首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was to determine if cellular glutathione peroxidase (GPX1) protects against acute oxidative stress induced by diquat. Lethality and hepatic biochemical indicators in GPX1 knockout mice [GPX1(-/-)] were compared with those of wild-type mice (WT) after an intraperitoneal injection of diquat at 6, 12, 24, or 48 mg/kg of body weight. Although the WT survived all the doses, the GPX1(-/-) survived only 6 mg diquat/kg and were killed by 12, 24, and 48 mg diquat/kg at 52, 4.4 and 3.9 hr, respectively. Compared with those of surviving mice that were sacrificed on Day 7, the dead GPX1(-/-) had diquat dose-dependent increases (P < 0.05) in plasma alanine aminotransferase (ALT) activities. The GPX1(-/-) also had higher (P < 0.05) liver carbonyl contents than those of the WT, but the differences were irrespective of diquat doses. Whereas hepatic total GPX and phospholipid hydroperoxide glutathione peroxidase activities or hepatic GPX1 protein was not significantly affected by the diquat treatment, liver thioredoxin reductase and catalase activities were lower (P < 0.05) in the GPX1(-/-) injected with 12 mg diquat/kg than those of other groups. In conclusion, normal GPX1 expression is necessary to protect mice against the lethality, hepatic protein oxidation, and elevation of plasma ALT activity induced by 12-48 mg diquat/kg.  相似文献   

2.
The 26-kDa glutathione S-transferase from Schistosoma japonica (Sj26), a potential antischistosomal vaccine antigen, has been crystallized in an unligated form. Sj26 was recombinantly produced in E. coli without using a glutathione affinity column to facilitate preparation of unligated enzyme. The recombinant protein contains all 218 residues of Sj261,2 and an additional 13 residues linked to the C-terminus. Crystals of recombinant Sj26 were obtained by the vapor diffusion method using ammonium sulfate as the precipitant at pH 5.6. The crystals belong to the hexagonal space group P6322 with unit cell dimensions a = b = 125.2 Å and c = 72.0 Å and contain one Sj26 monomer per asymmetric unit. A complete native diffraction data set has been obtained to 2.4 Å resolution. © 1995 Wiley-Liss, Inc.  相似文献   

3.
Sun Y  Mu Y  Ma S  Gong P  Yan G  Liu J  Shen J  Luo G 《Biochimica et biophysica acta》2005,1743(3):199-204
Ultraviolet B (UVB) induces apoptosis and lipid peroxidation of NIH3T3 cells by producing reactive oxygen species (ROS). Glutathione peroxidase (GPX) is one of the most important antioxidant enzymes in organism and it can scavenge ROS. 2-selenium-bridged beta-cyclodextrin (2-SeCD) is a GPX mimic generated in our lab. Its GPX activity is 7.4 U/mumol, which is 7.5 times as much as that of ebselen. In this paper, we have established a cell damage system using UVB radiation. Using this system, we have determined antioxidant effect of 2-SeCD by comparison of malondialdehyde (MDA) and H(2)O(2) contents in NIH3T3 cells before and after UVB radiation. Experimental results indicate that 2-SeCD can inhibit lipid peroxidation and protect the cells from the damage generated by UVB radiation. To evaluate the molecular mechanism of this protection, we determined the effect of 2-SeCD on the expression of p53 and Bcl-2 in NIH3T3 cells. The results showed that 2-SeCD inhibits the increase of p53 expression level and the decrease of expression of Bcl-2 induced by UVB radiation. Thus, we have concluded that protection of NIH3T3 cells against oxidative stress by 2-SeCD was carried out by regulation of the expression of Bcl-2 and p53.  相似文献   

