首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A recently developed variant of quartz crystal microbalance (QCM) called QCM-with dissipation monitoring (QCM-D) allows simultaneous and simple measurements of changes in adsorbed mass as well as the viscoelastic property (D-factor) of deposited protein layers on the sensor surface. We have taken the QCM-D technology a step further and demonstrated its advantages in the study of protein assembly as a consequence of surface induced immune complement activation, or contact activated blood coagulation. In the present study we have continued our QCM-D investigations of surface assembly of fibrin clot formation and complement activation and incubated differently modified quartz sensor surfaces in blood plasma and sera. Polymer surfaces used were spin-coated polyethylene, poly(ethylene terephtalate), poly(methylmetacrylate) and poly(dimethylsiloxane). Also used were sputtered titanium and heparin grafted surfaces. In this investigation we found that we could describe the surface induced coagulation with four independent parameters: (1) Time of onset of coagulation, (2) fibrin deposition rate, (3) total frequency shift at stable plateau, and (4) fibrin clot density. The most important finding was that the blood plasma clot density can be assessed with the use of D determinations and that the clot density varied significantly with the chemical composition of the surface. However, the D-factor did not give any new analytical information about the possible complement activation mechanisms. Nevertheless, the QCM-D was found to be a reliable tool for the analysis of surface induced complement activation. We also compared the QCM-D technique with traditional enzyme immuno assay (EIA) measurements of soluble products from the surface activation of the complement and coagulation systems. We found that the results from EIA and QCM-D measurements corresponded well for the complement activation but not for the coagulation, probably due to the biological complexity of the coagulation system.  相似文献   

2.
When human diploid fibroblasts were seeded onto the surface of blood clots, lysis of the clot occurred as a result of the release of cellular plasminogen activator. A number of aspects of this lysis were studied. 1. There was no significant difference in rates of lysis of whole blood clots, platelet-rich plasma clots, and platelet-poor plasma clots brought about by the same number of fibroblasts. 2. Clot lysis was promoted by nondividing cells and by proliferating cells. 3. Using cycloheximide to block protein synthesis it was found that the plasminogen activator released by fibroblasts had an active half-life of less than an hour. 4. When clots were washed prior to the addition of cells then lysis occurred at an increased rate. This was probably due to the removal of alpha 2-antiplasmin from the clots, since when antisera to alpha 2-antiplasmin was added to clots, lysis also proceeded at an increased rate. 5. Medium conditioned by fibroblasts did not promote clot lysis even when antiplasmin was removed by washing or by addition of antisera. 6. Cells had to be in direct contact with the clot in order to bring about lysis; when cells were separated from clots by permeable membranes there was no lysis. 7. When cross-linking of fibrin was reduced by the inhibition of transglutaminase, the rate of clot lysis was increased.  相似文献   

3.
Earlier studies have shown that isolated platelets in buffer systems can promote activation of FXII or amplify contact activation, in the presence of a negatively charge substance or material. Still proof is lacking that FXII is activated by platelets in a more physiological environment. In this study we investigate if activated platelets can induce FXII-mediated contact activation and whether this activation affects clot formation in human blood.Human platelets were activated with a thrombin receptor-activating peptide, SFLLRN-amide, in platelet-rich plasma or in whole blood. FXIIa and FXIa in complex with preferentially antithrombin (AT) and to some extent C1-inhibitor (C1INH) were generated in response to TRAP stimulation. This contact activation was independent of surface-mediated contact activation, tissue factor pathway or thrombin. In clotting whole blood FXIIa-AT and FXIa-AT complexes were specifically formed, demonstrating that AT is a potent inhibitor of FXIIa and FXIa generated by platelet activation. Contact activation proteins were analyzed by flow cytometry and FXII, FXI, high-molecular weight kininogen, and prekallikrein were detected on activated platelets. Using chromogenic assays, enzymatic activity of platelet-associated FXIIa, FXIa, and kallikrein were demonstrated. Inhibition of FXIIa in non-anticoagulated blood also prolonged the clotting time.We conclude that platelet activation triggers FXII-mediated contact activation on the surface and in the vicinity of activated platelets. This leads specifically to generation of FXIIa-AT and FXIa-AT complexes, and contributes to clot formation. Activated platelets may thereby constitute an intravascular locus for contact activation, which may explain the recently reported importance of FXII in thrombus formation.  相似文献   

4.
Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood’s transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties.  相似文献   

