首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
神经生长因子与冻干异体神经桥接大鼠神经缺损的研究   总被引:3,自引:0,他引:3  
实验采用冻干处理的异体神经与外源性神经生长因子(NGF)结合来桥接大鼠的坐骨神经1.0cm的缺损。用雄性Wistar大鼠进行的四组实验结果表明:冻干处理的异体神经可降低其抗原性,但处理后并不损害雪旺氏细胞(SC)基底膜的完整性,在移植后可能成为轴突再生的通道和支架;外源性NGF与冻干神经结合形成的复合体,可为神经的再生提供一个较好的微环境,具有成为理想桥接材料的可能性  相似文献   

2.
The response of aldose reductase (AR) to crush injury was studied in normal rat sciatic nerve. Enzyme activity and immunoreactivity of AR were determined at intervals of 1, 5, 14, 28, and 35 days after crush and correlated with histologic and immunocytochemical observations. During nerve degeneration in the distal segments of crushed nerves, a significant reduction in AR activity was detected. At 5 and 14 days, coincident with Schwann cell proliferation, enzyme activity decreased by nearly two- and fourfold, respectively. Although activity of AR increased by 28 days during nerve regeneration, it was not restored to normal levels at 35 days. Similar reductions were observed with the immunoblotting of the enzyme. Quantitative analysis of immunogold labelling on electron micrographs confirmed that proliferating as well as remyelinating Schwann cells contained reduced gold particle density compared to Schwann cells of noncrushed myelinated fibers. Immunoblots of P0, a marker for the degree of Schwann cell differentiation or myelination, showed that the temporal sequence of changes in P0 paralleled that of AR. Thus expression of AR is a function of differentiated or mature Schwann cells. The putative volume regulatory role of AR in Schwann cells may become superfluous during Wallerian degeneration.  相似文献   

3.
Pleiotrophin (PTN) is a heparin-binding growth factor involved in nerve regeneration after peripheral nerve injury. After crush injury, PTN is found in distal nerve segments in several non-neural cell types, including Schwann cells, macrophages, and endothelial cells, but not in axons. To further clarify the role for PTN in nerve regeneration, we investigated the effects of PTN applied to lesioned peripheral nerve in vivo. PTN in a dose of 1 mg/kg impaired muscle reinnervation. Thus, gastrocnemius muscle failed to recover its contractile properties as assessed by in situ maximal isometric tetanic force. PTN also decreased non-neural cell densities and delayed macrophage recruitment in the distal crushed nerve. These results are discussed in the light of recent evidence that PTN is a multifunctional polypeptide.  相似文献   

4.
X-ray microprobe analysis was used to determine the effects of axotomy on distribution and concentration (millimoles of element per kilogram dry weight) of Na, P, Cl, K, and Ca in frozen, unfixed sections of rat sciatic nerve. Elemental concentrations were measured in axoplasm, mitochondria, and myelin at 8, 16, and 48 h after transection in small-, medium-, and large-diameter fibers. In addition, elemental composition was determined in extraaxonal space (EAS) and Schwann cell cytoplasm. During the initial 16 h following transection, axoplasm of small fibers exhibited a decrease in dry weight concentrations of K and Cl, whereas Na and P increased compared to control values. Similar changes were observed in mitochondria of small axons, except for an early, large increase in Ca content. In contrast, intraaxonal compartments of larger fibers showed increased dry weight levels of K and P, with no changes in Na or Ca concentrations. Both Schwann cell cytoplasm and EAS at 8 and 16 h after injury had significant increases in Na, K, and Cl dry weight concentrations, whereas no changes, other than an increase in Ca, were observed in myelin. Regardless of fiber size, 48 h after transection, axoplasm and mitochondria displayed marked increases in Na, Cl, and Ca concentrations associated with decreased K. Also at 48 h, both Schwann cell cytoplasm and EAS had increased dry weight concentrations of Na, Cl, and K. The results of this study indicate that, in response to nerve transection, elemental content and distribution are altered according to a specific temporal pattern. This sequence of change, which occurs first in small axons, precedes the onset of Wallerian degeneration in transected nerves.  相似文献   

5.
    
