首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rudik DV  Tikhomirova EI 《Biofizika》2007,52(5):931-937
The effect of low-intensity laser radiation generated by semiconductor devices in the red (650 nm) and infrared (850 nm) regions of the spectrum in vitro and in vivo on the phagocytic activity and synthesis of proinflammatory cytokines by peritoneal macrophages during the phagocytosis of bacterial cells has been studied. A culture of the clinical strain of the enteropathogenic bacterium Escherichia coli was used as an object. The radiation dose was varied by changing the power and duration of exposure. The results obtained indicate that infrared low-intensity laser radiation has a stimulating effect on the phagocytic activity of macrophages. It was shown that the effect of low-intensity laser radiation on the activity of the phagocytic process, the enhancement of the adhesion of bacteria by macrophages, killing of bacteria, and the production of proinflammatory cytokines is dose-dependent. The exposure to the rays of the red region of the spectrum on phagocytizing macrophages induced a decrease in their activity; as the dose was increased, the destruction of cells was registered.  相似文献   

2.
The effect of acute hypoxic hypobaric hypoxia on the content of reduced glutathione and the activity of glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and glutathione S-transferase, as well as 5'-nucleotidase in homogenates of juvenile male rats under conditions of varying photoperiodic duration: natural conditions of illumination, continuous illumination and continuous darkness were studied. Photoperiodic changes were revealed in the glutathione system of the control animals: the activity of glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase reduces under constant light, while the activity of glutathione peroxidase and glutathione S-transferase increases under conditions of constant darkness. The greatest inhibitory effect on the state of the glutathione system is brought about by constant light in case of acute hypoxia: the content of reduced glutathione decreases along with a sharp drop of the activity of glutathione S-transferase and glucose-6-phosphate dehydrogenase, observed against the background of decreased glutathione reductase activity. Permanent dark conditions eliminate partially or completely the negative effect of acute hypoxia on the glutathione system of the brain. The obtained results are indicator of a possibility of protecting role of melatonin in case of acute hypoxia.  相似文献   

3.
Leaves of spinach (Spinacia oleracea, cv. Ispolinskii) were preilluminated by low-intensity light (1.0 and 1.5 W/m2, 0.5?C3.0 h) with wavelengths ranging from 530 to 730 nm to study the effect of this pretreatment on the activity of photosystem II (PS II), content of photosynthetic pigments, and peroxidase activity in excised leaves exposed to UV-A irradiation. Irradiation of leaves with UV-A suppressed the activity of PS II, reduced the content of chlorophylls (a + b) and carotenoids, and increased the peroxidase activity. Preillumination of leaves with red light (RL, 620?C660 nm) alleviated the inhibitory action of UV-A on PS II activity and reduced the pigment losses but increased the peroxidase activity in leaves and thylakoid membrane preparations, as compared to the respective effects of UV-A light applied without preillumination. The preexposure of leaves to red light alternating with far-red light (FR, 730 nm) removed partly the influence of RL on the parameters under study, which indicates the involvement of phytochrome active form, PFR into stress-induced defense responses in leaves. It is supposed that elevated resistance of photosynthetic apparatus to UV-A radiation was formed with the involvement of PFR and the antioxidant system induced by oxidative stress after preillumination of leaves with red light  相似文献   

4.
The effects of exposure to low-intensity continuous radiation in the red and near-infrared regions of the spectrum, as well as to infrared pulsed radiation, on the early development of zebrafish (Danio rerio) were studied. It was found that the use of continuous radiation at the red and infrared wavelengths (633 nm, 930 nm, dose 24 mJ/m2) leads to accelerated development of the embryo. In contrast, exposure to low-intensity single pulsed infrared radiation (864 nm) in the entire range of the doses studied (2.4–2400 mJ/cm2) negatively affected the early development of zebrafish, resulting in a significant dose-dependent delay in the hatching time of embryos and a reduction in the body length of larvae.  相似文献   

