首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the genome sequence data of the thermophilic archaeon Pyrococcus horikoshii, an open reading frame was found which encodes a protein (332 amino acids) homologous with an endoglucanase from Clostridium thermocellum (42% identity), deblocking aminopeptidase from Pyrococcus furiosus (42% identity) and an aminopeptidase from Aeromonas proteolytica (18% identity). This gene was cloned and expressed in Escherichia coli, and the characteristics of the expressed protein were examined. Although endoglucanase activity was not detected, this protein was found to have aminopeptidase activity to cleave the N-terminal amino acid from a variety of substrates including both N-blocked and non-blocked peptides. The enzyme was stable at 90 degrees C, with the optimum temperature over 90 degrees C. The metal ion bound to this enzyme was calcium, but it was not essential for the aminopeptidase activity. Instead, this enzyme required the cobalt ion for activity. This enzyme is expected to be useful for the removal of N(alpha)-acylated residues in short peptide sequence analysis at high temperatures.  相似文献   

2.
The structure of a 468 kDa peptidase complex from the hyperthermophile Pyrococcus horikoshii has been solved at 1.9 Å resolution. The monomer contains the M42 peptidase typical catalytic domain, and a dimerization domain that allows the formation of dimers that assemble as a 12-subunit self-compartmentalized tetrahedron, similar to those described for the TET peptidases. The biochemical analysis shows that the enzyme is cobalt-activated and cleaves peptides by a non-processive mechanism. Consequently, this protein represents the third TET peptidase complex described in P. horikoshii , thereby called PhTET3. It is a lysyl aminopeptidase with a strong preference for basic residues, which are poorly cleaved by PhTET1 and PhTET2. The structural analysis of PhTET3 and its comparison with PhTET1 and PhTET2 unravels common features explaining the general mode of action of the TET molecular machines as well as differences that can be associated with strong substrate discriminations. The question of the stability of the TET assemblies under extreme temperatures has been addressed. PhTET3 displays its maximal activity at 95°C and small-angle neutron scattering experiments at 90°C demonstrate the absence of quaternary structure alterations after extensive incubation times. In conclusion, PhTETs are complementary peptide destruction machines that may play an important role in the metabolism of P. horikoshii .  相似文献   

3.
Deblocking aminopeptidase (DAP) is an exoprotease that can release N-terminal amino acids from blocked peptides. Three DAP homologous (TkDAP1, TkDAP2, and TkDAP3) are annotated in the genome data base of Thermococcus kodakarensis KOD1. TkDAP2 and TkDAP3 were identified as proteins that are overexpressed in response to heat and oxidative stress by two-dimensional electrophoresis. In this study, the TkDAP1 and TkDAP2 genes were cloned and expressed in Escherichia coli. The two proteins were purified homogeneity and analyzed by gel filtration chromatography and electron microscopy. TkDAP1 showed two oligomers, which were identified as an octodecimer and a dodecamer. TkDAP2 produced three native forms: octodecimer, dodecamer, and trimer. Dodecamer assembly was the main form in the two proteins. Finally, TkDAP1 was found to have higher deblocking aminopeptidase activity on the substrates of Ac-Leu-pNA and Ac-Ala-Ala-Ala, while TkDAP2 had higher aminopeptidase activity on the substrates of Leu-pNA and Ala-Ala-Ala-pNA.  相似文献   

4.
Deblocking aminopeptidase (DAP) is an exoprotease that can release N-terminal amino acids from blocked peptides. Three DAP homologous (TkDAP1, TkDAP2, and TkDAP3) are annotated in the genome data base of Thermococcus kodakarensis KOD1. TkDAP2 and TkDAP3 were identified as proteins that are overexpressed in response to heat and oxidative stress by two-dimensional electrophoresis. In this study, the TkDAP1 and TkDAP2 genes were cloned and expressed in Escherichia coli. The two proteins were purified homogeneity and analyzed by gel filtration chromatography and electron microscopy. TkDAP1 showed two oligomers, which were identified as an octodecimer and a dodecamer. TkDAP2 produced three native forms: octodecimer, dodecamer, and trimer. Dodecamer assembly was the main form in the two proteins. Finally, TkDAP1 was found to have higher deblocking aminopeptidase activity on the substrates of Ac-Leu-pNA and Ac-Ala-Ala-Ala, while TkDAP2 had higher aminopeptidase activity on the substrates of Leu-pNA and Ala-Ala-Ala-pNA.  相似文献   

