protein NSP4.  相似文献   

16.
In most HCO(3)(-)-secreting epithelial tissues, SLC26 Cl(-)/HCO(3)(-) transporters work in concert with the cystic fibrosis transmembrane conductance regulator (CFTR) to regulate the magnitude and composition of the secreted fluid, a process that is vital for normal tissue function. By contrast, CFTR is regarded as the only exit pathway for HCO(3)(-) in the airways. Here we show that Cl(-)/HCO(3)(-) anion exchange makes a major contribution to transcellular HCO(3)(-) transport in airway serous cells. Real-time measurement of intracellular pH from polarized cultures of human Calu-3 cells demonstrated cAMP/PKA-activated Cl(-)-dependent HCO(3)(-) transport across the luminal membrane via CFTR-dependent coupled Cl(-)/HCO(3)(-) anion exchange. The pharmacological and functional profile of the luminal anion exchanger was consistent with SLC26A4 (pendrin), which was shown to be expressed by quantitative RT-PCR, Western blot, and immunofluorescence. Pendrin-mediated anion exchange activity was confirmed by shRNA pendrin knockdown (KD), which markedly reduced cAMP-activated Cl(-)/HCO(3)(-) exchange. To establish the relative roles of CFTR and pendrin in net HCO(3)(-) secretion, transepithelial liquid secretion rate and liquid pH were measured in wild type, pendrin KD, and CFTR KD cells. cAMP/PKA increased the rate and pH of the secreted fluid. Inhibiting CFTR reduced the rate of liquid secretion but not the pH, whereas decreasing pendrin activity lowered pH with little effect on volume. These results establish that CFTR predominately controls the rate of liquid secretion, whereas pendrin regulates the composition of the secreted fluid and identifies a critical role for this anion exchanger in transcellular HCO(3)(-) secretion in airway serous cells.  相似文献   

17.
Rotaviruses infect mature, differentiated enterocytes of the small intestine and, by an unknown mechanism, escape the gastrointestinal tract and cause viremia. The neonatal rat model of rotavirus infection was used to determine the kinetics of viremia, spread, and pathology of rotavirus in extraintestinal organs. Five-day-old rat pups were inoculated intragastrically with an animal (RRV) or human (HAL1166) rotavirus or phosphate-buffered saline. Blood was collected from a subset of rat pups, and following perfusion to remove residual blood, organs were removed and homogenized to analyze rotavirus-specific antigen by enzyme-linked immunosorbent assay and infectious rotavirus by fluorescent focus assay or fixed in formalin for histology and immunohistochemistry. Viremia was detected following rotavirus infection with RRV and HAL1166. The RRV 50% antigenemia dose was 1.8 x 10(3) PFU, and the 50% diarrhea dose was 7.7 x 10(5) PFU, indicating that infection and viremia occurred in the absence of diarrhea and that detecting rotavirus antigen in the blood was a more sensitive measure of infection than diarrhea. Rotavirus antigens and infectious virus were detected in multiple organs (stomach, intestines, liver, lungs, spleen, kidneys, pancreas, thymus, and bladder). Histopathological changes due to rotavirus infection included acute inflammation of the portal tract and bile duct, microsteatosis, necrosis, and inflammatory cell infiltrates in the parenchymas of the liver and lungs. Colocalization of structural and nonstructural proteins with histopathology in the liver and lungs indicated that the histological changes observed were due to rotavirus infection and replication. Replicating rotavirus was also detected in macrophages in the lungs and blood vessels, indicating a possible mechanism of rotavirus dissemination. Extraintestinal infectious rotavirus, but not diarrhea, was observed in the presence of passively or actively acquired rotavirus-specific antibody. These findings alter the previously accepted concept of rotavirus pathogenesis to include not only gastroenteritis but also viremia, and they indicate that rotavirus could cause a broad array of systemic diseases in a number of different organs.  相似文献   