5.
采用常规生化实验方法,探讨了山楂叶螨在光、暗条件下经万寿菊根的氯仿提取物(TPC)作用后谷胱甘肽S-转移酶、蛋白酶活性及蛋白质含量. 生物样品采用活体处理和离体处理相结合的方法. 结果表明:万寿菊根氯仿提取物的光活化生物活性最高,其次为水提取物,最后为甲醇提取物;山楂叶螨经TPC处理后,谷胱甘肽S-转移酶和蛋白酶活性显著升高,蛋白质含量明显下降,蛋白酶及蛋白质含量变化程度在光照条件下显著高于黑暗处理.万寿菊根氯仿提取物中存在的活性物质,能够促进山楂叶螨离体酶液中蛋白酶的活化;TPC通过激活试螨体内的蛋白酶而促进蛋白质的降解. 万寿菊次生物质的生物活性主要属于光活化活性.  相似文献   

6.
We evaluated the possible influence of glutathione S-transferase mu (GSTM1) and glutathione S-transferase theta (GSTT1) genes on genetic damage due to occupational exposure, which contributes to accelerate ageing. This study was conducted on 120 car auto repair workshop workers exposed to occupational hazards and 120 controls without this kind of exposure. The null and non-null genotypes of GSTM1 and GSTT1 genes were determined by multiplex PCR. Micronucleus frequency, Comet tail length and relative telomere length differences between the null and non-null genotypes of the GSTM1 gene were significantly greater in the exposed group. Lack of GSTT1 did not affect the damage biomarkers significantly (P > 0.05), while lack of GSTM1 was associated with greater susceptibility to genomic damage due to occupational exposure. It was concluded that early ageing is under the influence of these genes and the environmental and socio-demographic factors. Duration of working time was significantly associated with micronucleus frequency, Comet tail length and relative telomere length.  相似文献   

7.
The action of laser and light-emitting diode radiation in the visible region on the content of reactive nitrogen species and activity of superoxide dismutase in rat wound fluid was studied, and efficiency of action of coherent laser and incoherent light emitting diode radiations in the red region of the spectrum on the parameters under study was compared. A model of incised aseptic wounds in rats proposed by L.I. Slutskiy was used. A He-Ne laser (632 nm) and a Y-332B light emitting diode served as radiation sources. It was shown that (1) exposure of wounds to the visible light of both laser and light-emitting diodes causes dose-dependent changes in superoxide dismutase activity and production of nitrites and (2) the radiation coherence does not play any significant role in the changes of superoxide dismutase activity or nitrogen oxide formation by wound fluid phagocytes.  相似文献   

8.
The effect of low-intensity laser radiation of the blue (441.2 nm), green (532 nm), and red (632.8 nm) spectral regions on the healing of experimental skin wounds in rats has been studied. The effect of the traditionally applied laser radiation in the red region has been compared with the effect of laser radiation in the other spectral regions, assuming that, upon irradiation of wounds by lasers emitting in the blue and green regions, a similar effect can be achieved at lower doses. The following parameters characterizing the healing of experimental wounds were used: the functional activity of phagocytes of wound exudates, which was determined by luminol-dependent chemiluminescence, and their number; the antioxidant activity of wound exudates; and the rate of healing, which was determined as a change in the wound area. It was shown that irradiation with laser accelerated the healing of wounds in all cases. The exposure to laser radiations in the red (1.5 J/cm), blue, and green (0.75 J/cm2) spectral regions shortened the time of wound healing from 22 to 17 and 19 days, respectively. The functional activity of leukocytes after the exposure increased on day 5 after the infliction of the wound, whereas in the control it decreased. The superoxide dismutase activity increased in all experimental groups by day 5 after the operation. A maximum increase in the superoxide dismutase activity occurred after the exposure to laser radiation in the red region at a dose of 1.5 J/cm and in the blue and green spectral regions at a dose of 0.75 J/cm2.  相似文献   