Peripheral nerve injury (PNI) is a common neurological disorder and complete functional recovery is difficult to achieve. In recent years, bone marrow mesenchymal stem cells (BMSCs) have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous transplantation ability. This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI. The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury. BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors, extracellular matrix molecules, and adhesion molecules. Additionally, BMSCs release pro-angiogenic factors to promote the formation of new blood vessels. They modulate cytokine expression and regulate macrophage polarization, leading to immunomodulation. Furthermore, BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration, thereby promoting neuronal repair and regeneration. Moreover, this review explores methods of applying BMSCs in PNI treatment, including direct cell transplantation into the injured neural tissue, implantation of BMSCs into nerve conduits providing support, and the application of genetically modified BMSCs, among others. These findings confirm the potential of BMSCs in treating PNI. However, with the development of this field, it is crucial to address issues related to BMSC therapy, including establishing standards for extracting, identifying, and cultivating BMSCs, as well as selecting application methods for BMSCs in PNI such as direct transplantation, tissue engineering, and genetic engineering. Addressing these issues will help translate current preclinical research results into clinical practice, providing new and effective treatment strategies for patients with PNI.  相似文献   

6.
Abstract: Labeled palmitic acid ([16-14C]palmitate) (0).5 μCi) was injected into rat sciatic nerves in vivo to characterize thc incorporation of this fatty acid into complex peripheral nerve lipids after time lapses of 1 min to 2 weeks. For the first 30 min after intraneural injection, the label was concentrated in nerve diglycerides. Thereafter, the relative diglyccride label declined rapidly, and phospholipid radioactivity rose steadily. After 120 min, phospholipids contained over 70% of the total lipid radioactivity. Among the phospholipids, phosphatidylcholine had the largest percentage of total phospholipid label, and acylation of lysophosphatidylcholine accounted for approximately 75% of this label. With time, there was conversion of [16-14C]palmitate to other long-chain fatty acids by elongation and desaturation. Phosphatidic acid was labeled also, suggesting the operation of the de novo biosynthetic mechanism. However, the specific radioactivity of 1,2-diacylglycerol was much higher than that of phosphatidic acid, suggesting phosphorylation of diglycerides by diglyceride kinase. After nerve section and survival of 2 h to 50 days, the injection of [16-14C]palmitate into the degenerating distal segment revealed an overall decline of phospholipid labeling and a commensurate increase of triglyceride radioactivity. Phosphatidylcholine in degenerating nerve contained a larger percentage of the fatty acid label than that in normal nerve. Almost all of the labeling was due to acylation of lysophosphatidylcholine, implying a much smaller contribution of the de novo pathway. Phosphatidylethanolamine and phosphatidylserine showed a relative loss of radioactivity. The changes were apparent at 1 day, but not at 2 h, suggesting loss of homeostatic control, presumably by interruption of axonal flow. An incidental observation was the stimulation of phosphatidylcholine biosynthesis by acylation of lysophosphatidylcholine in the contralateral unoperated sciatic nerve.  相似文献   

7.
S phase kinase-associated protein 2 (Skp2), an F-box protein, is required for the ubiquitination and consequent degradation of p27kip1. Previous reports have showed that p27kip1 played important roles in cell cycle regulation and neurogenesis in the developing central nervous system. But the distribution and function of p27kip1 and Skp2 in nervous system lesion and regeneration remains unclear. In this study, we observed that they were expressed mainly in both Schwann cells and axons in adult rat sciatic nerve. Sciatic nerve crush and transection resulted in a significant up-regulation of Skp2 and a down-regulation of p27kip1. By immunochemistry, we found that in the distal stumps of transected nerve from the end to the edge, the appearance of Skp2 in the edge is coincided with the decrease in p27kip1 levels. Changes of them were inversely correlated. Results obtained by coimmunoprecipitation and double labeling further showed their interaction in the regenerating process. Thus, these results indicate that p27kip1 and Skp2 likely play an important role in peripheral nerve injury and regeneration. Ai-Guo Shen and Shu-Xian Shi contributed equally to this work.  相似文献   

8.
Abstract: Axonal transport of phospholipids in normal and regenerating sciatic nerve of the rat was studied. At various intervals after axotomy of the right sciatic nerve in the midthigh region and subsequent perineurial sutures of the transected fascicles, a mixture of 60 μCi [Me-HC]choline and 15 μCi [2-3H]glycerol in the region of the spinal motor neurons of the L5 and L6 segments was injected bilaterally. The amount of radioactive lipid (and in certain cases its distribution in various lipid classes) along the nerve was determined as a function of time. Three days after fascicular suture and 6 h after spinal cord injection of precursors, there was an accumulation of labeled phospholipids and sphingolipids in the transected sciatic nerve in the region immediately proximal to the site of suture. Nine days after, there was a marked increase in the accumulation of radioactivity in the distal segments of the injured nerve, which increased up to 14 days after cutting and disappeared as regeneration proceeded (21–45 days). In all segments of both normal and regenerating nerve fibers, as well as in L5 and L6 spinal cord segments, only phosphatidylcholine and sphingomyelin were labeled with [14C]choline. These results suggest that the regeneration process in a distal segment of a peripheral neuron, following cutting and fascicular repairing by surgical sutures, is sustained in the first 3 weeks by changes in the amount of phospholipids rapidly transported along the axon towards the site of nerve fiber outgrowth.  相似文献   

