首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ohnuma S  Philpott A  Wang K  Holt CE  Harris WA 《Cell》1999,99(5):499-510
p27Xic1, a member of the Cip/Kip family of Cdk inhibitors, besides its known function of inhibiting cell division, induces Müller glia from retinoblasts. This novel gliogenic function of p27Xic1 is mediated by part of the N-terminal domain near but distinct from the region that inhibits cyclin-dependent kinases. Cotransfections with dominant-negative and constitutively active Delta and Notch constructs indicate that the gliogenic effects of p27Xic1 work within the context of an active Notch pathway. The gradual increase of p27Xic1 in the developing retina thus not only limits the number of retinal cells but also increasingly favors the fate of the last cell type to be born in the retina, the Müller glia.  相似文献   

2.
The regulation of the vertebrate cell cycle is controlled by the function of cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors. The Xenopus laevis kinase inhibitor, p27(Xic1) (Xic1) is a member of the p21(Cip1)/p27(Kip1)/p57(Kip2) CDK inhibitor family and inhibits CDK2-cyclin E in vitro as well as DNA replication in Xenopus egg extracts. Xic1 is targeted for degradation in interphase extracts in a manner dependent on both the ubiquitin conjugating enzyme, Cdc34, and nuclei. Here we show that ubiquitination of Xic1 occurs exclusively in the nucleus and that nuclear localization of Xic1 is necessary for its degradation. We find that Xic1 nuclear localization is independently mediated by binding to CDK2-cyclin E and by nuclear localization sequences within the C terminus of Xic1. Our results also indicate that binding of Xic1 to CDK2-cyclin E is dispensable for Xic1 ubiquitination and degradation. Moreover, we show that amino acids 180-183 of Xic1 are critical determinants of Xic1 degradation. This region of Xic1 may define a motif of Xic1 essential for recognition by the ubiquitin conjugation machinery or for binding an alternate protein required for degradation.  相似文献   

3.
4.
K cyclin encoded by Kaposi's sarcoma-associated herpesvirus confers resistance to the cyclin-dependent kinase (cdk) inhibitors p16Ink4A, p21Cip1, and p27Kip1 on the associated cdk6. We have previously shown that K cyclin expression enforces S-phase entry on cells overexpressing p27Kip1 by promoting phosphorylation of p27Kip1 on threonine 187, triggering p27Kip1 down-regulation. Since p21Cip1 acts in a manner similar to that of p27Kip1, we have investigated the subversion of a p21Cip1-induced G1 arrest by K cyclin. Here, we show that p21Cip1 is associated with K cyclin both in overexpression models and in primary effusion lymphoma cells and is a substrate of the K cyclin/cdk6 complex, resulting in phosphorylation of p21Cip1 on serine 130. This phosphoform of p21Cip1 appeared unable to associate with cdk2 in vivo. We further demonstrate that phosphorylation on serine 130 is essential for K cyclin-mediated release of a p21Cip1-imposed G1 arrest. Moreover, we show that under physiological conditions of cell cycle arrest due to elevated levels of p21Cip1 resulting from oxidative stress, K cyclin expression enabled S-phase entry and was associated with p21Cip1 phosphorylation and partial restoration of cdk2 kinase activity. Thus, expression of the viral cyclin enables cells to subvert the cell cycle inhibitory function of p21Cip1 by promoting cdk6-dependent phosphorylation of this antiproliferative protein.  相似文献   

5.
We have investigated the role of the cyclin-dependent kinase inhibitor, p27(Xic1), in the coordination of cell cycle exit and differentiation during early neurogenesis. We demonstrate that p27(Xic1) is highly expressed in cells destined to become primary neurones and is essential for an early stage of neurogenesis. Ablation of p27(Xic1) protein prevents differentiation of primary neurones, while overexpressing p27(Xic1) promotes their formation. p27(Xic1) may enhance neurogenesis by stabilising the bHLH protein, neurogenin. Moreover, the ability of p27(Xic1) to stabilise neurogenin and enhance neurogenesis localises to an N-terminal domain of the molecule and is separable from its ability to inhibit the cell cycle.  相似文献   

