首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The rise of antibiotic resistance in pathogenic bacteria is endangering the efficacy of antibiotics, which consequently results in greater use of silver as a biocide. Chromosomal mapping of the Cus system or plasmid encoded Sil system and their relationship with silver resistance was studied for several gram-negative bacteria. However, only few reports investigated silver detoxification mediated by the Sil system integrated in Escherichia coli chromosome. Accordingly, this work aimed to study the Sil system in E. coli ATCC 8739 and to produce evidence for its role in silver resistance development. Silver resistance was induced in E. coli ATCC 8739 by stepwise passage in culture media containing increasing concentrations of AgNO3. The published genome of E. coli ATCC 8739 contains a region showing strong homology to the Sil system genes. The role of this region in E. coli ATCC 8739 was assessed by monitoring the expression of silC upon silver stress, which resulted in a 350-fold increased expression. De novo sequencing of the whole genome of a silver resistant strain derived from E. coli ATCC 8739 revealed mutations in ORFs putative for SilR and CusR. The silver resistant strain (E. coli AgNO3R) showed constitutive expression of silC which posed a cost of fitness resulting in retarded growth. Furthermore, E. coli AgNO3R exhibited cross-resistance to ciprofloxacin and a slightly increased tolerance to ampicillin. This study demonstrates that E. coli is able to develop resistance to silver, which may pose a threat towards an effective use of silver compounds as antiseptics.  相似文献   

2.
Silver nanoparticles (AgNPs), embedded into a specific exopolysaccharide (EPS), were produced by Klebsiella oxytoca DSM 29614 by adding AgNO3 to the cultures during exponential growth phase. In particular, under aerobic or anaerobic conditions, two types of silver nanoparticles, named AgNPs-EPSaer and the AgNPs-EPSanaer, were produced respectively. The effects on bacterial cells was demonstrated by using Escherichia coli K12 and Kocuria rhizophila ATCC 9341 (ex Micrococcus luteus) as Gram-negative and Gram-positive tester strains, respectively. The best antimicrobial activity was observed for AgNPs-EPSaer, in terms of minimum inhibitory concentrations and minimum bactericidal concentrations. Observations by transmission electron microscopy showed that the cell morphology of both tester strains changed during the exposition to AgNPs-EPSaer. In particular, an electron-dense wrapped filament was observed in E. coli cytoplasm after 3 h of AgNPs-EPSaer exposition, apparently due to silver accumulation in DNA, and both E. coli and K. rhizophila cells were lysed after 18 h of exposure to AgNPs-EPSaer. The DNA breakage in E. coli cells was confirmed by the comparison of 3-D fluorescence spectra fingerprints of DNA. Finally the accumulation of silver on DNA of E. coli was confirmed directly by a significant Ag+ release from DNA, using the scanning electrochemical microscopy and the voltammetric determinations.  相似文献   

3.
Green silver nanoparticle (AgNP) biosynthesis is facilitated by the enzyme mediated reduction of Ag ions by plants, fungi and bacteria. The antimicrobial activity of green AgNPs is useful to overcome the challenge of antimicrobial resistance. Antimicrobial properties of biosynthesized AgNPs depend on multiple factors including culture conditions and the microbial source. The antimicrobial activity of AgNPs biosynthesized by Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923 and Acinetobacter baumannii (confirmed clinical isolate) were investigated in this study. Biosynthesis conditions (AgNO3 concentration, pH, incubation temperature and incubation time) were optimized to obtain the maximum AgNP yield. Presence of AgNPs was confirmed by observing a characteristic UV–Visible absorbance peak in 420–435 nm range. AgNP biosynthesis was optimal at 0.4 g/L AgNO3 concentration under alkaline conditions at 60–70 °C. The biosynthesized AgNPs showed higher stability compared to chemogenized AgNPs in the presence of electrolytes. AgNPs synthesized by P. aeruginosa were the most stable while NPs of S. aureus were the least stable. AgNPs synthesized by P. aeruginosa and S. aureus showed good antimicrobial potential against E. coli, P. aeruginosa, S. aureus, MRSA and Candida albicans. AgNPs synthesized by S. aureus had greater antimicrobial activity. The antimicrobial activity of NPs may vary depending on the size and the morphology of NPs.  相似文献   