4.
Cysteine has been implicated in myocardial protection, although this is controversial and constrained by limited knowledge about the effects of cysteine at the cellular level. This study tested the hypothesis that a physiologically relevant dose of l-cysteine could be safely loaded into isolated cardiomyocytes leading to improved protection against oxidative stress. Freshly isolated adult rat ventricular cardiomyocytes were incubated for 2 h at 37°C with (cysteine incubated) or without (control) 0.5 mM cysteine prior to washing and suspension in fresh cysteine-free media. Cysteine incubated cells had higher intracellular cysteine levels compared to controls (9.6 ± 0.78 vs. 6.5 ± 0.65 nmol/mg protein, P < 0.02, n = 6 ± SE). Cell homeostasis indicators were similar in the two groups. Cysteine incubated cells had significantly higher glutathione peroxidase (GPx) activity (1.11 ± 0.23 vs. 0.54 ± 0.1 U/mg protein, P < 0.05, n = 5 ± SE) and significantly greater expression of GPx-1 (5.01 ± 0.48 vs. 3.01 ± 0.25 OD units/mm2, P < 0.05, n = 4 ± SE) compared to controls. Upon exposure to H2O2, cysteine incubated cells generated fewer reactive oxygen species and took longer to show contractile changes and undergo hypercontracture. However, when cells were exposed to H2O2 in the presence of 0.05 mM of the GPx inhibitor mercaptosuccinic acid, this increased the control cells’ susceptibility to H2O2 and completely abolished the cysteine mediated protection. These results suggest a new role for cysteine in myocardial protection involving stimulation of glutathione peroxidase.  相似文献   

5.
Adaptation to oxidative and nitrosative stress occurs in cells first exposed to a nontoxic stress, resulting in the ability to tolerate a toxic challenge of the same or a related oxidant. Adaptation is observed in a wide variety of cells including endothelial cells on exposure to nitric oxide or oxidized lipids, and lung epithelial cells exposed to air-borne pollutants and toxicants. This acquired characteristic has been related to the regulation of a family of stress responding proteins including those that control the synthesis of the intracellular antioxidant glutathione. The focus of this article, which includes a review of recent results along with new data, is the regulation and signaling of glutathione biosynthesis, especially those relating to adaptive mechanisms. These concepts are illustrated with examples using nitric oxide and oxidized low density lipoprotein mediated adaptation to oxidative stress. These data are discussed in the context of other adaptive mechanisms relating to glutathione synthesis including those from dietary constituents such as curcumin.  相似文献   

6.
Experiments were conducted to determine whether the increased glutathione S-transferase (GSH-T) activity associated with selenium (Se) deficiency is necessarily related to losses in the activity of Se-dependent glutathione peroxidase (SeGSHpx) in chicks. Nutritional Se status was altered in two ways: by treatment with an antagonist of Se utilization, aurothioglucose (AuTG), and by feeding diets containing excess Se. Chicks given AuTG (10–30 mg AU/kg, sc) had growth rates and hepatic GSH concentrations that were comparable to those of saline-treated controls; however, their plasma GSH levels exceeded those of either Se-deficient (6-fold) or-adequate (3-fold) saline-treated chicks. Hepatic SeGSHpx activities of AuTG-treated chicks were hals those of controls under conditions of Se-adequacy; however, this effect was not detected when Se was deficient. Hepatic GSH-TCDNB (assayed with 1-chloro-2,4-dinitrobenzene) activities of AuTG-treated chicks were significantly greater than those of controls when Se was deficient (i.e., when SeGSHpx activity was 12% of the Se-adequate level); however, deprivation of Se did not affect GSH-TCDNB activity in the absence of AuTG. chicks fed excess Se (6–20 ppm as Na2SeO3) in diets containing either low (2 IU/kg) or adequate (100 IU/kg) VE, showed hepatic GSH-TCDNB activities and GSH concentrations greater than those of Se-adequate (0.2 ppm Se) chicks by 100% and 40%, respectively. That increased hepatic GSH-TCDNB activity can occur because of either AuTG or excess Se status under conditions wherein SeGSHpx activity is not affected indicates that the transferase response is not directly related to changes in the peroxidase.  相似文献   