5.
Abstract

The plasma coagulation system in mammalian blood consists of a cascade of enzyme activation events in which serine proteases activate the proteins (proenzymes and procofactors) in the next step of the cascade via limited proteolysis. The ultimate outcome is the polymerization of fibrin and the activation of platelets, leading to a blood clot. This process is protective, as it prevents excessive blood loss following injury (normal hemostasis). Unfortunately, the blood clotting system can also lead to unwanted blood clots inside blood vessels (pathologic thrombosis), which is a leading cause of disability and death in the developed world. There are two main mechanisms for triggering the blood clotting, termed the tissue factor pathway and the contact pathway. Only one of these pathways (the tissue factor pathway) functions in normal hemostasis. Both pathways, however, are thought to contribute to thrombosis. An emerging concept is that the contact pathway functions in host pathogen defenses. This review focuses on how the initiation phase of the blood clotting cascade is regulated in both pathways, with a discussion of the contributions of these pathways to hemostasis versus thrombosis.  相似文献   

6.
The success of clot thrombolysis very much depends on efficient clot permeation with blood plasma carrying the thrombolytic agent. In this paper clot permeation was studied by dynamic magnetic resonance imaging (MRI) on artificial non-occlusive blood clots inserted in an artificial circulation system filled with blood plasma to which an MRI contrast agent was added. The MRI results revealed that clot permeation is much faster and more efficient at the entrance of the flow channel across the clot. Clot permeation with fluid was simulated numerically as well. The simulation was based on numerical solution of Navier-Stokes equations for the flow in the channel and within the clot. The clot was considered as a porous material with known permeability and porosity. Based on the calculated velocity profiles, concentration profiles of fluid in the clot were modelled. These agreed well with the MRI results. The presented model of clot permeation with fluid may also serve as a useful extension to numerical modelling of dissolution of non-occlusive blood clots during thrombolytic therapy.  相似文献   

7.
Severe infectious diseases remain a major and life-threatening health problem. In serious cases a systemic activation of the coagulation cascade and hypovolemic shock are critical complications that are associated with high mortality rates. Here we report that blood mononuclear cells, stimulated with M1 protein of Streptococcus pyogenes or other bacterial virulence factors, produce not only pro-coagulant, but also pro-inflammatory microparticles (MPs). Our results also show that activation of the contact system on MPs contributes to these two effects. Phosphatidylserine (PS) plays an important role in these processes as its upregulation on MPs allows an assembly and activation of the contact system. This in turn results in stabilization of the tissue factor-induced clot and a processing of high-molecular-weight kininogen by plasma kallikrein followed by the release of bradykinin, a potent vascular mediator. Pro-coagulant monocyte-derived MPs were identified in plasma samples from septic patients and further analysis of MPs from these patients revealed that their pro-coagulant activity is dependent on the tissue factor- and contact system-driven pathway.  相似文献   

8.
To gain greater insight into the nature of the bleeding tendency in hemophilia, we compared the spatial dynamics of clotting in platelet-free plasma from healthy donors and from patients with severe hemophilia A or B (factor VIII:C or IX:C<1%). Clotting was initiated via the intrinsic or extrinsic pathway in a thin layer of nonstirred plasma by bringing it in contact with the glass or fibroblast monolayer surface. The results suggest that clot growth is a process consisting of two distinct phases, initiation and elongation. The clotting events on the activator surface and the preceding period free of visible signs of clotting are the initiation phase. In experiments with and without stirring alike, this phase is prolonged in hemophilic plasma activated by the intrinsic, but not the extrinsic pathway. Strikingly, both hemophilia A and B are associated with a significant deterioration in the elongation phase (clot thickening), irrespective of the activation pathway. The rate of clot growth in hemophilic plasma is significantly lower than normal and declines quickly. The resulting clots are thin, which may account for the bleeding disorder.  相似文献   

9.
Thrombelastography (TEG) is a method that is used to conduct global assays that monitor fibrin formation and fibrinolysis and platelet aggregation in whole blood. The purpose of this study was to use a well-characterized tissue factor (Tf) reagent and contact pathway inhibitor (corn trypsin inhibitor, CTI) to develop a reproducible thrombelastography assay. In this study, blood was collected from 5 male subjects (three times). Clot formation was initiated in whole blood with 5 pM Tf in the presence of CTI, and fibrinolysis was induced by adding tissue plasminogen activator (tPA). Changes in viscoelasticity were then monitored by TEG. In quality control assays, our Tf reagent, when used at 5 pM, induced coagulation in whole blood in 3.93 ± 0.23 min and in plasma in 5.12 ± 0.23 min (n=3). In TEG assays, tPA significantly decreased clot strength (maximum amplitude, MA) in all individuals but had no effect on clot time (R time). The intraassay variability (CVa<10%) for R time, angle, and MA suggests that these parameters reliably describe the dynamics of fibrin formation and degradation in whole blood. Our Tf reagent reproducibly induces coagulation, making it an ideal tool to quantify the processes that contribute to mechanical clot strength in whole blood.  相似文献   