5.
New hyperthermostable aminopeptidase from the hyperthermophilic archaeon Pyrococcus horikoshii has acylamino acid releasing (deblocking) activity for acyl (blocked) peptides. Such an enzyme can be used for N-terminal sequencing of acyl peptides. To clarify the active site of the deblocking aminopeptidase, we prepared three mutants in which one of the three possible active site amino acid residues (Asp or Glu) was replaced with their amide derivatives. Activity and cobalt ion dependence of these mutants were examined and compared with those of the native enzyme. The results suggest that all the three possible residues (Asp173, Glu205, and Glu206) participate in the catalytic activity through binding with the cobalt ion.  相似文献   

6.
An intracellular exopeptidase identified as dipeptidyl aminopeptidase III (DAP III) was found to be abundant in the bovine lens. The enzyme contained in aqueous extracts exhibited a marked preference, compared to other dipeptidyl-β-naphthylamides, for the release of Arg-Arg from Arg-Arg-2-NNap at the optimum pH 9.0 and 37°. The Km for this substrate was estimated to be 2.83 × 10?5M. Lens DAP III was inhibited by EDTA, p-chloromercuriphenyl sulfonate, and puromycin. Lens aminopeptidase activities measured at pH 7.5 on the β-naphthylamides of leucine, alanine, and arginine, included for comparison, suggested that not only is leucine aminopeptidase abundant, but also other aminopeptidases that appear to include alanine aminopeptidase and aminopeptidase B.  相似文献   

7.
It has been reported that one of the hyperthermostable aminopeptidases from Pyrococcus horikoshii exhibits hydrolytic activity toward short peptides and acyl-peptides (deblocking activity). In the genome database of P. horikoshii, two new open reading frames homologous to the hyperthermostable aminopeptidase of P. horikoshii were found. The two new genes for the proteins were cloned, expressed using E. coli, and characterized. The purified proteins gave a single band on SDS-PAGE corresponding to molecular masses of 42 kDa and 41 kDa respectively, and exhibited aminopeptidase activity, including deblocking activity. These enzymes are likely to exist as oligomeric structures at neutral pH. The optimum pHs of the two enzyme activities were in the range of 7.0 to 7.5, and the optimum temperatures for the activities were around 100 degrees C. The enzymes exhibited low hydrolytic activity for peptide substrates longer than 10 residues. They were activated by cobalt and zinc ions. Their substrate specificities and activation factors are different. It was confirmed that P. horikoshii has three similar aminopeptidases with deblocking activity and that these enzymes appear to play important roles in hydrolyzing small peptides in P. horikoshii cells.  相似文献   

8.
Aspartyl aminopeptidase (DAP), a widely distributed and abundant cytosolic enzyme, removes glutamyl or aspartyl residues from N-terminal acidic amino acid-containing peptides. DAP is a member of the M18 family of the MH clan of cocatalytic metallopeptidases. The human and mouse enzymes have been cloned. We have identified 8 highly homologous eukaryotic sequences that are probable aspartyl aminopeptidases. Eight histidine residues of human DAP were sequentially mutated to phenylalanine. Mutation of His94, His170, and His440 abolished enzymatic activity. His94 and His440 are postulated to be involved in binding cocatalytic zinc atoms by homology with other members of the MH clan. Mutation of His352 dramatically reduced enzyme activity. Gel-filtration analysis of the His352 mutant revealed destabilization of the quaternary structure and dissociation of the native 440-kDa enzyme. Mutation of His33 and of histidines residing in a cluster at residues 349, 359, and 363 all decreased k(cat). These studies reveal an important role for histidine residues both in catalysis and in the structural integrity of DAP.  相似文献   