6.
CDK inhibitors: cell cycle regulators and beyond   总被引:11,自引:0,他引:11  
  相似文献   

7.
The cyclin-dependent kinase (Cdk) inhibitors p21(Cip1) and p27(Kip1) have been proposed to exert redundant functions in cell cycle progression and differentiation programs, although nonoverlapping functions have also been described. To gain further insights into the relevant mechanisms and to detect possible functional differences between both proteins, we conditionally expressed p21(Cip1) and p27(Kip1) in K562, a multipotent human leukemia cell line. Temporal ectopic expression of either p21(Cip1) or p27(Kip1) arrested proliferation, inhibited Cdk2 and Cdk4 activities, and suppressed retinoblastoma phosphorylation. However, whereas p21(Cip1) arrested cells in both G(1) and G(2) cell cycle phases, p27(Kip1) blocked the G(1)/S-phase transition. Furthermore, although both p21(Cip1) and p27(Kip1) associated with Cdk6, only p27(Kip1) significantly inhibited its activity. Most importantly, each protein promoted differentiation along a distinct pathway; p21(Cip1) triggered megakaryocytic maturation, whereas p27(Kip1) resulted in the expression of erythroid markers. Consistently, p21(Cip1) and p27(Kip1) were rapid and transiently up-regulated when K562 cells are differentiated into megakaryocytic and erythroid lineages, respectively. These findings demonstrate distinct functions of p21(Cip1) and p27(Kip1) in cell cycle regulation and differentiation and indicate that these two highly related proteins possess unique biological activities and are not functionally interchangeable.  相似文献   

8.
9.
Members of the gamma2-herpesvirus family encode cyclin-like proteins that have the ability to deregulate mammalian cell cycle control. Here we report the key features of the viral cyclin encoded by Murine Herpesvirus 68, M cyclin. M cyclin preferentially associated with and activated cdk2; the M cyclin/cdk2 holoenzyme displayed a strong reliance on phosphorylation of the cdk T loop for activity. cdk2 associated with M cyclin exhibited substantial resistance to the cdk inhibitor proteins p21(Cip) and p27(Kip). Furthermore, M cyclin directed cdk2 to phosphorylate p27(Kip1) on threonine 187 (T187) and cellular expression of M cyclin led to down-regulation of p27(Kip1) and the partial subversion of the associated G1 arrest. Mutation of T187 to a non-phosphorylatable alanine rendered the p27(Kip1)-imposed G1 arrest resistant to M cyclin expression. Unlike the related K cyclin, M cyclin was unable to circumvent the G1 arrest associated with p21(Cip1) and was unable to direct its associated catalytic subunit to phosphorylate this cdk inhibitor. These results imply that M cyclin has properties that are distinct from other viral cyclins and that M cyclin expression alone is insufficient for S phase entry.  相似文献   

10.

Background

Cell division is positively regulated by cyclin-dependent kinases (CDKs) partnered with cyclins and negatively regulated by CDK inhibitors. In the frog, Xenopus laevis, three types of CDK inhibitors have been described: p27Xic1 (Xic1) which shares sequence homology with both p21Cip1 and p27Kip1 from mammals, p16Xic2 (Xic2) which shares sequence homology with p21Cip1, and p17Xic3 (Xic3) which shares sequence homology with p27Kip1. While past studies have demonstrated that during DNA polymerase switching, Xic1 is targeted for protein turnover dependent upon DNA, Proliferating Cell Nuclear Antigen (PCNA), and the ubiquitin ligase CRL4Cdt2, little is known about the processes that regulate Xic2 or Xic3.

Methods

We used the Xenopus interphase egg extract as a model system to examine the regulation of Xic2 by proteolysis and phosphorylation.

Results

Our studies indicated that following primer synthesis during the initiation of DNA replication, Xic2 is targeted for DNA- and PCNA-dependent ubiquitin-mediated proteolysis and that Cdt2 can promote Xic2 turnover. Additionally, during interphase, Xic2 is phosphorylated by CDK2 at Ser-98 and Ser-131 in a DNA-independent manner, inhibiting Xic2 turnover. In the presence of double-stranded DNA ends, Xic2 is also phosphorylated at Ser-78 and Ser-81 by a caffeine-sensitive kinase, but this phosphorylation does not alter Xic2 turnover. Conversely, in the presence or absence of DNA, Xic3 was stable in the Xenopus interphase egg extract and did not exhibit a shift indicative of phosphorylation.