10.
Recent studies have shown that the contact activation of blood coagulation can be initiated on the surface of circulating microparticles–particles formed as a result of the activation or apoptosis of blood cells or endothelial cells. In the present work, by means of a mathematical model, we investigated the mechanism of the activation of contact pathway of blood plasma coagulation. The model describes membrane-dependent reactions of the activation of factors XII and XI with account of the presence of blood plasma inhibitors. All reactions were described by ordinary differential equations integrated by an implicit multistep method. The current mathematical model is based on our previous model of factor XII activation on the platelet surface. The initial model is modified by the addition of factor XI, kallikrein, and blood plasma inhibitors. We show that the amidolytic activity of the contact pathway factors associated with the microparticles is proportional to the concentration of microparticles. In previous studies, an increase in the overall solution amidolytic activity after the dilution of plasma was observed. Computational analysis of the contact pathway activation in the diluted plasma shows that the increase in the activation appears from the dilution of blood plasma inhibitors. Thus, a well-known experimental phenomenon of the hypercoagulability of plasma after dilution can be explained by an increased activation of the blood plasma coagulation through the contact pathway on the circulating microparticles. In addition, the computational analysis reveals that a rapid stop of the contact pathway activation on the microparticles observed in the experiments could be explained by the rapid depletion of the free activation surface.  相似文献   

11.
Our aim was to study the effect of an axially directed blood plasma flow on the dissolution rate of cylindrical non-occlusive blood clots in an in vitro flow system and to derive a mathematical model for the process. The model was based on the hypothesis that clot dissolution dynamics is proportional not only to the biochemical proteolysis of fibrin but also to the power of the flowing blood plasma dissipated along the clot. The predicted rate of thrombolysis is then proportional to the square of the average blood plasma velocity for laminar flow and to the third power of the average velocity for turbulent flow. To verify the model, the time dependence of the clot cross-sectional area was measured by dynamic magnetic resonance microscopy during fast (turbulent) and slow (laminar) flow of plasma through an axially directed channel along the clot. The flowing plasma contained a magnetic resonance imaging contrast agent (Gd-DTPA) and a thrombolytic agent (recombinant tissue-type plasminogen activator). The experimental data fitted well to the model, and confirmed the predicted increase in the dissolution rate when blood flow changed from a laminar to a turbulent flow regime.  相似文献   

12.
The coagulation cascade that occurs in mammalian plasma involves a large number of plasma proteins that participate in a stepwise manner and eventually give rise to the formation of thrombin. This enzyme then converts fibrinogen to an insoluble fibrin clot. This series of reactions involves a number of glycoproteins that particupate as enzymes as well as cofactors. These proteins that circulate in the blood in a precursor or zymogen form are multifunctional proteins that share many common segments or domains. One group includes the vitamin K-dependent glycoproteins (prothrombin, factor IX, factor X, and protein C) that show considerable homology in both their amino acid sequences and their gene structures. The proteins that participate in the contact or early phase of the blood coagulation cascade include plasma prekallikrein, factor XII, and factor IX. The amino-terminal regions of both factor XI and plasma prekallikrein contain four tandem repeats of about 90 amino acids, and these tandem repeats show considerable amino acid sequence homology. Factor XII contains four different domains in the amino-terminai region of the protein, including a kringle structure, two growth factor domains, and type I and type II finger domains. The finger domains were first identified in fibronectin. The carboxyl-terminal portion of plasma prekallikrein, factor XII, and factor XI contains the serine or protease portion of the molecule. These various plasma proteins that share common domains appear to have evolved by gene shuffling that may have, in some cases, involved introns.  相似文献   