18.
Pancreatic duct cells secrete bicarbonate-rich fluids, which are important for maintaining the patency of pancreatic ductal trees as well as intestinal digestive function. The bulk of bicarbonate secretion in the luminal membrane of duct cells is mediated by a Cl(-)-dependent mechanism (Cl(-)/HCO(3)(-) exchange), and we previously reported that the mechanism is CFTR-dependent and cAMP-activated (Lee, M. G., Choi, J. Y., Luo, X., Strickland, E., Thomas, P. J., and Muallem, S. (1999) J. Biol. Chem. 274, 14670-14677). In the present study, we provide comprehensive evidence that calcium signaling also activates the same CFTR- and Cl(-)-dependent HCO(3)(-) transport. ATP and trypsin evoked intracellular calcium signaling in pancreatic duct-derived cells through the activation of purinergic and protease-activated receptors, respectively. Cl(-)/HCO(3)(-) exchange activity was measured by recording pH(i) in response to [Cl(-)](o) changes of the perfusate. In perfusate containing high concentrations of K(+), which blocks Cl(-) movement through electrogenic or K(+)-coupled pathways, ATP and trypsin highly stimulated luminal Cl(-)/HCO(3)(-) exchange activity in CAPAN-1 cells expressing wild-type CFTR, but not in CFPAC-1 cells that have defective (DeltaF508) CFTR. Notably, adenoviral transfection of wild-type CFTR in CFPAC-1 cells completely restored the stimulatory effect of ATP on luminal Cl(-)/HCO(3)(-) exchange. In addition, the chelation of intracellular calcium by 1,2-bis(2-aminophenoxy)ethane-N,N,N,N'-tetraacetic acid (BAPTA) treatment abolished the effect of calcium agonists on luminal Cl(-)/HCO(3)(-) exchange. These results provide a molecular basis for calcium-induced bicarbonate secretion in pancreatic duct cells and highlight the importance of CFTR in epithelial bicarbonate secretion induced by various stimuli.  相似文献   

19.
Short-chain fatty acids (SCFA) have been demonstrated to at least partially ameliorate chronic intestinal inflammation. However, whether and how intestinal SCFA absorption may be altered during chronic intestinal inflammation is unknown. A rabbit model of chronic ileitis produced by coccidia was used to determine the effect of chronic inflammation on ileal SCFA/HCO(-)(3) exchange. SCFA/HCO(-)(3) exchange was present in the brush-border membrane (BBM) of villus but not crypt cells from normal rabbit ileum. An anion-exchange inhibitor, DIDS, significantly inhibited SCFA/HCO(-)(3) exchange. Extravesicular Cl(-) did not alter the uptake of SCFA, suggesting that SCFA/HCO(-)(3) exchange is a transport process distinct from Cl(-)/HCO(-)(3) exchange. In chronically inflamed ileum, SCFA/HCO(-)(3) exchange was also present only in BBM of villus cells. The exchanger was sensitive to DIDS and was unaffected by extravesicular Cl(-). However, SCFA/HCO(-)(3) exchange was significantly reduced in villus cell BBM vesicles (BBMV) from chronically inflamed ileum. Kinetic studies demonstrated that the maximal rate of uptake of SCFA, but not the affinity for SCFA, was reduced in chronically inflamed rabbit ileum. These data demonstrate that a distinct SCFA/HCO(-)(3) exchange is present on BBMV of villus but not crypt cells in normal rabbit ileum. SCFA/HCO(-)(3) exchange is inhibited in chronically inflamed rabbit ileum. The mechanism of inhibition is most likely secondary to a reduction in transporter numbers rather than altered affinity for SCFA.  相似文献   

20.
Iono- and osmoregulation by the blood-feeding hemipteran Rhodnius prolixus involves co-ordinated actions of the upper and lower Malpighian tubules. The upper tubule secretes ions (Na(+), K(+), Cl(-)) and water, whereas the lower tubule reabsorbs K(+) and Cl(-) but not water. The extent of KCl reabsorption by the lower tubule in vitro was monitored by ion-selective microelectrode measurement of Cl(-) and/or K(+) concentration in droplets of fluid secreted by Malpighian tubules isolated under oil. An earlier study proposed that K(+) reabsorption involves an omeprazole-sensitive apical K(+)/H(+) ATPase and Ba(2+)-sensitive basolateral K(+) channels. This paper examines the effects acetazolamide and of compounds that inhibit chloride channels, Cl(-)/HCO(3)(-) exchangers and Na(+)/K(+)/2Cl(-) or K(+)/Cl(-) co-transporters. The results suggest that Cl(-) reabsorption is inhibited by acetazolamide and by Cl(-) channel blockers, including diphenylamine-2-carboxylate(DPC) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), but not by compounds that block Na(+)/K(+)/Cl(-) and K(+)/Cl(-) co-transporters. Measurements of transepithelial potential and basolateral membrane potential during changes in bathing saline chloride concentration indicate the presence of DPC- and NPPB-sensitive chloride channels in the basolateral membrane. A working hypothesis of ion movements during KCl reabsorption proposes that Cl(-) moves from lumen to cell through a stilbene-insensitive Cl(-)/HCO(3)(-) exchanger and then exits the cell through basolateral Cl(-) channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号