7.
The major cellular antioxidant, glutathione, is mostly localized in the cytosol but a small portion is found in mitochondria. We have recently shown that highly selective depletion of mitochondrial glutathione in astrocytes in culture markedly increased cell death induced by the peroxynitrite donor, 3-morpholino-syndnonimine. The present study was aimed at characterizing the increase in susceptibility arising from mitochondrial glutathione loss and testing the possibility that elevating this metabolite pool above normal values could be protective. The increased vulnerability of astrocytes with depleted mitochondrial glutathione to Sin-1 was confirmed. Furthermore, these cells showed marked increases in sensitivity to hydrogen peroxide and also to high concentrations of the nitric oxide donor, S-nitroso-N-acetyl-penicillamine. The increase in cell death was mostly due to necrosis as indicated by substantially increased release of lactate dehydrogenase and staining of nuclei with propidium iodide but little change in annexin V staining and caspase 3 activation. The enhanced cell loss was blocked by prior restoration of the mitochondrial glutathione content. It was also essentially fully inhibited by treatment with cyclosporin A, consistent with a role for the mitochondrial permeability transition in the development of cell death. Susceptibility to the classical apoptosis inducer, staurosporine, was only affected to a small extent in contrast to the response to the other substances tested. Incubation of normal astrocytes with glutathione monoethylester produced large and long-lasting increases in mitochondrial glutathione content with much smaller effects on the cytosolic glutathione pool. This treatment reduced cell death on exposure to 3-morpholino-syndnonimine or hydrogen peroxide but not S-nitroso-N-acetyl-pencillamine or staurosporine. These findings provide evidence for an important role for mitochondrial glutathione in preserving cell viability during periods of oxidative or nitrative stress and indicate that increases in this glutathione pool can confer protection against some of these stressors.  相似文献   

8.
9.
In a previous work, it was shown that in cells after a decrease of cellular glutathione content, toxic zinc effects, such as protein synthesis inhibition or GSSG (glutathione, oxidized form) increases, were enhanced. In this study, zinc toxicity was determined by detection of methionine incorporation as a parameter of protein synthesis and GSSG increase in various lung cell lines (A549, L2, 11Lu, 16Lu), dependent on enhanced GSSG reductase activities and changed glutathione contents. After pretreatment of cells with dl-buthionine-[R,S]-sulfoximine (BSO) for 72 h, cellular glutathione contents were decreased to 15–40% and GSSG reductase activity was increased to 120–135% in a concentration-dependent manner. In BSO pretreated cells, the IC50 values of zinc for methionine incorporation inhibition were unchanged as compared to cells not pretreated. The GSSG increase in BSO pretreated cells by zinc was enhanced in L2, 11Lu, and 16Lu cells, whereas in A549 cells, the GSSG increase by zinc was enhanced only after pretreatment with the highest BSO concentration. Inhibition of GSSG reductase in alveolar epithelial cells was observed at lower zinc concentrations than needed for methionine incorporation inhibition, whereas in fibroblastlike cells, inhibition of GSSG reductase occurred at markedly higher zinc concentrations as compared to methionine incorporation inhibition. These results demonstrate that GSSG reductase is an important factor in cellular zinc susceptibility. We conclude that reduction of GSSG is reduced in zinc-exposed cells. Therefore, protection of GSH oxidation by various antioxidants as well as enhancement of GSH content are expected to be mechanisms of diminishing toxic cellular effects after exposure to zinc.  相似文献   

10.
Since they are equipped with several strategies by which they evade the antimicrobial defense of host macrophages, it is surprising that members of the genus Haemophilus appear to be deficient in common antioxidant systems that are well established to protect prokaryotes against oxidative stress. Among others, no genetic evidence for glutathione (gamma-Glu-Cys-Gly) (GSH) biosynthesis or for alkyl hydroperoxide reduction (e.g., the Ahp system characteristic or enteric bacteria) is apparent from the Haemophilus influenzae Rd genome sequence, suggesting that the organism relies on alternative systems to maintain redox homeostasis or to reduce small alkyl hydroperoxides. In this report we address this apparent paradox for the nontypeable H. influenzae type strain NCTC 8143. Instead of biosynthesis, we could show that this strain acquires GSH by importing the thiol tripeptide from the growth medium. Although such GSH accumulation had no effect on growth rates, the presence of cellular GSH protected against methylglyoxal, tert-butyl hydroperoxide (t-BuOOH), and S-nitrosoglutathione toxicity and regulated the activity of certain antioxidant enzymes. H. influenzae NCTC 8143 extracts were shown to contain GSH-dependent peroxidase activity with t-BuOOH as the peroxide substrate. The GSH-mediated protection against t-BuOOH stress is most probably catalyzed by the product of open reading frame HI0572 (Prx/Grx), which we isolated from a genomic DNA fragment that confers wild-type resistance to t-BuOOH toxicity in the Ahp-negative Escherichia coli strain TA4315 and that introduces GSH-dependent alkyl hydroperoxide reductase activity into naturally GSH peroxidase-negative E. coli. Finally, we demonstrated that cysteine is an essential amino acid for growth and that cystine, GSH, glutathione amide, and cysteinylglycine can be catabolized in order to complement cysteine deficiency.  相似文献   