9.
Peripheral nerve transection triggers a series of phenotypic alterations in Schwann cells distal to the site of injury. Mitosis is one of the earliest and best characterized of these responses, although the mechanism by which axonal damage triggers this critical event is unknown. This study examines the appearance and spatio-temporal spread of premitotic activity in distal stumps of transected cat tibial nerves. Premitotic activity was determined by measuring incorporation of [3H]thymidine (a marker of DNA synthesis during the S-phase of the cell cycle) into consecutive segments of desheathed tibial nerve. Incorporation of [3H]thymidine spread proximo-distally within distal nerve stumps between 3 and 4 days posttransection with an apparent velocity of at least 199 +/- 67 mm/day. This suggests that anterograde fast axonal transport may directly or indirectly be associated with the Schwann cell mitotic response to axon transection.  相似文献   

10.
Nerve growth factor (NGF), a member of the neurotrophin family, is essential for the development and maintenance of sensory neurons and for the formation of central pain circuitry. The current study was designed to evaluate the expression of NGF in the brain of rats with spared nerve injury (SNI), using immunohistochemical technique. The results showed that the level of NGF in the Red nucleus (RN) of SNI rats was apparently higher than that of sham-operated rats. To further study the effect of NGF in the development of neuropathic pain, different doses of anti-NGF antibody (20, 2.0 and 0.2 μg/ml) were microinjected into the RN contralateral to the nerve injury side of SNI rats. The data suggested that the higher doses of anti-NGF antibody (20 and 2.0 μg/ml) significantly attenuated the mechanical allodynia of neuropathic rats, while the 0.2 μg/ml antibody showed no analgesic effect. These results suggest that the NGF of RN is involved in the development of neuropathic allodynia in SNI rats.  相似文献   

11.
Abstract: A culture of peripheral nerve cells, very rich in Schwann cells, was developed from sciatic nerve. In both normal and Trembler, typical spindle-shaped cells were seen; most of the cells were surrounded by basement membrane-like material (predominantly in-between adjacent cells). In Trembler cells, cultivated in the presence of labelled acetate, the fatty acids were slightly altered; phosphatidylcholine was slightly reduced and phosphatidyl-ethanolamine increased. Sulfatides were increased four times.  相似文献   

12.
In this study, we investigated the expression of various G proteins in whole sciatic nerves, in myelin and nonmyelin fractions from these nerves, and in membranes of immortalized Schwann cells. In myelin, nonmyelin, and Schwann cell membranes we detected two 39-40-kDa pertussis toxin substrates that were resolved on separation on urea-gradient gels. Two cholera toxin substrates with apparent molecular masses of 42 and 47 kDa were present in nerve and brain myelin and in Schwann cell membranes. In these membranes, a third 45-kDa cholera toxin substrate, which displayed the highest labeling, was also present. Immunoblotting with specific antisera allowed the identification of G(o) alpha, Gi1 alpha, Gi2 alpha, Gi3 alpha, Gq/G11 alpha, and the two isoforms of Gs alpha in nerve homogenates, nerve, and brain myelin fractions. In Schwann cell membranes we identified G(o) alpha, Gi2 alpha, Gi3 alpha, and proteins from the Gq family, but no immunoreactivity toward anti-Gi1 alpha antiserum was detected. In these membranes, anti-Gs alpha antibody recognized the three cholera toxin substrates mentioned above, with the 45-kDa band displaying the highest immunoreactivity. Relative to sciatic nerve myelin, the Schwann cell membranes revealed a significantly higher expression of Gi3 alpha and the absence of Gi1 alpha. The different distribution of G proteins among the different nerve compartments might reflect the very specialized function of Schwann cells and myelin within the nerve.  相似文献   

