首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary A cell surface associated “glucose regulated protein” has been described on nontransformed human fibroblasts. To examine the distribution of that protein on human fibroblasts specific antisera were used. The antisera was used in conjunction with indirect immunofluorescence and revealed that the glucose regulated protein was present as fibers on spread cells. Further, the antisera was used in complement mediated cytotoxicity assays to examine cells during specific stages of the mitotic cell cycle. Fibroblasts were synchronized by serum starvation, hydroxyurea inhibition, or colcemid inhibition followed by mitotic selection. The results demonstrated that the glucose regulated protein was maximally displayed during the G1 phase of the cell cycle and minimally displayed during the S and M phases. Research was supported by contract AG00697 from the National Institutes of Health.  相似文献   

3.
Tubulin has been purified from human blood and tonsil lymphocytes. Using gel filtration, the molecular weight of human lymphocyte tubulin was estimated to be 119 000. The proteins was shown to consist of two subunits, with molecular weights of 61 000 and 58 000 comparable to the α and β polypeptides of human brain tubulin. A partial identity reaction was observed between lymphocyte tubulin and human tubulin when tested by double immunodiffusion against a rabbit anti-human brain tubulin antibody. In the presence of GTP, the purified protein polymerized to form microtubules. Tubulin was localized to the cell's juxtacentriolar region by immunofluorescence and electron microscopy. When assayed by a colchicine-binding assay corrected for time decay, the binding affinity was 1.50 ± 0.86 · 106M?1 and a level in normal lymphocytes of 1.21 · 10?2 ± 0.79 g/g of soluble protein was determined. Since chronic lymphocytic leukemia lymphocytes have an anomalous capping behavior as well as an unusual susceptibility to colchicine toxicity, the properties and levels of tubulin were determined in these cells. Similar values were obtained for the level, decay rate, molecular weight, and Ka for colchicine as for normal lymphocytes. Chronic lymphocytic leukemia lymphocyte tubulin polymerized in a normal fashion. It thus appears that a decrease in the quantity or function of tubulin does not account for these anomalies in the chronic lymphocytic leukemia lymphocyte.  相似文献   

4.
Quiescent cells reside in G0 phase, which is characterized by the absence of cell growth and proliferation. These cells remain viable and re-enter the cell cycle when prompted by appropriate signals. Using a budding yeast model of cellular quiescence, we investigated the program that initiated DNA replication when these G0 cells resumed growth. Quiescent cells contained very low levels of replication initiation factors, and their entry into S phase was delayed until these factors were re-synthesized. A longer S phase in these cells correlated with the activation of fewer origins of replication compared to G1 cells. The chromatin structure around inactive origins in G0 cells showed increased H3 occupancy and decreased nucleosome positioning compared to the same origins in G1 cells, inhibiting the origin binding of the Mcm4 subunit of the MCM licensing factor. Thus, quiescent yeast cells are under-licensed during their re-entry into S phase.  相似文献   

5.
We present the molecular characterization of a cell surface antigen, B 7.2, that is expressed on activated B lymphocytes. The BCL1 and CH12 B lymphoma cells express the B 7.2 antigen constitutively. In small resting B cells from spleen, the B 7.2 expression is induced during polyclonal growth in response to mitogenic stimulation. B 7.2 expression also occurs with a significant frequency in cells from fresh lymphoid tissues. The endogenous expression of the B 7.2 antigen is high in spleen and lymph nodes, and is undetectable in the thymus. The B 7.2 antigen is a microheterogeneous 45,000 to 50,000 dalton glycoprotein with a single polypeptide chain, intramolecular S--S bonds, and N-linked glycan moieties. The folded structure of the B 7.2 antigen appears to contain a domain with hydrophilic properties exposed on the cell surface and a hydrophobic segment that may comprise a transmembrane portion. Considering the observed expression pattern and the molecular structure, we speculate that the B 7.2 antigen has a specific function in regulation of B cell activation, perhaps as a receptor for a regulatory ligand or as a ligand recognized by other B or T cells.  相似文献   

6.
The disappearance of electrophoretically identifiable 3H-fucosylated glycoproteins from the cell surface of L6 cells is random and follows monophasic kinetics with a half-life of 9 hours. Approximately 47% and 53% of that loss is due to shedding and to degradation, respectively. Shedding also occurs with monophasic kinetics. Most of the electrophoretically identifiable-shed fucosyl-glycoproteins are released with homogeneous rates but do not represent a random sampling of the surface.  相似文献   

7.
We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (<40%) expressed it on the cell surface. In this latter subset of cells, most (>75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.  相似文献   