4.
Direct somatic embryogenesis is favoured over indirect methods for the in vitro propagation of Coffea canephora, as the frequency of somaclonal variation is usually reduced. Ethylene action inhibitors improve the tissue culture response and thus silver nitrate (AgNO3) is used for direct somatic embryogenesis in coffee. It was observed that silver thiosulphate (STS) that is a more potent ethylene action inhibitor, induced a much robust response in C. canephora cotyledonary leaf explants with 7.49?±?0.57 and 7.08?±?0.12 embryos/explant at 60 and 80 µM AgNO3, respectively compared to 3.3?±?0.18 embryos/explant at 40 µM AgNO3. Transient transformation indicated that STS improved the transformation potential of embryos by enhancing Agrobacterium tumefaciens adherence to surfaces. In vitro adherence assays demonstrated that the cell wall material from STS-derived embryos provide a better substratum for adherence of Agrobacterium. Furthermore, blocking this substratum with anti-mannan hybridoma supernatant negatively effects the adherence. The presence of galactose and mannose residues in the decomposed cellulose fraction of STS treated somatic embryos are indicative of de-branching and re-modelling of galactomannan in response to ethylene inhibition. Genes of mannan biosynthesis, degradation and de-branching enzyme were affected to different extents in embryos derived in AgNO3 and STS containing somatic embryogenesis medium. The results indicate that ethylene-mediated cell wall galactomannan remodelling is vital for improving the transgenic potential in coffee.  相似文献   

5.
Italian ryegrass is one of main feed for livestock animals/birds. It has potential antioxidant metabolites that can improve their health and protect them against various infectious diseases. In this work, we studied synthesis of silver nanoparticles assisted by forage crop Lolium multiflorum as a green synthesis way. Potential antibacterial efficacy of these synthesized nanosized silver nanoparticles against poultry pathogenic bacteria was then studied. Aqueous extract of IRG was used as reducing agent for bio-reduction of silver salt to convert Ag+ to Ag0 metallic nano-silver. Size, shape, metallic composition, functional group, and crystalline nature of these synthesized silver nanoparticles were then characterized using UV–Vis spectrophotometer, FESEM, EDX, FT-IT, and XRD, respectively. In addition, antibacterial effects of these synthesized AgNPs against poultry pathogenic bacteria were evaluated by agar well diffusion method. UV–Vis spectra showed strong absorption peak of 440–450 nm with differ reaction time ranging from 30 min to 24 h. FESEM measurements revealed particles sizes of around 20–100 nm, majority of which were spherical in shape while a few were irregular. These biosynthesized silver nanoparticles using IRG extract exhibited strong antibacterial activities against poultry pathogenic microorganisms, including Pseudomonas aeruginosa, Salmonella typhi, Escherichia coli, and Bacillus subtilis. Overall results confirmed that IRG plant extract possessed potential bioactive compounds for converting silver ions into nanosized silver at room temperature without needing any external chemical for redox reaction. In addition, such synthesized AgNPs showed strong antibacterial activities against pathogenic bacteria responsible for infectious diseases in poultry.  相似文献   

6.
In this paper, using a method of wide-angle X-ray diffraction, sizes of cellulose nanoscale crystallites were determined and phase transition of nanosized crystallites CI into CII was studied after treatment of cellulose samples with solutions of sodium hydroxide with various concentrations, 5 to 20% (1.3 to 6.1 M). It was found that the phase transition proceeds in a certain interval of hydroxide concentrations; moreover, a correlation between average concentration (C) of hydroxide and average lateral sizes (D) of nanocrystallites was observed. Methods of chemical thermodynamics of nanophases allowed to derive an equation, which describes the relationship between C and D: lnC = lnCoKD–1, where Co is maximum concentration of hydroxide, which is required for the phase transition of large crystals of CI. Thus, the decrease in hydroxide concentration at the phase transition CI into CII, is explained by decreasing of lateral size of CI nanocrystallites. By means of the derived equation, minimum, average and maximum lateral sizes of CI nanocrystallites were determined, as well as polydispersity in lateral sizes of crystallites was studied. It has been shown that crystallites of organo-solvent celluloses were the most uniform, whereas aggregated crystallites of Kraft celluloses were the most heterogeneous.  相似文献   