9.
Serum levels of human placental leucine aminopeptidase/oxytocinase (P-LAP) increase with gestation. cDNA cloning of P-LAP revealed that the enzyme is a type II membrane-bound protein containing the consensus HEXXH(X)18E motif found in the M1 family of zinc-metallopeptidase proteins. In this study, a recombinant soluble form of P-LAP found in maternal serum was expressed in Chinese hamster ovary cells, purified to homogeneity and then characterized. Although N-terminal sequencing revealed a four-amino-acid deletion, the purified enzyme was active and was shown to be a zinc-containing homodimeric protein with molecular mass of 280 kDa in solution. Using artificial substrates, it was shown that the enzyme has broad specificity and is inhibited by several compounds known as aminopeptidase inhibitors. Subsequently, sequential N-terminal amino-acid liberation of several peptide hormones by the enzyme was monitored and structures of the products were determined. Among the hormones having a cysteine residue at their N-terminal end and intramolecular disulfide bonds, it was found that vasopressin and oxytocin, but not calcitonin and endothelins, were cleaved by the enzyme. Because the molecular properties of oxytocinase so far reported often conflict, our results provide an initial biochemical and enzymatic characterization of moleculary defined P-LAP/oxytocinase.  相似文献   

10.
Thermococcus onnurineus NA1 is a hyperthermophilic archaeon that grows optimally at >80°C. The deblocking aminopeptidase (DAP) (TNA1-DAP1) encoded in Ton_1032 of T. onnurineus NA1 is considered a major DAP. However, four genes encoding putative DAP have been identified from a genomic analysis of T. onnurineus NA1. A proteomic analysis revealed that all four DAPs were differentially induced in YPS culture medium and, particularly, two DAPs (TNA1-DAP1 and TNA1-DAP2) were dominantly expressed in T. onnurineus NA1. The biochemical properties and enzyme activity of DAPs induced in an E. coli expression system suggested that the two major DAPs play complementary roles in T. onnurineus NA1.  相似文献   

11.
It has been reported that one of the hyperthermostable aminopeptidases from Pyrococcus horikoshii exhibits hydrolytic activity toward short peptides and acyl-peptides (deblocking activity). In the genome database of P. horikoshii, two new open reading frames homologous to the hyperthermostable aminopeptidase of P. horikoshii were found. The two new genes for the proteins were cloned, expressed using E. coli, and characterized. The purified proteins gave a single band on SDS-PAGE corresponding to molecular masses of 42 kDa and 41 kDa respectively, and exhibited aminopeptidase activity, including deblocking activity. These enzymes are likely to exist as oligomeric structures at neutral pH. The optimum pHs of the two enzyme activities were in the range of 7.0 to 7.5, and the optimum temperatures for the activities were around 100 °C. The enzymes exhibited low hydrolytic activity for peptide substrates longer than 10 residues. They were activated by cobalt and zinc ions. Their substrate specificities and activation factors are different. It was confirmed that P. horikoshii has three similar aminopeptidases with deblocking activity and that these enzymes appear to play important roles in hydrolyzing small peptides in P. horikoshii cells.  相似文献   

12.
In this study we report the cloning and characterization of a novel human aminopeptidase, which we designate leukocyte-derived arginine aminopeptidase (L-RAP). The sequence encodes a 960-amino acid protein with significant homology to placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase. The predicted L-RAP contains the HEXXH(X)18E zinc-binding motif, which is characteristic of the M1 family of zinc metallopeptidases. Phylogenetic analysis indicates that L-RAP forms a distinct subfamily with placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase in the M1 family. Immunocytochemical analysis indicates that L-RAP is located in the lumenal side of the endoplasmic reticulum. Among various synthetic substrates tested, L-RAP revealed a preference for arginine, establishing that the enzyme is a novel arginine aminopeptidase with restricted substrate specificity. In addition to natural hormones such as angiotensin III and kallidin, L-RAP cleaved various N-terminal extended precursors to major histocompatibility complex class I-presented antigenic peptides. Like other proteins involved in antigen presentation, L-RAP is induced by interferon-gamma. These results indicate that L-RAP is a novel aminopeptidase that can trim the N-terminal extended precursors to antigenic peptides in the endoplasmic reticulum.  相似文献   