13.
Abstract: Retrograde axonal transport of phospholipid was studied in rat sciatic motoneuron axons by placing collection crushes on the nerve at intervals after injection of [methyl-3H]choline into the lumbosacral spinal cord, and allowing labelled material undergoing anterograde or retrograde movement to accumulate adjacent to the collection crushes. Control experiments showed that the accumulations of label were not a result of local uptake of circulating precursor. The majority of the 3H label was associated with phosphatidylcholine. Accumulation of label at the distal collection crush, representing retrograde transport, was observed subsequent to the anterograde transport of phospholipid. In comparison with previous study on retrograde transport of protein, the following points were noted: (1) onset of retrograde transport occurred at approximately the same time after precursor injection (10–20 h) for both protein and phospholipid; (2) retrograde transport of lipids was more prolonged: maximum retrograde transport occurred later for phospholipid (30 h) than for protein (15–20 h), and declined to half-maximum between 49 and 99 h, compared to a corresponding value of 24–28 h for protein; (3) the proportion of total anterograde-transported activity subsequently undergoing retrograde transport was less in the case of phospholipid, at least over the time interval studied (up to 99 h after precursor injection). The similar times of onset of retrograde transport of phospholipid and protein support the concept of retrograde transport as a recycling mechanism returning to the cell body membrane fragments that were earlier transported into the axon. Coordinated retrograde transport of labelled protein and phospholipid components of the recycled membranes would be predicted. Differences between protein and phospholipid in the subsequent time course and amount of retrograde transport may reflect differences in axonal handling of protein and lipid. Both the more prolonged outflow of labelled lipids from cell body into axon and exchange with a distal pool of unlabelled phospholipid may account for the prolonged time course of retrograde transport of labelled lipid.  相似文献   

14.
15.
Wang  Y. M.  Ingoglia  N. A. 《Neurochemical research》1997,22(12):1453-1459
N-terminal protein arginylation has been demonstrated in vitro and in situ and has been reported to increase following injury to sciatic nerves of rats. The present study attempts to demonstrate these reactions in vivo by applying [3H]Arg to the cut end of sciatic nerves in anesthetized rats and assaying for N-terminal arginylation using Edman chemistry and acid precipitation of labeled proteins in the proximal nerve segment. No evidence was found for arginylation in an aqueous soluble fraction. However, N-terminal arginylation was detected in a urea soluble fraction at 2 hours after nerve crush. The data show that arginylation of rat sciatic nerve proteins occurs in vivo and suggest that the arginylated proteins formed an aqueous insoluble/urea soluble aggregate after arginylation. In other experiments, rat brains were injured and assayed for arginylation in vitro to test the hypothesis that injury causes an up-regulation of these reactions. Results showed an activation of the reaction at 2 hours post crush and indicate that increases in N-terminal arginylation are likely to be a general response to injury in nervous tissue.  相似文献   

16.
The axonal transport of proteins, glycoproteins, and gangliosides in sensory neurons of the sciatic nerve was examined in adult rats exposed to acrylamide via intraperitoneal injection (40 mg/kg of body weight/day for nine consecutive days). The L5 dorsal root ganglion was injected with either [35S]methionine to label proteins or [3H]glucosamine to label, more specifically, glycoproteins and gangliosides. At times ranging from 2 to 6 h later, the sciatic nerve and injected ganglion were excised and radioactivity in consecutive 5-mm segments determined. In both control and acrylamide-treated animals, outflow profiles of [35S]methionine-labeled proteins showed a well defined crest which moved down the nerve at a rate of approximately 340 mm/day. Similar outflow profiles and transport rates were seen for [3H]glucosamine-labeled glycoproteins in control animals. However, in animals treated with acrylamide, the crest of transported labeled glycoprotein was severely attenuated as it moved down the nerve. This finding suggests that in acrylamide-treated animals, axonally transported glycoproteins were preferentially transferred (unloaded or exchanged against unlabeled molecules) from the transport vector to stationary axonal structures. We also examined the clearance of axonally transported glycoproteins distal to a ligature on the nerve. The observed impairment of clearance in acrylamide-treated animals relative to controls is supportive of the above hypothesis. Acrylamide may directly affect the mechanism by which axonally transported material is unloaded from the transport vector. Alternatively, the increased rate of unloading might reflect an acrylamide-induced increase in the demand for axonally transported material.  相似文献   