Conclusions

During interphase, Xic2 is targeted for DNA- and PCNA-dependent proteolysis that is negatively regulated by CDK2 phosphorylation. During a response to DNA damage, Xic2 may be alternatively regulated by phosphorylation by a caffeine-sensitive kinase. Our studies suggest that the three types of Xenopus CDK inhibitors, Xic1, Xic2, and Xic3 appear to be uniquely regulated which may reflect their specialized roles during cell division or early development in the frog.
  相似文献   

11.
When suspended in methylcellulose, primary mouse keratinocytes cease proliferation and differentiate. Suspension also reduces the activity of the cyclin-dependent kinase cdk2, an important cell cycle regulatory enzyme. To determine how suspension modulates these events, we examined its effects on wild-type keratinocytes and keratinocytes nullizygous for the cdk2 inhibitor p21(Cip1). After suspension of cycling cells, amounts of cyclin A (a cdk2 partner), cyclin A mRNA, and cyclin A-associated activity decreased much more rapidly in the presence than in the absence of p21(Cip1). Neither suspension nor p21(Cip1) status affected the stability of cyclin A mRNA. Loss of p21(Cip1) reduced the capacity of suspended cells to growth arrest, differentiate, and accumulate p27(Kip1) (a second cdk2 inhibitor) and affected the composition of E2F DNA binding complexes. Cyclin A-cdk2 complexes in suspended p21(+/+) cells contained p21(Cip1) or p27(Kip1), whereas most of the cyclin A-cdk2 complexes in p21(-/-) cells lacked p27(Kip1). Ectopic expression of p21(Cip1) allowed p21(-/-) keratinocytes to efficiently down-regulate cyclin A and differentiate when placed in suspension. These findings show that p21(Cip1) mediates the effects of suspension on numerous processes in primary keratinocytes including cdk2 activity, cyclin A expression, cell cycle progression, and differentiation.  相似文献   

12.
The timing of cellular exit from the cell cycle during differentiation is specific for each cell type or lineage. Granulosa cells in the ovary establish quiescence within several hours after the ovulation-inducing luteinizing hormone surge, whereas they undergo differentiation into corpora lutea. The expression of Cdk inhibitors p21(Cip1/Waf1) and p27(Kip1) is up-regulated during this process, suggesting that these cell cycle inhibitors are involved in restricting proliferative capacity of differentiating granulosa cells. Here we demonstrate that the lack of p27(Kip1) and p21(Cip1) synergistically renders granulosa cells extended an proliferative life span. Immunohistochemical analyses demonstrated that corpora lutea of p27(Kip1), p21(Cip1) double-null mice showed large numbers of cells with bromodeoxyuridine incorporation and high proliferative cell nuclear antigen expression, which were more remarkable than those in p27(Kip1) single-deficient mice showing modest hyperproliferation. In contrast, differentiating granulosa cells in p21(Cip1)-deficient mice ceased proliferation similarly to those in wild-type mice. Interestingly, granulosa cells isolated from p27(Kip1), p21(Cip1) double-null mice exhibited markedly prolonged proliferative life span in culture, unlike cells with other genotypes. Cultured p27(Kip1), p21(Cip1) double-null granulosa cells maintained expression of steroidogenic enzymes and gonadotropin receptors through 8-10 passages and could undergo further differentiation in responses to cAMP accumulation. Thus, the cooperation of p27(Kip1) and p21(Cip1) is critical for withdrawal of granulosa cells from the cell cycle, in concert with luteal differentiation and possibly culture-induced senescence.  相似文献   

13.
Cell cycle progression is under the control of cyclin-dependent kinases (cdks), the activity of which is dependent on the expression of specific cdk inhibitors. In this paper we report that the two cdk inhibitors, p27(Kip1) and p18(INK4c), are differently expressed and control different steps of human B lymphocyte activation. Resting B cells contain large amounts of p27(Kip1) and no p18(INK4c). In vitro stimulation by Staphylococcus aureus Cowan 1 strain or CD40 ligand associated with IL-10 and IL-2 induces a rapid decrease in p27(Kip1) expression combined with cell cycle entry and progression. In contrast, in vitro Ig production correlates with specific expression of p18(INK4c) and early G(1) arrest. This G(1) arrest is associated with inhibition of cyclin D3/cdk6-mediated retinoblastoma protein phosphorylation by p18(INK4c). A similar contrasting pattern of p18(INK4c) and p27(Kip1) expression is observed both in B cells activated in vivo and in various leukemic cells. Expression of p18(INK4c) was also detected in various Ig-secreting cell lines in which both maximum Ig secretion and specific p18(INK4c) expression were observed during the G(1) phase. Our study shows that p27(Kip1) and p18(INK4c) have different roles in B cell activation; p27(Kip1) is involved in the control of cell cycle entry, and p18(INK4c) is involved in the subsequent early G(1) arrest necessary for terminal B lymphocyte differentiation.  相似文献   