13.
To enable Edman sequencing of pyroglutamylated immunoglobulins, enzymatic deblocking by pyroglutamate aminopeptidase is performed, often with variable yield and compromised solubility. Recently, enzymatic deblocking of immunoglobulins without denaturation was described. Although the conditions ensured efficient removal of pyroglutamyl residues, we conclude that deblocking is preceded by denaturation, which results in aggregation of the immunoglobulins. To study the effect of folding status on deblocking we developed a methanol based deblocking solution, which preserved the enzymatic activity of pyroglutamate aminopeptidase, provided conditions compatible with sequencing and enhanced deblocking of electroblotted samples, as well. At 50 degrees C and 35% (v/v) methanol the immunoglobulin chains were completely aggregated, but the degree of deblocking was comparable to that obtained with the previously described method. At 37 degrees C, the immunoglobulins were partly aggregated, but the deblocked chains were completely in the insoluble fractions, whereas the soluble fractions had retained pyroglutamylation in both chains, suggesting that unfolding of the immunoglobulins is required for the excision of the pyroglutamates. Inspection of the structures of pyroglutamylated immunoglobulin and pyroglutamate aminopeptidase P. furiosus indicates that the enzyme requires the substrate in an extended conformation, a criterium, which we conclude not to be fulfilled in the native form of immunoglobulins. Unfolding of the N-terminus would disrupt the immunoglobulin fold by breaking interactions between secondary structure elements and expose surfaces prone to aggregation.  相似文献   

14.
Cellular proteolysis involves large oligomeric peptidases that play key roles in the regulation of many cellular processes. The cobalt-activated peptidase TET1 from the hyperthermophilic Archaea Pyrococcus horikoshii (PhTET1) was found to assemble as a 12-subunit tetrahedron and as a 24-subunit octahedral particle. Both quaternary structures were solved by combining x-ray crystallography and cryoelectron microscopy data. The internal organization of the PhTET1 particles reveals highly self-compartmentalized systems made of networks of access channels extended by vast catalytic chambers. The two edifices display aminopeptidase activity, and their organizations indicate substrate navigation mechanisms different from those described in other large peptidase complexes. Compared with the tetrahedron, the octahedron forms a more expanded hollow structure, representing a new type of giant peptidase complex. PhTET1 assembles into two different quaternary structures because of quasi-equivalent contacts that previously have only been identified in viral capsids.  相似文献   

15.
Mutants of Saccharomyces cerevisiae lacking dipeptidyl aminopeptidase yscV were isolated from a strain already defective in dipeptidyl aminopeptidase yscIV, an enzyme with overlapping substrate specificity. The mutants were identified by a staining technique with the chromogenic substrate Ala-Pro-4-methoxy-beta-naphthylamide to screen colonies for the absence of the enzyme. One of the mutants had a thermolabile activity, indicating that it contained a structural gene mutation. The 53 mutants analyzed fell into one complementation group that corresponded to the yscV structural gene, DAP2. The defect segregated 2:2 in meiotic tetrads, indicating a single chromosomal gene mutation, which was shown to be recessive. Diploids heterozygous for DAP2 displayed gene dosage effects with respect to yscV enzyme activity. The absence of dipeptidyl aminopeptidase yscV or the combined loss of both dipeptidyl aminopeptidases yscIV and yscV did not affect mitotic growth under rich or poor growth conditions. In contrast to the dipeptidyl aminopeptidase yscIV lesion (ste13), which leads to alpha sterility because strains secrete incompletely processed forms of the alpha-factor pheromone, the dipeptidyl aminopeptidase yscV lesion did not affect mating, and strains produced fully active alpha-factor pheromone. dap2 mutants did not show any obvious phenotype under a variety of conditions tested.  相似文献   

16.
Dipeptidyl aminopeptidase II (DAP II) was demonstrated cytochemically at light and electron microscope levels in rat macrophages and mast cells using Lys-Ala-4-methoxy-2-naphthylamide as a specific substrate. The enzyme which was found to be lysosomal in both cell types, was analyzed biochemically in extracts by measuring fluorometrically the liberated naphthylamine, and was visualized in sections microscopically using azo-coupling methods. DAP II was further characterized by isoelectric focusing techniques. Macrophage DAP II was found to be typical of that found in other rat tissues in terms of its structural latency, substrate specificity, inhibitor sensitivities, and pH activator requirements. Addition DAP II isozymes, not previously recognized, were observed.  相似文献   