13.
Although the processes of haemostasis and thrombosis have been studied extensively in the past several decades, much of the effort has been spent characterizing the biological and biochemical aspects of clotting. More recently, researchers have discovered that the function and physiology of blood cells and plasma proteins relevant in haematologic processes are mechanically, as well as biologically, regulated. This is not entirely surprising considering the extremely dynamic fluidic environment that these blood components exist in. Other cells in the body such as fibroblasts and endothelial cells have been found to biologically respond to their physical and mechanical environments, affecting aspects of cellular physiology as diverse as cytoskeletal architecture to gene expression to alterations of vital signalling pathways. In the circulation, blood cells and plasma proteins are constantly exposed to forces while they, in turn, also exert forces to regulate clot formation. These mechanical factors lead to biochemical and biomechanical changes on the macro‐ to molecular scale. Likewise, biochemical and biomechanical alterations in the microenvironment can ultimately impact the mechanical regulation of clot formation. The ways in which these factors all balance each other can be the difference between haemostasis and thrombosis. Here, we review how the biomechanics of blood cells intimately interact with the cellular and molecular biology to regulate haemostasis and thrombosis in the context of health and disease from the macro‐ to molecular scale. We will also show how these biomechanical forces in the context of haemostasis and thrombosis have been replicated or measured in vitro.  相似文献   

14.
Human blood coagulation factor XI was activated by either autoactivation or thrombin. These reactions occurred only in the presence of negatively charged materials, such as dextran sulfate (approximately Mr 500,000), sulfatide, and heparin. During the activation, factor XI was cleaved at a single Arg-Ile bond by thrombin or factor XIa to produce an amino-terminal 50-kDa heavy chain and a carboxyl-terminal 35-kDa light chain. This activation pattern is identical to that produced by factor XIIa. The addition of a small amount of thrombin and sulfatide to factor XII-deficient plasma produced shorter clotting times than when these agents were added to factor XI/factor XII combined-deficient plasma. These results suggest that the activation of factor XI by thrombin and possibly the autoactivation of factor XI proceed in plasma to lead fibrin clot formation. These reactions may have a role on an appropriate negatively charged surface in normal hemostasis.  相似文献   

15.
This comparative study of various surface treatments of commercially available implant materials is intended as guidance for orientation among particular surface treatment methods in term of the cell reaction of normal human osteoblasts and blood coagulation. The influence of physicochemical surface parameters such as roughness, surface free energy and wettability on the response of human osteoblasts in the immediate vicinity of implants and on the blood coagulation was studied. The osteoblast proliferation was monitored and the expression of tissue mediators (TNF-alpha, IL-8, MMP-1, bone alkaline phosphatase, VCAM-1, TGF-beta) was evaluated after the cell cultivation onto a wide range of commercially available materials (titanium and Ti6Al4V alloy with various surface treatments, CrCoMo alloy, zirconium oxide ceramics, polyethylene and carbon/carbon composite). The formation of a blood clot was investigated on the samples immersed in a freshly drawn whole rabbit blood using scanning electron microscope. The surfaces with an increased osteoblast proliferation exhibited particularly higher surface roughness (here R(a) 3.5 microm) followed by a high polar part of the surface free energy whereas the effect of wettability played a minor role. The surface roughness was also the main factor regulating the blood coagulation. The blood clot formation analysis showed a rapid coagulum formation on the rough titanium-based surfaces. The titanium with an etching treatment was considered as the most suitable candidate for healing into the bone tissue due to high osteoblast proliferation, the highest production of osteogenesis markers and low production of inflammatory cytokines and due to the most intensive blood clot formation.  相似文献   

16.
Factor XIIIa plays an important role in stabilization of formed fibrin clot during blood coagulation. Recent studies proved that factor XIIIa affects formation of coated platelets, which are highly procoagulant and characterized by a high level of alpha-granular proteins on their surface and expose surface phosphatidylserine after platelet activation. The ability of newly found cysteine proteinase inhibitors (CPIs) from plants to affect thiol group of the factor XIIIa active centre was recently discovered. Here, the effect of CPIs on the formation of coated platelets and activity of plasma components during blood coagulation process was investigated. It was found that CPIs dose-dependently decreased the fraction of coated platelets in the total platelet population during platelet activation and decreased endogenous thrombin potential (ETP) by 40% for thrombin generation in platelet-rich as well as in platelet-poor plasma. Such decrease of ETP could not be explained by the CPIs influence on factor XIIIa. Investigation of the effects of these inhibitors on factor Xa and thrombin activity has shown that CPIs dose-dependently inhibited their activity and might cause an ETP decrease. Thus, the obtained data indicated that CPIs affected both platelet and plasma components of blood coagulation system.  相似文献   