14.
Do p27Kip1 and p21Cip1 function as activators or inhibitors of D cyclin-cdk4 activity? Attempts to answer this question, and thus to understand how cdk4--a key cell cycle regulator--becomes active, have produced conflicting data. In this perspective, we summarize the results of studies addressing the effects of p27Kip1 and p21Cip1 on the assembly and activation of D cyclin-cdk4 complexes. Emphasis is placed on our experimental findings that support a model of cell cycle control in which p27Kip1 and p21Cip1 stabilize D cyclin-cdk4 complexes but inhibit D cyclin-cdk4 activity.  相似文献   

15.
To ensure proper timing of the G1-S transition in the cell cycle, the cyclin E-Cdk2 complex, which is responsible for the initiation of DNA replication, is restrained by the p21(Cip1)/p27(Kip1)/p57(Kip2) family of CDK (cyclin-dependent kinase) inhibitors in humans and by the related p27(Xic1) protein in Xenopus. Activation of cyclin E-Cdk2 is linked to the ubiquitination of human p27(Kip1) or Xenopus p27(Xic1) by SCF (for Skp1-Cullin-F-box protein) ubiquitin ligases. For human p27(Kip1), ubiquitination requires direct phosphorylation by cyclin E-Cdk2. We show here that Xic1 ubiquitination does not require phosphorylation by cyclin E-Cdk2, but it does require nuclear accumulation of the Xic1-cyclin E-Cdk2 complex and recruitment of this complex to chromatin by the origin-recognition complex together with Cdc6 replication preinitiation factors; it also requires an activation step necessitating cyclin E-Cdk2-kinase and SCF ubiquitin-ligase activity, and additional factors associated with mini-chromosome maintenance proteins, including the inactivation of geminin. Components of the SCF ubiquitin-ligase complex, including Skp1 and Cul1, are also recruited to chromatin through cyclin E-Cdk2 and the preinitiation complex. Thus, activation of the cyclin E-Cdk2 kinase and ubiquitin-dependent destruction of its inhibitor are spatially constrained to the site of a properly assembled preinitiation complex.  相似文献   

16.
The Xenopus laevis cyclin dependent kinase inhibitor p27Xic1 has been shown to be involved in exit from the cell cycle and differentiation of cells into a quiescent state in the nervous system, muscle tissue, heart and retina. We show that p27Xic1 is expressed in the developing kidney in the nephrostomal regions. Using overexpression and morpholino oligonucleotide (MO) knock-down approaches we show normal levels of p27Xic1 regulate pronephros organ size by regulating cell cycle exit. Knock-down of p27Xic1 expression using a MO prevented myogenesis, as previously reported; an effect that subsequently inhibits pronephrogenesis. Furthermore, we show that normal levels of p27Xic1 are required for somite segmentation also through its cell cycle control function. Finally, we provide evidence to suggest correct paraxial mesoderm segmentation is not necessary for pronephric induction in the intermediate mesoderm. These results indicate novel developmental roles for p27Xic1, and reveal its differentiation function is not universally utilised in all developing tissues.  相似文献   