9.
The response of leaf tissue to white, blue, red, and far-redlight has been examined. Leaves on plants grown in darknessshow increased cell number, cell volume, and area when exposedto long periods (up to 48 h) of low-intensity red, blue, orfar-red radiation. This is believed to be a photomorphogenicresponse which does not involve photosynthesis. Leaves fromplants exposed to white light during germination do not usuallyrespond to red, blue, or far-red light. An exception to thiswas found for leaf discs which showed a larger increase in areathan the dark controls following exposure to far-red light for24 h. Leaf tissue from light-grown plants responds to high-intensitywhite light, probably through photosynthesis. Discs cut fromdark-grown plants and cultured in white light grow equally wellin air and CO2-free conditions. Application of the photosyntheticinhibitor DCMU reduces growth and chlorophyll formation, however. It is concluded that light, perhaps acting through the phytochromemechanism, has initially a number of morphogenic effects includinginitiation of development of the photosynthetic apparatus. Theresponses to photomorphogenically active radiation do not persistand light effects through photosynthesis are rapidly initiatedand dominate the later stages of leaf growth.  相似文献   

10.
This study examined the effects of nocturnal exposure to dim, narrowband blue light (460 nm, ~1 lux, 2 µW/cm2), compared to dim broad spectrum (white) ambient light (~0.2 lux, 0.5 µW/cm2), on subjective and objective indices of sleepiness during prolonged nighttime performance testing. Participants were also exposed to a red light (640 nm, ~1 lux, 0.7µW/cm2) placebo condition. Outcome measures were driving simulator and psychomotor vigilance task (PVT) performance, subjective sleepiness, salivary melatonin, and electroencephalographic (EEG) activity. The study had a repeated-measures design, with three counterbalanced light conditions and a four-week washout period between each condition. Participants (n?=?8) maintained a regular sleep-wake schedule for 14 days prior to the ~14 h laboratory study, which consisted of habituation to light conditions followed by neurobehavioral performance testing from 21:00 to 08:30 h under modified constant-routine conditions. A neurobehavioral test battery (2.5 h) was presented four times between 21:00 and 08:30 h, with a 30 min break between each. From 23:30 to 05:30 h, participants were exposed to blue or red light, or remained in ambient conditions. Compared to ambient light exposure, blue light exposure suppressed EEG slow wave delta (1.0–4.5 Hz) and theta (4.5–8 Hz) activity and reduced the incidence of slow eye movements. PVT reaction times were significantly faster in the blue light condition, but driving simulator measures, subjective sleepiness, and salivary melatonin levels were not significantly affected by blue light. Red light exposure, as compared to ambient light exposure, reduced the incidence of slow eye movements. The results demonstrate that low-intensity, blue light exposure can promote alertness, as measured by some of the objective indices used in this study, during prolonged nighttime performance testing. Low intensity, blue light exposure has the potential to be applied to situations where it is desirable to increase alertness but not practical or appropriate to use bright light, such as certain occupational settings.  相似文献   

11.
Enzymatic and non-enzymatic antioxidants serve as an important biological defense against environmental oxidative stress. Information on antioxidant defense in fish is meager despite that fish are constantly exposed to a myriad of environmental stress including the oxidants. This study, therefore, assesses the activities of antioxidant enzymes viz., glutathione peroxidase, catalase and glutathione S-transferase and the non-enzymatic antioxidants viz., glutathione and metallothionein in various tissues of freshwater fish Channa punctatus (Bloch), in response to short-term and long-term exposures to paper mill effluent. The fish were exposed to the effluent at a concentration of 1.0% (v/v) for 15, 30, 60 and 90 days. The exposure caused a time-dependent increase in glutathione level (P < 0.001), activities of glutathione peroxidase (P < 0.05 to P < 0.001), glutathione S-transferase (P < 0.001) and a marginal initial decrease in catalase activity in the liver (P < 0.01 to P < 0.001). Metallothionein was induced in liver after 60 days of exposure. Two isoforms of metallothionein were detected. Catalase activity also increased 60 days afterwards. Antioxidant pattern was different in gill and kidney showing that liver was more resistant to oxidative damage as compared to gills and kidney. Our results demonstrate a pollutant-induced adaptive response in fish. In addition, levels of enzymatic and non-enzymatic tissue antioxidants may serve as surrogate markers of exposure to oxidant pollutants in fish.  相似文献   