11.
The aim of this study was to show the direct effect of selenium on glutathione peroxidase (GSH-Px) activity and GSH/GSSG concentrations in 3- and 6-month-old mice. An ozone-oxygen mixture was used to provoke an oxygen stress. To measure the Se-effect mice were gavaged with sodium selenite. GSH-Px activity and total glutathione concentrations were determined in serum and in the postnuclear fraction of liver and lungs. Additionally glutathione concentrations were determined in whole blood. Both ozone and selenium, administered separately, reduced GSH-Px activity in lungs of 6-month-old animals, while in young mice an opposite effect of Se was observed. Ozone administered jointly with Se did not influence GSH-Px activity in 6-month-old mice, while in young, 3-month-old mice, a stimulatory effect in lungs was observed. There were no significant changes in GSH-Px activity in the liver of 6-month-old mice, but the stimulatory effect occurred in young mice treated with Se and Se & ozone jointly. In young mice, ozone (also ozone with Se) augmented glutathione concentrations. The response to ozone and selenium strictly depended on age and the antagonism between selenium and ozone was observed only in a few cases.  相似文献   

12.
Lemna perpusilla 6746, a short-day plant, flowered under low-intensitywhite light (10 lux)irrespective of the photoperiod. Red lightof about 20 ergs/cm2/sec also permitted flowering under continuousillumination. The effect of the low-intensity light employedwas not equivalentto that of darkness but similar to that ofblue or far-red light in photoperiodic system. (Received June 15, 1973; )  相似文献   

13.
The effect of low-intensity laser light on the activity of natural killer cells from healthy and tumor-bearing mice was studied. Skin in the zone of the thymus or hind limb was illuminated, the remaining body surface being screened. The illumination was carried out for 30 days, with the duration of a single exposure being 1 min and intervals between the exposures being 48 h. The effect of laser light depended on the location of the illuminated area. It was shown that the exposure of the thymus of healthy animals for 20 and 30 days leads to a significant decrease in the activity of natural killer cells. On the contrary, the illumination of the limb for 10 or 20 days increased the activity of natural killer cells; but when hind limbs were treated for 30 days, the activity of natural killer cells decreased. Whereas tumor growth increased the natural killer cell activity, the illumination of tumor-bearing mice lowered the adaptive antitumoral resistance by decreasing the activity of natural killer cells.  相似文献   

14.
The role of cellular glutathione in the prevention of toxicity due to the anti-cancer drug cisplatin (cis-diamminedichloroplatinum) was explored in mice treated with buthionine sulfoximine (BSO), a selective inhibitor of gamma-glutamylcysteine synthetase (and therefore of glutathione synthesis), and with glutathione and glutathione monoisopropyl ester. Pretreatment of mice with BSO enhanced the lethal toxicity of cisplatin by about twofold. Administration of glutathione ester (dose, 2.5-7.5 mmol/kg) protected against lethal cisplatin toxicity; glutathione was also effective, but much less so. Glutathione ester, in contrast to glutathione, is effectively transported into cells and split to glutathione intracellularly. The previous findings that administered glutathione does not protect against lethal toxicity due to cadmium ions and mercuric ions, whereas glutathione ester does, suggest that intracellular glutathione is required for protection against these heavy metal ions. That administration of glutathione has a protective effect on cisplatin toxicity suggests that the toxic effects of cisplatin may be exerted both intracellularly and extracellularly, and that extracellular glutathione (or its degradation products) may form a complex with cisplatin extracellularly. The finding that glutathione ester is more effective than glutathione in protecting against the toxicity of cisplatin suggests that use of glutathione ester may be therapeutically advantageous.  相似文献   