17.
The cyclin-dependent kinase inhibitors, p21(Cip1) and p27(Kip1), play an important role in the regulation of progression through G(1) to S phase in mammalian cells. Here we report that confluent 3T3 cells expressed p21(Cip1) and p27(Kip1) predominantly in the nucleus, and the level of both proteins declined as the cells entered the cell cycle and progressed through G(1) in response to serum growth factors. However, when confluent cells were serum starved prior to treatment, no downregulation of p21(Cip1) or p27(Kip1) expression was observed. Notably, serum starvation did not significantly influence the capacity of the cells to progress to the S phase. It was observed that serum starvation reduced cell density. Further, when cells were plated at a range of different densities, starved of serum to render them quiescent and then subsequently treated with serum, a reduction in p21(Cip1) and p27(Kip1) expression was observed in cells plated at high density but not in those at low density. Again, the extent and timing of progression to S phase was not influenced by cell density. To establish the potential role of cell:cell contact in the observed density-dependent regulation of p21(Cip1) and p27(Kip1) expression, cells were plated onto micorarrays of adhesive islands that prevented individual cells from making any contact with other cells. Under these conditions serum growth factors induced p21(Cip1) and p27(Kip1) downregulation, and hence, there is no requirement for cell:cell contact. Together, these data indicate that there are conditions under which 3T3 cells can progress to the S phase without downregulation of p21(Cip1) and p27(Kip1). The significance of these observations and mechanisms by which density-dependent regulation of p21(Cip1) and p27(Kip1) expression may occur are discussed.  相似文献   

18.
Do p27Kip1 and p21Cip1 function as activators or inhibitors of D cyclin-cdk4 activity? Attempts to answer this question and thus to understand how cdk4—a key cell cycle regulator—becomes active have produced conflicting data. In this perspective, we summarize the results of studies addressing the effects of p27Kip1 and p21Cip1 on the assembly and activation of D cyclin-cdk4 complexes. Emphasis is placed on our experimental findings, which support a model of cell cycle control in which p27Kip1 and p21Cip1 stabilize D cyclin-cdk4 complexes but inhibit D cyclin-cdk4 activity.  相似文献   

19.
The specific functions of p57(Kip2) in lymphocytes have not yet been fully elucidated. In this study, it is shown that p57(Kip2), which is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors, is present in the nuclei of normal resting (G(0)) T cells from peripheral blood and in the nuclei of the T cell-derived Jurkat cell line. Activation through the TCR results in rapid transport of cytoplasmic cyclin-dependent kinase 6 (cdk6) to nuclei, where it associates with cyclin D and p57(Kip2) in active enzyme complexes. Using purified recombinant proteins, it was shown in vitro that addition of p57(Kip2) protein to a mixture of cyclin D2 and cdk6 enhanced the association of the latter two proteins and resulted in phosphorylation of p57(Kip2). To probe further the function of p57(Kip2), Jurkat cells stably transfected with a plasmid encoding p57(Kip2) under control of an inducible (tetracycline) promoter were made. Induction of p57(Kip2) resulted in increased association of cdk6 with cyclin D3, without receptor-mediated T cell stimulation. The overall amounts of cdk6 and cyclin D3, and also of cdk4 and cyclin E, remained unchanged. Most notably, increased p57(Kip2) levels resulted in marked inhibition of both cyclin E- and cyclin A-associated cdk2 kinase activities and a decrease in cyclin A amounts. Therefore, although facilitating activation of cdk6, the ultimate outcome of p57(Kip2) induction was a decrease in DNA synthesis and cell proliferation. The results indicate that p57(Kip2) is involved in the regulation of several aspects of the T cell cycle.  相似文献   

20.
p27(Kip1) is an inducer of intestinal epithelial cell differentiation   总被引:2,自引:0,他引:2  
Constant renewal of the intestinal epitheliumis a highly coordinated process that has been subject to intenseinvestigation, but its regulatory mechanisms are still essentiallyunknown. In this study, we have demonstrated that forced expression ofthe cyclin-dependent kinase inhibitors (CKIs) p27Kip1 andp21Cip1/WAF1 in human intestinal epithelial cells led toexpression of differentiation markers at both the mRNA and proteinlevels. Cell differentiation was temporally dissociated from inhibitionof retinoblastoma protein phosphorylation and growth arrest, alreadyestablished 1 day after infection with recombinant adenoviruses.p27Kip1 proved significantly more efficient thanp21Cip1/WAF1 in induction of cell differentiation. Incontrast, forced expression of p16INK4a resulted in growtharrest without induction of differentiation markers. These resultsimplicate both p27Kip1 and p21Cip1/WAF1 in thedifferentiation-timing process, but p21Cip1/WAF1 may actindirectly by increasing p27Kip1 levels. These results alsosuggest that induction of intestinal epithelial cell differentiation byCKIs is not related to their effects on the cell cycle and may involveinteractions with cellular components other than cyclins andcyclin-dependent kinases.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号