7.
The influence of local anesthetics on the regulation of the channel-forming activity of the antimicrobial peptide cecropin A has been investigated. The mean current flowing through the single cecropin channels isc was determined, and steady-state transmembrane current induced by cecropin AI was measured. It has been shown that the introduction of 1 mM of bupivacaine, benzocaine or 0.3 mM of tetracaine into the membrane bathing solution results in a decrease in isc and I. At the same time, the addition of 1 mM lidocaine or procaine to the membrane-bathing solutions does not lead to a significant change in isc and I. Comparison of the absolute values and the sign of the change in the boundary potential of negatively charged membranes and relative changes of isc and I after addition of local anesthetics shows that neither parameter correlates with the membrane boundary potential. The results of studying the effect of tested local anesthetics on the phase transition of membrane lipids allow us to conclude that the observed changes of isc and I are due to modulation of the elastic properties of the membrane.  相似文献   

8.
The effects of silver nanoparticles (AgNPs), silver ions (Ag+), and polyvinylpyrrolidone (PVP) on mitosis and expression of a gene encoding cyclin-dependent kinase 2 (cdc2) in onion roots were compared. Three concentrations (5, 10, and 15 mg dm-3) were employed in combination with three incubation times (3, 6, and 9 h). PVP enhanced mitotic index and cdc2 expression. Both silver forms decreased mitotic index and cdc2 expression. Genotoxicity of both silver forms were indicated by three major distinguishable classes of chromosome aberrations: spindle disturbances, clastogenic aberrations, and chromosome stickiness. Concerning Ag+ treatments, significant enhancements in occurrence of any chromosome aberration type was associated with significant decrease in mitotic index. On the other hand, disturbed spindle in AgNPs treatments was observed even in absence of significant reduction in mitotic index suggesting that AgNPs inhibit cellular events occurring during mitosis to proceed normally rather than starting of cell division.  相似文献   

9.
The orchid flowers may stay fresh in unpollinated state from few weeks to months but show rapid senescence upon pollination. Metabolic changes related to this phenomenon are less well understood in orchid flowers. Presently, two orchid species, Aerides multiflora Roxb. and Rhynchostylis retusa (L.) Bl., varying in their floral life span were evaluated for their postpollination-induced responses, involving the oxidative stress. The unpollinated flowers of A. multiflora stayed fresh for 17 days and attained senescence in 5 days after pollination (DAP), while those of R. retusa. remained fresh for 24 days and showed senescence in 7 DAP. After pollination, wilting began in 2 to 3 days in A. multiflora and 3 to 4 days in R. retusa. There was a higher electrolyte leakage accompanied by a concomitant increase in the levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2), indicators of oxidative damage in all the organs after pollination while ascorbic acid decreased significantly. The flowers of A. multiflora showed a greater electrolyte leakage, MDA and H2O2 contents as compared to those of R. retusa. Ascorbic acid content, on the other hand, was lower in A. multiflora than in R. retusa, suggesting a higher oxidative damage to the floral organs in the former species. An application of triiodobenzoic acid ( an auxin inhibitor; 0.25 mM) and silver nitrate (ethylene inhibitor; 0.25 mM) to pollinated flowers partially prevented the oxidative damage and consequently the senescence, suggesting the involvement of these hormones. AgNO3 was more effective in delaying senescence.  相似文献   

10.
The applicability of emission of the N 3Λσ triplet states of molecular hydrogen for spectral diagnostics of the positive column of a dc glow discharge in hydrogen at translational gas temperatures of 360–600 K, specific absorbed powers of 0.8–4.25 W/cm, gas pressures of p = 0.3–15.0 Torr, reduced fields of E/N = 30–130 Td, and electron densities of n e = 4.0 × 109–6.5 × 1010 cm–3 is analyzed by using an advanced level-based semi-empirical collisional?radiative model. It is found that secondary processes make the main contribution to the population and decay of the N 3Λσ = a 3Σ+ g , c 3Π u , g 3Σ+ g , h 3Σ+ g , and i 3Π g triplet states. The dipole-allowed transitions e 3Σ+ g a 3Σ+ g , f 3Σ+ g a 3Σ+ g , g 3Σ+ g and k 3Π u a 3Σ+ g can be used for spectral diagnostics of a dc discharge within a simplified coronal model.  相似文献   