8.
RK13 cell lines generated to express bovine PrP(C) with a four extra octarepeat insertional mutation (Bo-10ORPrP(C)) show partially insoluble PrP(C) and lower rates of cell growth when compared to either the same cells expressing wild type Bo-6ORPrP(C) or the original RK13 cell line. The expression of Bo-10ORPrP(C) in cell cultures was also associated with changes in cell size and reorganization of the actin cytoskeleton. This last process was reversed by Clostridium difficile toxin-B, a specific inhibitor of small GTPase proteins. Further, in clones expressing Bo-10ORPrP(C), increased proportions of cells at cell cycle stage G2/M were observed. Proteasome inhibitors caused a further expansion of G2/M-stage cells that was more marked in cell lines expressing Bo-10ORPrP(C) than those expressing Bo-6ORPrP(C), while this effect was minimal or null in the original RK13 cell line. Hence, the presence of Bo-10ORPrP(C) in RK13 cells promotes cell cycle arrest at G2/M, and the effect is amplified by proteasome inhibition. These findings suggest a role for PrP(C) in cell morphology and cell cycle regulation, and open new avenues for understanding the mechanisms underlying PrP mutation-associated diseases.  相似文献   

9.
Poly(A)-containing mRNA was isolated from division synchronized populations of the ciliated protozoan, Tetrahymena pyriformis. The level of tubulin and actin mRNA at specific cell cycle stages was analyzed by hybridization to tubulin and actin cDNA probes and by gel analysis of their in vitro translation products. The pattern of fluctuation of tubulin mRNA levels was similar to that observed for the in vivo tubulin synthesis previously reported [1]. This suggests that as the cells progress through the cell cycle, tubulin synthesis is controlled at the mRNA level. There was little fluctuation of actin synthesis or actin mRNA levels during the cell cycle, which may be indicative of a different regulatory mechanism for actin than for tubulin.  相似文献   

10.
11.
We have analyzed the cell cycle parameters of interstitial cells in Hydra oligactis. Three subpopulations of cells with short, medium, and long cell cycles were identified. Short-cycle cells are stem cells; medium-cycle cells are precursors to nematocyte differentiation; long-cycle cells are precursors to gamete differentiation. We have also determined the effect of different cell densities on the population doubling time, cell cycle length, and cell size of interstitial cells. Our results indicate that decreasing the interstitial cell density from 0.35 to 0.1 interstitial cells/epithelial cell (1) shortens the population doubling time from 4 to 1.8 days, (2) increases the [3H]thymidine labeling index from 0.5 to 0.75 and shifts the nuclear DNA distribution from G2 to S phase cells, and (3) decreases the length of G2 in stem cells from 6 to 3 hr. The shortened cell cycle is correlated with a significant decrease in the size of interstitial stem cells. Coincident with the shortened cell cycle and increased growth rate there is an increase in stem cell self-renewal and a decrease in stem cell differentiation.  相似文献   

12.
D S Wang  S W Li  C Q Zeng  R X Cheng  S B Xue 《Cytometry》1988,9(4):368-373
Using DAPI, rabbit antitubulin antibody, FITC-labeled goat anti-rabbit IgG, and TRITC-phalloidin to stain individual cells, the microspectrophotometric analysis showed that three markers that represent the nucleus, microtubules (MT), and microfilaments (MF), respectively, could be recognized in individual cells without interference. The phase of the cell cycle was determined by DNA content. We found that in Indian muntjac (IM) cells, the amount of tubulin in G2 and M phases was about twice as much as that in G1 phase. In G2 cells, the cytoplasmic microtubule complex (CMTC) became denser than in G1 cells. The cytoplasmic MT extent in basically the same orientation as MF bundles in interphase. The regions where the MT is denser also have a denser MF distribution.  相似文献   

13.
The structure of tubulin, recently solved by electron crystallography, has given a first look at the molecular basis for some of the properties of tubulin and microtubules that have been observed over the last decades. We discuss how the structure relates to some of these properties, and how inferences about drug binding sites can explain some of the effects of the drugs on tubulin. Microtubules can form a highly dynamic system that requires careful tuning of the stability and properties of tubulin and its interactions with its many ligands. Understanding these interactions can provide fundamental information on the regulation of the microtubule system.  相似文献   

14.
Activity levels of three cell surface glycoprotein:glycosyltransferases were found to be S-peak enzymes in the cell mitotic cycle of L5178Y cells. These enzymes, which may be important in cell—cell adhesion, had virtually no activity in the M-period of the cell mitotic cycle.  相似文献   

15.
The folding and assembly of nascent proteins in the endoplasmic reticulum are assisted by the molecular chaperone calnexin, which is itself retained within the endoplasmic reticulum. It was up to now assumed that calnexin was selectively expressed on the surface of immature thymocytes because of a particular characteristic of the protein sorting machinery in these cells. We now report that a small fraction of calnexin is normally expressed on the surface of various cells such as mastocytoma cells, murine splenocytes, fibroblast cells, and human HeLa cells. Surface biotinylation followed by chase culture of living cells revealed that calnexin is continuously delivered to the cell surface and then internalized for lysosomal degradation. These results suggest that there is continuous exocytosis and endocytosis of calnexin, and the amount of calnexin on the plasma membrane results from the balance of the rates of these two events. To study the structural requirement of calnexin for surface expression, we created deletion mutants of calnexin and found that the luminal domain, particularly the glycoprotein binding domain, is necessary. These findings suggest that the surface expression of calnexin depends on the association with glycoproteins and that calnexin may play a certain role as a chaperone on the plasma membrane as well.  相似文献   