17.
The complete nucleotide sequence of dipeptidyl aminopeptidase IV (DAP IV) from Pseudomonas sp. WO24 was determined. Nucleotide sequence analysis revealed an open reading frame of 2238bp, which was assigned to dap4 by N-terminal and internal amino acid sequences previously reported. The predicted amino acid sequence of DAP IV contains a serine protease Gly-X-Ser-X-Gly-Gly consensus motif and displays extensive homology to DAP IVs and the homologous proteins from eukaryotes and bacteria, belonging to the prolyl oligopeptidase family S9. In Pseudomonas sp. WO24, DAP IV is expressed as 82 and 84-kDa isoforms, having two Met, Met-1 and Met-12, in its N-terminal sequence. Met-1 of DAP IV was mutated to Gly and Met-12 was mutated to Ile, and we overexpressed the two mutated genes in Escherichia coli and obtained the recombinant 82 and 84-kDa proteins from the periplasm and the cytoplasm, respectively, suggesting that the 82 and 84-kDa isoforms are derived from the same gene and localize to different compartments in the cell. We developed purification steps for activting a large amount of 84-kDa isoform protein that will be useful for producing protein for crystallographic studies.  相似文献   

18.
A porcine brain dipeptidyl-aminopeptidase (DAP) has been purified more than 2400-fold from a crude mitochondrial fraction containing synaptosomes. This enzyme catalyzes the release of free Tyr-Gly from Leu-enkephalin (Km = 2.5 microM) with an optimal activity between pH 6.0 and pH 8.0. The enzyme appears homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis devoid of detectable contaminating aminopeptidase activities. The native enzyme is a monomeric protein with a molecular weight of 51,000 +/- 1,000 and an isoelectric point of 4.6 +/- 0.1. This enzyme cosediments with synaptosomes on a Ficoll-sucrose gradient and is partially associated with synaptic plasma membranes. Its activity is inhibited by the metal-chelating agents ethylenediaminetetraacetate and o-phenanthroline. It is not inhibited by the OH-reactive agent phenylmethanesulfonyl fluoride and SH-reactive agents such as p-(chloromercuri)benzoate and N-ethylmaleimide. Among the various biologically active peptides tested, the purified enzyme releases efficiently the N-terminal dipeptide moiety from enkephalins, Trp-Met-Asp-Phe-NH2 (CCK4), and Gly-Trp-Met-Asp-Phe-NH2 (CCK5). At variance, the native peptides CCK8, substance P, neurotensin, and angiotensin II are not cleaved by the DAP. This enzyme is different from other unspecific DAPs, as well as from enkephalin-degrading DAPs previously reported, by its molecular weight and substrate specificity.  相似文献   

19.
Dipeptidyl aminopeptidase IV from Pseudomonas sp. WO24 was purified as two molecular forms of 84 and 82-kDa by SDS–PAGE. Peptide mapping and N-terminal sequence analyses indicated that both proteins might be derived from the same protein, and that the 82-kDa molecule might be a truncated form from the 84-kDa molecule at least at the N-terminus. The DAP IV gene of Pseudomonas sp. WO24 was cloned and expressed in E. coli. The enzyme expressed in E. coli JM109 harboring a hybrid plasmid, pYO-6A, with about a 3-kbp fragment containing the DAP IV gene, was purified with an activity recovery of 24%. The recombinant enzyme also had the same two molecular forms, though the ratio of the two forms (about 1:1) was different from that of the native ones (about 1:4). The native and recombinant enzyme preparations had similar specific activities, suggesting that the 84 and 82-kDa molecules are in an active form and have almost the same specific activity. The molecular mass, the subunit number, the substrate specificity, and the effects of various inhibitors of the native enzyme indicated that this enzyme was a typical DAP IV and had properties similar to those of Flavobacterium meningosepticum rather than others.  相似文献   

20.
In addition to plasma metabolism of substance P (SP) by angiotensin converting enzyme (ACE; EC 3.4.15.1) (<1.0 nmol/min/ml), the majority of SP hydrolysis by rat and human plasma was due to dipeptidyl(amino)peptidase IV (DAP IV; EC 3.4.14.5) (3.15–5.91 nmol/min/ml), which sequentially converted SP to SP(3–11) and SP(5–11). In turn, the SP(5–11) metabolite was rapidly hydrolyzed by rat and human plasma aminopeptidase M (AmM; EC 3.4.11.2) (24.2–25.5 nmol/min/ml). The Km values of SP for DAP IV and of SP(5–11) for AmM ranged from 32.7 to 123 μM. In contrast, neurokinin A (NKA) was resistant to both ACE and DAP IV but was subject to N-terminal hydrolysis by AmM (3.76–10.8 nmol/min/ml; Km=90.7 μM. These data demonstrate differential processing of SP and NKA by specific peptidases in rat and human plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号