11.
Catharanthus roseus (L.) G. Don is an economically and medicinally important plant since its leaves and flowers contain terpenoid indole alkaloids. The present study, for the first time, encompasses the influence of silver nitrate (AgNO3), in consort with cytokinins like N 6-benzyladenine (BA) and 6-furfurylaminopurine (kinetin), to regenerate multiple shoots from nodal segments explants and to induce high-frequency precocious flowering of C. roseus under in vitro condition. Synergistic effect of equal concentrations of BA and kinetin was enhanced following the amalgamation of AgNO3. As high as 98% explants responded to multiple shoot initiation and proliferation in Murashige and Skoog medium supplemented with 3 µM BA, 3 µM kinetin and 0.1 µM AgNO3. As many as 7 shoots were developed per explant following 12 days of inoculation. Continuous culture in the same medium for 21 days induced precocious flowering from 75% shoots, wherein a maximum of ~?6 (5.67?±?0.88) flowers was observed per in vitro shoot. On the other hand, in the combinations of BA and kinetin excluding AgNO3, a maximum of 6.67% explants responded and initiated merely 3.33 shoots per explant. Nevertheless, no induction of flower was observed in the media devoid of AgNO3. Our results on the induction and proliferation of multiple shoots with simultaneous flowering would help the global pharmaceutical industry to produce in vitro shoots and flowers in bulk, as an alternative source of alkaloids.  相似文献   

12.
Hyperhydricity symptoms are common and significant during the in vitro culture of Dianthus chinensis L. and greatly affect the micropropagation and regeneration of cultured plantlets. However, effective measures for preventing such abnormalities have not been developed for this species. Silver nitrate (AgNO3) has been shown to revert hyperhydric plantlets to a normal state. Nevertheless, the effect of AgNO3 on the prevention of hyperhydricity and the underlying mechanisms remain unclear. In the present study, 98.7% of the Dianthus chinensis L. plantlets cultured in a hyperhydricity induction medium (HIM) developed symptoms of hyperhydricity; however, hyperhydricity symptoms were inhibited to different degrees when D. chinensis L. plantlets were cultured in HIM supplemented with various concentrations of AgNO3. In particular, approximately 97% of the D. chinensis L. plantlets grew normally and did not show any symptoms of hyperhydricity when cultured in HIM supplemented with 30 μmol L?1 AgNO3. Compared with the plantlets cultured in HIM alone, the plantlets cultured in HIM containing AgNO3 displayed dramatic decreases in water content, ethylene content, and reactive oxygen species (ROS) production (particularly regarding H2O2 accumulation in guard cells) and showed increased antioxidant enzyme activity, stoma aperture, and water loss. These changes not only prevented excess water from accumulating in the tissues of plantlets but also improved the antioxidant capacity of plantlets, ultimately resulting in the prevention of hyperhydricity.  相似文献   

13.

Objective

To ascertain the effect of chitin-binding domain (ChBD) and fibronectin type III domain (FN3) on the characterization of the intact chitinase from Bacillus thuringiensis.

Results

An intact chitinase gene (chi74) from B. thuringiensis HZP7 and its truncated genes (chi54, chi63 and chi66) were expressed in Escherichia coli BL21. The expression products were analyzed after purification. All chitinases were active from pH 4–7.5 and from 20 to 80 °C with identical optimal: pH 5.5 and 60 °C. The activity of colloid chitin degradation for Chi74 was the highest, followed by Chi66, Chi63 and Chi54. Ag+ reduced the activity of Chi74, Chi54, Chi63 and Chi66, but Mg2+ enhanced them. The effect of Ag+ and Mg2+ was more significant on the activity of Chi54 than on the activities of Chi63, Chi66 and Chi74.

Conclusion

ChBDChi74 and FN3Chi74 domains play a role in exerting enzymatic activity and can improve the stability of chitinase.
  相似文献   