15.
Previously, we characterized glutathione S-transferase (GST) B1-1 from Escherichia coli enzymologically and structurally. Besides GST B1-1, E. coli has seven genes that encode GST-like proteins, for which, except SspA, neither biological roles nor biochemical properties are known. Here we show that the GST-like YfcF and YfcG proteins have low but significant GSH-conjugating activity toward 1-chloro-2,4-dinitorobenzene and GSH-dependent peroxidase activity toward cumene hydroperoxide. Analysis involving site-directed mutagenesis suggested that Ser16 and Asn11 were important for the activities of YfcF and YfcG, respectively. On the contrary, no residue around the catalytic site of GST B1-1 has been demonstrated to be essential for catalytic activity. Deletions of the gst, yfcF, and yfcG genes each decreased the resistibility of the bacteria to hydrogen peroxide, which was recovered by transformation with the expression plasmid for the deleted enzyme. The inactive YfcF(S16G) and YfcG(N11A) mutants, however, could not rescue the knockout bacteria. Thus, E. coli has at least three GSTs of distinct classes, all of which are important for defense against oxidative stress in spite of the structural diversity. This seems consistent with the hypothesis that GSTs constitute a protein superfamily that has evolved from a thioredoxin-like ancestor in response to the development of oxidative stress.  相似文献   

16.
A pea glutathione reductase cDNA was expressed in tobacco. Three classes of construct were used which gave a range of elevated levels of glutathione reductase (GR) activity in the cytosol (GR32), chloroplasts (GR36), or in both chloroplasts and mitochondria (GR46). In some transgenic progeny (T2) from self-fertilized GR32 and GR36 primary transformants, having approximately twofold elevation of GR activity as compared with recessive siblings, there was an amelioration of the effect on leaf discs of up to 15 µM paraquat. However, lines with similarly elevated levels of GR activity showed no decreased sensitivity to the herbicide. None of the GR32 and GR36 lines was less sensitive to ozone. Conversely, T2 progeny of GR46 lines, with greater than 4.5-fold elevations of GR activity, showed no reduced sensitivity to paraquat but two out of four of these lines were less sensitive to ozone fumigation. The differential response to stress co-segregated with the presence of the transgene but there was no relationship between the degree of stress response and the level of GR activity. There was an elevation in the total glutathione pool in all lines showing increased GR activity but there was no change in the ratio of oxidized to reduced glutathione. These results demonstrate that the mechanisms of protection against ozone and paraquat are different although both can be mediated by elevated GR activity.  相似文献   

17.
We studied how short-term preexposure of the thymus zone in male outbred NMRI mice to helium-neon laser light (632.8 nm, 0.2 mW/cm2) affects the activity of cells of the immune system under acute toxic stress. The stress was modeled by introducing a bacterial lipopolysaccharide that significantly enhanced the production of a number of cytokines in macrophages: interleukins 1α, 1β, 6, and 10, and tumor necrosis factor TNF-α. Single exposure of healthy mice to laser light did not cause any significant change in the production of cytokines and nitric oxide in cells but increased the production of the heat shock proteins HSP25, HSP70, and HSP90. Nonetheless, if mice were exposed to red light before inducing toxic stress, then the production of almost all the cytokines studied and nitric oxide was noticeably normalized. Moreover, the production of the heat shock proteins studied was also normalized. Thus, preexposure of a small region of the animal skin surface to laser light markedly decreased the toxic effect of lipopolysaccharide.  相似文献   

18.
19.
20.
In this study we investigated the effect of insulin on neuronal viability and antioxidant defense mechanisms upon ascorbate/Fe2+-induced oxidative stress, using cultured cortical neurons. Insulin (0.1 and 10 microM) prevented the decrease in neuronal viability mediated by oxidative stress, decreasing both necrotic and apoptotic cell death. Moreover, insulin inhibited ascorbate/Fe2+-mediated lipid and protein oxidation, thus decreasing neuronal oxidative stress. Increased 4-hydroxynonenal (4-HNE) adducts on GLUT3 glucose transporters upon exposure to ascorbate/Fe2+ were also prevented by insulin, suggesting that this peptide can interfere with glucose metabolism. We further analyzed the influence of insulin on antioxidant defense mechanisms in the cortical neurons. Oxidative stress-induced decreases in intracellular uric acid and GSH/GSSG levels were largely prevented upon treatment with insulin. Inhibition of phosphatidylinositol-3-kinase (PI-3K) or mitogen-induced extracellular kinase (MEK) reversed the effect of insulin on uric acid and GSH/GSSG, suggesting the activation of insulin-mediated signaling pathways. Moreover, insulin stimulated glutathione reductase (GRed) and inhibited glutathione peroxidase (GPx) activities under oxidative stress conditions, further supporting that insulin neuroprotection was related to the modulation of the glutathione redox cycle. Thus, insulin may be useful in preventing oxidative stress-mediated injury that occurs in several neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号