16.
17.
We have previously shown that gamma-tubulin, the third member of the tubulin family that functions in microtubule nucleation, when overexpressed, accumulates throughout the cytoplasm and forms numerous ectopic microtubule nucleation sites in mammalian cells (Shu and Joshi [1995] J. Cell. Biol. 130:1137-1147). We now show that overexpression of gamma-tubulin differentially upregulates the synthesis of alpha- and beta-tubulins in mammalian cells. Surprisingly, despite a dramatic increase in the level of gamma-tubulin protein in transfected cells, there is no obvious alteration in the level of endogenous gamma-tubulin mRNA, suggesting that synthesis of gamma-tubulin might employ a regulatory mechanism other than the autoregulatory pathway shared by alpha- and beta-tubulins. Interestingly, a significant number of mammalian cells transfected with gamma-tubulin fail to form normal bipolar mitotic spindle during mitosis; instead, numerous microtubules occur in the cytoplasm intermingled with the condensed chromosomes. In addition, they reduplicate their DNA after an abnormal mitotic exit. These results thus suggest that the number of microtubule nucleation sites, or even gamma-tubulin itself, might play an important role in the regulation of tubulin synthesis as well as cell cycle progression.  相似文献   

18.
The cell of origin of the nonparenchymal epithelioid cells that emerge in liver cell cultures is unknown. Cultures of rat hepatocytes and several types of nonparenchymal cells obtained by selective tissue dispersion procedures were typed with monoclonal antibodies to rat liver cytokeratin and vimentin, polyvalent antibodies to cow hoof cytokeratins and porcine lens vimentin, and monoclonal antibodies to surface membrane components of ductular oval cells and hepatocytes. Immunoblot analysis revealed that, in cultured rat liver nonparenchymal epithelial cells, the anti-rat hepatocyte cytokeratin antibody recognized a cytokeratin of relative mass (Mr) 55,000 and the anti-cow hoof cytokeratin antibody reacted with a cytokeratin of Mr 52,000, while the anti-vimentin antibodies detected vimentin in both cultured rat fibroblasts and nonparenchymal epithelial cells. Analyses on the specificity of anti-cytokeratin and anti-vimentin antibodies toward the various cellular structures of liver by double immunofluorescence staining of frozen tissue sections revealed unique reactivity patterns. For example, hepatocytes were only stained with anti-Mr 55,000 cytokeratin antibody, while the sinusoidal cells reacted only with the anti-vimentin antibodies. In contrast, epithelial cells of the bile ductular structures and mesothelial cells of the Glisson capsula reacted with all the anti-cytokeratin and anti-vimentin antibodies. It should be stressed, however, that the reaction of the anti-vimentin antibodies on bile ductular cells was weak. The same analysis on tissue sections using the anti-ductular oval cell antibody revealed that it reacted with bile duct structures but not with the Glisson capsula. The anti-hepatocyte antibody reacted only with the parenchymal cells. The differential reactivity of the anti-cytokeratin and anti-vimentin antibodies with the various liver cell compartments was confirmed in primary cultures of hepatocytes, sinusoidal cells, and bile ductular cells, indicating that the present panel of antibodies to intermediate filament constituants allowed a clear-cut distinction between cultured nonparenchymal epithelial cells, hepatocytes, and sinusoidal cells. Indirect immunofluorescence microscopy on nonfixed and paraformaldehyde-fixed cultured hepatocytes and bile ductular cells further confirmed that both anti-hepatocyte and anti-ductular oval cell antibodies recognized surface-exposed components on the respective cell types.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
20.
Liao PC  Lieu CH 《Life sciences》2005,76(14):1623-1639
Induction of cell apoptosis and necrosis by paclitaxel was investigated in human leukemic U937 cells. To explore whether paclitaxel induces both apoptosis and necrosis in different cell cycle stages, we synchronized the cells in G1, S and G2/M stages by counterflow centrifugal elutriation (CCE). The Annexin V and PI analysis revealed that, after paclitaxel treatment, the cells in G1 and S stages died predominantly through apoptosis, whereas G2/M-stage cells died through both apoptosis and necrosis. These phenomena were verified by a trypan blue exclusion assay and by detection of the release of lactose dehydrogenase (LDH). Paclitaxel treatment significantly decreased viability in G2/M cells and led these cells to release more LDH than other cells. These treated cells also released certain substances that inhibited cell growth. These results strongly suggest that the cell membrane of the treated G2/M-cells is disrupted, leading to the leakage of LDH and cell growth inhibitory substances out of cell. Furthermore, the typical events of apoptosis, such as the release of cytochrome c and the decrease of mitochondria membrane potential, occur primarily in S stage rather than in the G2/M stages. These results suggest that paclitaxel induces typical apoptosis in the G1- and S- cells, but it induces both apoptosis and necrosis in G2/M-phase cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号