14.
15.
The purpose of this study was to investigate the short-term effects of maize (Zea mays)-fallow rotation, residue management, and soil water on carbon mineralization in a tropical cropping system in Ghana. After 15 months of the trial, maize–legume rotation treatments had significantly (P?C 0 (μg CO2–C g?1) than maize–elephant grass (Pennisetum purpureum) rotations. The C 0 for maize–grass rotation treatments was significantly related to the biomass input (r?=?0.95; P?=?0.05), but that for the maize–legume rotation was not. The soil carbon mineralization rate constant, k (per day), was also significantly related to the rotation treatments (P?k values for maize–grass and maize–legume rotation treatments were 0.025 and 0.036 day?1 respectively. The initial carbon mineralization rate, m 0 (μg CO2–C g?1 day ?1), was significantly (P?θ. The m 0 ranged from 3.88 to 18.67 and from 2.30 to 15.35 μg CO2–C g?1 day?1 for maize–legume and maize–grass rotation treatments, respectively, when the soil water varied from 28% to 95% field capacity (FC). A simple soil water content (θ)-based factor, f w, formulated as: \(f_{\text{w}} = \left[ {\frac{{\theta - \theta _{\text{d}} }}{{\theta _{{\text{FC}}} - \theta _{\text{d}} }}} \right]\), where θ d and θ FC were the air-dry and field capacity soil water content, respectively, adequately described the variation of the m 0 with respect to soil water (R 2?=?0.91; RMSE?=?1.6). Such a simple relationship could be useful for SOC modeling under variable soil water conditions.  相似文献   

16.
An in vitro organogenesis protocol for Carissa carandas L. was developed using an auxin transport inhibitor (quercetin) and silver nitrate (AgNO3), an inhibitor of ethylene action, in association with cytokinins in the culture medium. This protocol produced the maximum number of shoots from aseptic seedling-derived shoot apex explants of C. carandas. The highest rate of shoot multiplication was recorded on MS medium containing 2.0 mg L?1 6-benzylaminopurine; 0.5 mg L?1 kinetin, and 0.75 mg L?1 quercetin at after 4 wk of culture. Similar results were obtained when MS medium fortified with 2.0 mg L?1 BAP, 0.5 mg L?1 kinetin, and 1.5 mg L?1 AgNO3 was used. However, successful rooting was achieved on quarter strength MS medium with 0.5 mg L?1 indole-3-acetic acid. In this study, an inhibitor of auxin transport and ethylene action maximized shoot multiplication in medium fortified with cytokinins. The established rapid micropropagation method could be used to conserve elite genotypes of C. carandas.  相似文献   

17.
Bud emergence and shoot growth from adult phase citrus nodal cultures were studied using Citrus mitis (calamondin), Citrus paradisi (grapefruit), and Citrus sinensis (sweet orange). The effects of 6-benzyladenine (BA), indole 3-acetic acid (IAA), and citrus type on shoot quality and growth of mature bud explants from greenhouse grown trees were determined using a 2-component mixture-amount × citrus type experiment. BA increased shoot number and IAA improved shoot growth. The best shoot quality (fewer shoots but large shoots) was obtained with 1 μM IAA for calamondin, 15.5 μM IAA for sweet orange, and 30 μM IAA for grapefruit. Grapefruit exhibited substantial leaf abscission compared to calamondin and sweet orange. Four factors (AgNO3, silver thiosulphate (STS), CaNO3, or gelling) were screened individually for their efficacy in reducing leaf abscission. Five factors (AgNO3, gelling, MS ion concentration, plant growth regulator and venting) were investigated to identify potential combinations for reducing leaf abscission and maximizing shoot growth and bud emergence. The factor combination identified as most effective in minimizing leaf drop, promoting shoot growth, and maximizing bud emergence for grapefruit was 2 mg l?1 AgNO3, Gelrite, 1 × MS ion concentration, 30 μM IAA, and vented.  相似文献   

18.
In experiments on lower hybrid current drive (LHCD) carried out at the FT-2 tokamak, a substantial increase in the central electron temperature T e (r = 0 cm) from 550 to 700 eV was observed. A complex simulation procedure is used to explain a fairly high LHCD efficiency and the observed additional heating, which can be attributed to a transition into the improved core confinement (ICC) mode. For numerical simulations, data obtained in experiments with deuterium plasma at 〈n e 〉 = 1.6 × 1019 m–3 were used. Simulations by the GRILL3D, FRTC, and ASTRA codes have shown that the increase in the density and central temperature is apparently caused by a significant suppression of heat transport in the electron component. The mechanism for transition into the improved confinement mode at r < 3 cm can be associated with the broadening of the plasma current channel due to the lower hybrid drive of the current carried by superthermal and runaway electrons. In this case, the magnetic shear s = (r/q)(dq/dr) in the axial region of the plasma column almost vanishes during the RF pulse. In this study, the effect of lower hybrid waves on the plasma parameters, resulting in a transition into the ICC mode, is considered. New experimental and calculated data are presented that evidence in favor of such a transition. Special attention is paid to the existence of a threshold for the transition into the ICC mode in deuterium plasma.  相似文献   