12.
Glutathione protects isolated rat liver nuclei against lipid peroxidation by inducing a lag period prior to the onset of peroxidation. This GSH-dependent protection was abolished by exposing isolated nuclei to the glutathione S-transferase inhibitor S-octylglutathione. In incubations containing 0.2 mM S-octylglutathione, the GSH-induced lag period was reduced from 30 to 5 min. S-Octylglutathione (0.2 mM) also completely inhibited nuclear glutathione S-transferase activity and reduced glutathione peroxidase activity by 85%. About 70% of the glutathione S-transferase activity associated with isolated nuclei was solubilized with 0.3% Triton X-100. This solubilized glutathione S-transferase activity was partially purified by utilizing a S-hexylglutathione affinity column. The partially purified nuclear glutathione S-transferase exhibited glutathione peroxidase activity towards lipid hydroperoxides in solution. The data from the present study indicate that a glutathione S-transferase associated with the nucleus may contribute to glutathione-dependent protection of isolated nuclei against lipid peroxidation. Evidence was obtained which indicates that this enzyme is distinct from the microsomal glutathione S-transferase.  相似文献   

13.
The regulation of purified glutathione S-transferase from rat liver microsomes was studied by examining the effects of various sulfhydryl reagents on enzyme activity with 1-chloro-2,4-dinitrobenzene as the substrate. Diamide (4 mM), cystamine (5 mM), and N-ethylmaleimide (1 mM) increased the microsomal glutathione S-transferase activity by 3-, 2-, and 10-fold, respectively, in absence of glutathione; glutathione disulfide had no effect. In presence of glutathione, microsomal glutathione S-transferase activity was increased 10-fold by diamide (0.5 mM), but the activation of the transferase by N-ethylmaleimide or cystamine was only slightly affected by presence of glutathione. The activation of microsomal glutathione S-transferase by diamide or cystamine was reversed by the addition of dithiothreitol. Glutathione disulfide increased microsomal glutathione S-transferase activity only when membrane-bound enzyme was used. These results indicate that microsomal glutathione S-transferase activity may be regulated by reversible thiol/disulfide exchange and that mixed disulfide formation of the microsomal glutathione S-transferase with glutathione disulfide may be catalyzed enzymatically in vivo.  相似文献   

14.
This study was designed to evaluate the effect of melatonin on cholestatic oxidative stress under constant light exposure. Cholestasis was induced by double ligature and section of the extra-hepatic bile duct. Melatonin was injected i.p.(1000 microg kg(-1) day(-1)). Malondialdehyde, reduced glutathione, catalase, superoxide dismutase, glutathione reductase, peroxidase and transferase were determined in liver. After bile-duct obstruction and under constant light exposure, an increase in malondialdehyde (p < 0.05) and a slight decrease in reduced glutathione were seen. Enzyme activity, with the exception of glutathione reductase, had significantly diminished. After melatonin administration, malondialdehyde fell (p < 0.001), whereas there was an increase in reduced glutathione (p < 0.0001) compared with untreated controls. Constant light exposure was associated with an increase in hepatic oxidative stress. Treatment with melatonin decreased lipid peroxide synthesis, and permitted a recovery of both reduced glutathione and scavenger enzyme activity.  相似文献   

15.
Photooptical response, both of the whole blood and of its non-pigmented fraction-plasma to the low-intensity red light is investigated. For the case of the blood irradiation in vitro it is shown that the mechanism of the low-intensity red light effect on the blood is not directly associated with the pigmented molecular complexes concentrated in erythrocytes. Thus the effect of the low-intensity red light on living organisms includes the mechanisms not using light absorption by the specialized macromolecule--photoreceptor as a primary photophysical action.  相似文献   