17.
Sulfoglucuronyl glycolipids (SGGLs) have been considered as target antigens in demyelinating peripheral neuropathies associated with IgM monoclonal gammopathy. The regulation of expression of SGGLs in the rat sciatic nerve during development was studied by assaying the levels of SGGLs and activities of four glycosyltransferases sequentially involved in their synthesis from lactosylceramide. The levels of SGGLs in the sciatic nerve increased with development and reached a maximum at sixty days after birth. The rate of increase in the level of SGGLs between day 5 to 20 was similar to rate of deposition of myelin in the nerve. Analysis of the activities of the glycosyltransferases showed that only lactotriosylceramide galactosyltransferase (LcOse3Cer-GalTr) increased in parallel with the levels of SGGLs during development. The other three enzymes were not co-relative with the synthesis of SGGLs. The product of LcOse3Cer-GalTr reaction, nLcOse4Cer is the key intermediate for all neolactoglycolipids, particularly NeuAc2-3nLcOse4Cer or nLM1, which is the major ganglioside (60%) of myelin in rat sciatic nerve. The results suggest that in the sciatic nerve SGGLs are mostly associated with Schwann cell myelin and their synthesis is regulated by LcOse3Cer-GalTr, unlike in the cerebral cortex and cerebellum where SGGLs are associated with the neuronal membranes and their synthesis is regulated by lactosylceramide N-acetylglucosaminyltransferase (LcOse2Cer-GlcNAcTr).  相似文献   

18.
    
Peripheral nerve injury (PNI) seriously affects people’s quality of life. Stem cell therapy is considered a promising new option for the clinical treatment of PNI. Dental stem cells, particularly dental pulp stem cells (DPSCs), are adult pluripotent stem cells derived from the neuroectoderm. DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages, such as easy isolation, multidifferentiation potential, low immunogenicity, and low transplant rejection rate. DPSCs are extensively used in tissue engineering and regenerative medicine, including for the treatment of sciatic nerve injury, facial nerve injury, spinal cord injury, and other neurodegenerative diseases. This article reviews research related to DPSCs and their advantages in treating PNI, aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.  相似文献   

19.
Implantation of bone marrow stromal cells (MSCs) produces an improved functional outcome of peripheral nerve repair. In this study, rat dorsal root ganglion (DRG) explants, rat DRG neurons, and rat Schwann cells (SCs) were treated with monkey MSC-conditioned medium, respectively, and then subjected to MTT assay, Bromodeoxyuridine/Hoechst 33342 double staining, flow cytometry, immunohistochemistry, real-time quantitative PCR, and Western blot analysis, respectively. The results showed that MSC-conditioned medium enhanced axon growth and neurogenesis in cultured DRG explants, augmented cell survival of and expression of NF and GAP-43 by cultured DRG neurons, promoted cell survival and proliferation of cultured SCs, and increased the expression of NGF, BDNF, and bFGF in cultured SCs. We also found that mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) 1/2 pathway was involved in the enhanced cell proliferation of SCs evoked by MSC-conditioned medium. The data of this study might help the understanding of MSCs-based treatment for peripheral nerve repair.  相似文献   

20.
Rats fed a diet containing 1.25% elemental tellurium initiated on postnatal day 20 undergo a transient neuropathy characterized by synchronous demyelination of peripheral nerves. In sciatic nerve, the extent of demyelination was maximal after 5 days of tellurium exposure; there was a loss of 25% of the myelin, as assayed by concentration of myelin-specific P0 protein. Tellurium-induced alterations in the metabolic capacity of Schwann cells were examined by measuring the synthesis of myelin lipids in vitro in isolated sciatic nerve segments. Exposure to tellurium resulted in an early marked decrease of approximately 50% in overall incorporation of [14C]acetate into lipids, with a preferential depression in synthesis of cerebrosides, cholesterol, and ethanolamine plasmalogens (components enriched in myelin). Most dramatically, within 1 day of initiation of tellurium exposure, there was a profound increase in [14C]acetate-derived radioactivity in squalene; 23% of incorporated label was in this intermediate of cholesterol biosynthesis, compared to less than 0.5% in controls. In association with the remyelinating phase seen after 5 days of tellurium exposure, synthesis of myelin components gradually returned to normal levels. After 30 days, metabolic and morphologic alterations were no longer apparent. We suggest that the sequence of metabolic events in sciatic nerve following tellurium treatment initially involves inhibition of the conversion of squalene to 2,3-epoxysqualene, and that this block in the cholesterol biosynthesis pathway results, either directly or indirectly, in the inhibition of the synthesis of myelin components and breakdown of myelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号