19.
Transport of electrons in spinach photosystem II (PSII) whose oxygen-evolving complex (OEC) contains heterogeneous metal clusters 2Mn2Fe and 3Mn1Fe was studied by measuring the fluorescence induction kinetics (FIK). PSII(2Mn,2Fe) and PSII(3Mn,1Fe) preparations were produced using Cadepleted PSII membranes (PSII(–Ca)). It was found that FIK in PSII(2Mn,2Fe) membranes is similar in form to FIK in PSII(–Ca) samples, but the fluorescence yield is lower in PSII(2Mn,2Fe). The results demonstrate that, just as in PSII(–Ca) preparations, there is electron transfer from the metal cluster in the OEC to the primary plastoquinone electron acceptor QA. They also show that partial substitution of Mn cations with Fe has no effect on the electron transport on the acceptor side of PSII. Thus, these data demonstrate the possibility of water oxidation either by the heterogeneous metal cluster or just by the manganese dimer. We established that FIK in PSII(3Mn,1Fe) preparations are similar in form to FIK in PSII(2Mn,2Fe) membranes but PSII(3Mn,1Fe) is characterized by a slightly higher maximal fluorescence yield, Fmax. The electron transfer rate in PSII(3Mn,1Fe) preparations significantly (by a factor of two) increases in the presence of Ca2+, whereas Ca2+ has hardly any effect on the electron transport in PSII(2Mn,2Fe) membranes. In Mndepleted PSII membranes, FIK reaches its maximum (the so-called peak K), after which the fluorescence yield starts to decrease as the result of two factors: the oxidation of reduced primary plastoquinone Q A ? and the absence of electron influx from the donor side of PSII. The replacement of Mn cations by Fe in PSII(?Mn) preparations leads to fluorescence saturation and disappearance of the K peak. This is possibly due to the deceleration of the charge recombination process that takes place between reduced primary electron acceptor Q A ? and oxidized tyrosine Y Z +. which is an electron carrier between the OEC and the primary electron donor P680.  相似文献   

20.
A series of new silver(I) saccharinate (sac) complexes, [Ag2(sac)2(μ-dppm)H2O]·H2O (1), {[Ag2(μ-sac)2(μ-dppe)]·3H2O·CH2Cl2} n (2), [Ag2(μ-sac)2(μ-dppp)] n (3), and [Ag(sac)(μ-dppb)] n (4) [dppm is 1,1-bis(diphenylphosphino)methane, dppe is 1,2-bis(diphenylphosphino)ethane, dppp is 1,3-bis(diphenylphosphino)propane, and dppb is 1,4-bis(diphenylphosphino)butane], have been synthesized and characterized by C, H, N elemental analysis, IR spectroscopy, 1H NMR, 13C NMR, and 31P NMR spectroscopy, electrospray ionization mass spectrometry, and thermogravimetry–differential thermal analysis. Single-crystal X-ray studies show that the diphosphanes act as bridging ligands to yield a dinuclear complex (1) and one-dimensional coordination polymers (2 and 4), whereas the sac ligand adopts a μ2-N/O bridging mode in 2, and is N-coordinated in 1 and 4. The interaction of the silver(I) complexes with fish sperm DNA was investigated using UV–vis spectroscopy, fluorescence spectroscopy, and agarose gel electrophoresis. The binding studies indicate that the silver(I) complexes can interact with fish sperm DNA through intercalation, and complexes 1 and 3 have the highest binding affinity. The gel electrophoresis assay further confirms the binding of the complexes with the pBR322 plasmid DNA. The minimum inhibitory concentrations of the complexes indicate that complex 1 exhibits very high antibacterial activity against standard bacterial strains of Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus, being much higher than those of AgNO3, silver sulfadiazine, ciprofloxacin, and gentamicin. Moreover, complexes 13 exhibit very high cytotoxic activity against A549 and MCF-7 cancer cell lines, compared with AgNO3 and cisplatin. The bacterial and cell growth inhibitions of the silver(I) complexes are closely related to their DNA binding affinities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号