16.
Brief exposure of yeasts to low-intensity monochromatic light (400–730 nm) has revealed the effects of photoreactivation and photoprotection of the cells inactivated by medium wave UVB radiation (290–320 nm). The red spectral region with a maximum at 680 nm has been found to be the most active in the initiation of photoreactivation and photoprotection. It has been noted that, according to the regularities investigated, these processes differ fundamentally from the known processes of enzymatic photoreactivation and photoprotection, which have a spectral response limited by, respectively, blue (<450 nm) and near (<380 nm) UV light. The data obtained make possible to consider the observed effects of photoreactivation and photo-protection as the manifestation of functioning of some light-dependent defense system capable of increasing the resistance of cells to UVB radiation.  相似文献   

17.
Human myocardial fatty acid ethyl ester synthase-III is a newly described acidic glutathione S-transferase that metabolizes both ethanol and carcinogens. Structure-function studies have not been performed relating these two distinct enzymatic activities. Since there are only two histidine residues in fatty acid ethyl ester synthase-III (His 72 and His 163), the role of each was examined by site-specific mutagenesis. Fatty acid ethyl ester synthase-III mutagenized at position 72 to contain either Gln, Pro or Ala had less than 5% of control glutathione S-transferase activity but retained fatty acid ethyl ester synthase activity under standard assay conditions. In contrast, substitution of histidine 163 with proline had no effect on glutathione S-transferase activity, but it slightly increased synthase activity. Thus, this study indicates that histidine plays a differential role in fatty acid ethyl ester synthase III depending on the nucleophilic substrate.  相似文献   

18.
Incubation of cells of the cyanobacterium Spirulina platensis under conditions of exposure to low-intensity (2-3 microE m-2 s-1) red light, which was predominantly absorbed by photosystem I (PS I), caused atypical adaptation changes. Invariable pigment composition and stoichiometry of photosystems was observed in the cells incubated under these conditions against the background of a decrease in the rate of photosynthetic fixation of CO2 (by one-half) and a 1.5-fold increase in the rate of dark respiration relative to cells incubated under conditions of exposure to green light. Comparison of these data with a high rate of dark relaxation of P700+ in the presence of diuron suggests that deficiency of reduced equivalents at the donor side of PS I in the Spirulina cells exposed to red light is compensated by electron supply from the respiratory chain NAD(P)H dehydrogenase complex.  相似文献   

19.
Subcellular distribution of glutathione S-transferase activity was investigated as stimulated form by N-ethylmaleimide in rat liver. The stimulated glutathione S-transferase activity was localized in mitochondrial and lysosomal fractions besides microsomes. Among N-ethylmaleimide-treated submitochondrial fractions, glutathione S-transferase activity was stimulated only in outer mitochondrial membrane fraction. In lysosomal fraction, it was suggested that glutathione S-transferase activity in peroxisomes, which is immunochemically related to microsomal transferase, was also stimulated, but not in lysosomes.  相似文献   

20.
Age of patients and oxidative stress in brain cells may contribute to pathogenesis of Alzheimer’s disease (AD). Erythrocytes (red blood cells, RBC) are considered as passive “reporter cells” for the oxidative status of the whole body and remain poorly investigated in AD. The aim of this study was to assess whether the antioxidant status of RBC changes in aging and AD. Blood was taken from AD and non-Alzheimer’s dementia patients, aged-matched and younger controls. The antioxidant status of RBC was evaluated in each person participated in the study by measuring levels of H2O2, organic hydroperoxides, glutathione (GSH) and glutathione disulfide (GSSG), activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, and glucose-6-phosphate dehydrogenase. In both aging and dementia, oxidative stress in RBC was shown to increase as evidenced by elevated concentrations of H2O2, organic hydroperoxides, decreased GSH/GSSG ratio, and decreased glutathione S-transferase activity. Decreased glutathione peroxidase activity in RBC may be considered as a new peripheral marker for Alzheimer’s disease while changes of other parameters of oxidative stress reflect age-related events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号