17.
The structure and growth of a blood clot depend on the localization of tissue factor (TF), which can trigger clotting during the hemostatic process or promote thrombosis when exposed to blood under pathological conditions. We sought to understand how the growth, structure, and mechanical properties of clots under flow are shaped by the simultaneously varying TF surface density and its exposure area. We used an eight-channel microfluidic device equipped with a 20- or 100-μm-long collagen surface patterned with lipidated TF of surface densities ~0.1 and ~2 molecules/μm2. Human whole blood was perfused at venous shear, and clot growth was continually measured. Using our recently developed computational model of clot formation, we performed simulations to gain insights into the clot’s structure and its resistance to blood flow. An increase in TF exposure area resulted not only in accelerated bulk platelet, thrombin, and fibrin accumulation, but also in increased height of the platelet mass and increased clot resistance to flow. Moreover, increasing the TF surface density or exposure area enhanced platelet deposition by approximately twofold, and thrombin and fibrin generation by greater than threefold, thereby increasing both clot size and its viscous resistance. Finally, TF effects on blood flow occlusion were more pronounced for the longer thrombogenic surface than for the shorter one. Our results suggest that TF surface density and its exposure area can independently enhance both the clot’s occlusivity and its resistance to blood flow. These findings provide, to our knowledge, new insights into how TF affects thrombus growth in time and space under flow.  相似文献   

18.
The authors studied changes in the hemostasis system while working on bicycle ergometer with and without manifest fatigue. The direction and value of the change in blood coagulation time and natural lysis of a blood clot under the influence of exercise correlated with the initial state of the system. Work mostly inhibited blood coagulation when its initial values high and accelerated it when they were low. When fibrinolytic activity of blood at rest was low, it was stimulated; when it was high, it was inhibited. A similar relation between the initial values and response to exercise characterized several indices of the plasma link of hemostasis, such as plasma coagulation time, fibrinogen concentration, activity of antithromboplastins and antithrombin III, and euglobulin clot lysis time. Fatigue led to more manifest individual changes in most of the indices of coagulant, anticoagulant, and fibrinolytic activity of blood. As a rule, the value of correlation between the initial state and changes in the indices increased. This suggests strengthening of the role of the initial state in the hemostasis system response to exercise.  相似文献   

19.
In vertebrates and arthropods, blood clotting involves the establishment of a plug of aggregated thrombocytes (the cellular clot) and an extracellular fibrillar clot formed by the polymerization of the structural protein of the clot, which is fibrin in mammals, plasma lipoprotein in crustaceans, and coagulin in the horseshoe crab, Limulus polyphemus. Both elements of the clot function to staunch bleeding. Additionally, the extracellular clot functions as an agent of the innate immune system by providing a passive anti-microbial barrier and microbial entrapment device, which functions directly at the site of wounds to the integument. Here we show that, in addition to these passive functions in immunity, the plasma lipoprotein clot of lobster, the coagulin clot of Limulus, and both the platelet thrombus and the fibrin clot of mammals (human, mouse) operate to capture lipopolysaccharide (LPS, endotoxin). The lipid A core of LPS is the principal agent of gram-negative septicemia, which is responsible for more than 100,000 human deaths annually in the United States and is similarly toxic to arthropods. Quantification using the Limulus Amebocyte Lysate (LAL) test shows that clots capture significant quantities of LPS and fluorescent-labeled LPS can be seen by microscopy to decorate the clot fibrils. Thrombi generated in the living mouse accumulate LPS in vivo. It is suggested that capture of LPS released from gram-negative bacteria entrapped by the blood clot operates to protect against the disease that might be caused by its systemic dispersal.  相似文献   

20.
采用两步法将碳酸酐酶共价键合在聚甲基戊烯(Polymethyl-pentene,PMP)膜式氧合器表面以提高其清除血液中CO2的能力。首先采用等离子体处理法将羟基引入PMP表面,然后用偶联剂溴化氰(CNBr)将碳酸酐酶(Carbonic anhydrase,CA)固定在PMP膜表面。采用XPS、表面接触角测定仪对等离子体处理后材料表面的物理化学性质进行了表征。以对硝基苯酚乙酸酯(p-nitrophenyl acetate,p-NPA)为底物,采用紫外分光光度计测定了接枝CA的活性、浓度、重复利用性、储存稳定性。结果表明,等离子体处理方法能将羟基成功引入PMP表面;CA能被成功地偶联在无活性官能团聚合物表面,在保持酶活性的同时获得较高的接枝效率;共价接枝CA(Covalently immobilized CA,CACI)的浓度随CNBr浓度的增加而增加,最大可达理论单分子层接枝量的73%;CACI比物理吸附的CA(Physically adsorbed CA,CAPA)具更好的重复利用性;37oC下,CACI比CA溶液表现出更好的储存稳定性。本方法有望应用在膜式氧合器上以提高其对血液中CO2的排除效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号