首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the Mg(2+)-dependent pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP). The reaction follows a bi-bi mechanism with ATP as the first substrate and AMP and HP pyrophosphate (HPPP) as the two products. HPPK is a key enzyme in the folate biosynthetic pathway and is essential for microorganisms but absent from mammals. For the HPPK-catalyzed pyrophosphoryl transfer, a reaction coordinate is constructed on the basis of the thermodynamic and transient kinetic data we reported previously, and the reaction trajectory is mapped out with five three-dimensional structures of the enzyme at various liganded states. The five structures are apo-HPPK (ligand-free enzyme), HPPK.MgATP(analog) (binary complex of HPPK with its first substrate) and HPPK.MgATP(analog).HP (ternary complex of HPPK with both substrates), which we reported previously, and HPPK.AMP.HPPP (ternary complex of HPPK with both product molecules) and HPPK.HPPP (binary complex of HPPK with one product), which we present in this study.  相似文献   

2.
Blaszczyk J  Li Y  Wu Y  Shi G  Ji X  Yan H 《Biochemistry》2004,43(6):1469-1477
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphoryl group from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP) following an ordered bi-bi mechanism with ATP as the first substrate. The rate-limiting step of the reaction is product release, and the complete active center is assembled and sealed only upon the binding of both ATP and HP. The assembly of the active center involves large conformational changes in three catalytic loops, among which loop 3 undergoes the most dramatic and unusual changes. To investigate the roles of loop 3 in catalysis, we have made a deletion mutant, which has been investigated by biochemical and X-ray crystallographic analysis. The biochemical data showed that the deletion mutation does not have significant effects on the dissociation constants or the rate constants for the binding of the first substrate MgATP or its analogues. The dissociation constant of HP for the mutant increases by a factor of approximately 100, which is due to a large increase in the dissociation rate constant. The deletion mutation causes a shift of the rate-limiting step in the reaction and a decrease in the rate constant for the chemical step by a factor of approximately 1.1 x 10(5). The crystal structures revealed that the deletion mutation does not affect protein folding, but the catalytic center of the mutant is not fully assembled even upon the formation of the ternary complex and is not properly sealed. The results together suggest that loop 3 is dispensable for the folding of the protein and the binding of the first substrate MgATP, but is required for the assembling and sealing of the active center. The loop plays an important role in the stabilization of the ternary complex and is critical for catalysis.  相似文献   

3.
Yang R  Lee MC  Yan H  Duan Y 《Biophysical journal》2005,89(1):95-106
Comparison of the crystallographic and NMR structures of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) suggests that the enzyme may undergo significant conformational change upon binding to its first substrate, ATP. Two of the three surface loops (loop 2 and loop 3) accounting for most of the conformational differences appear to be confined by crystal contacts, raising questions about the putative large-scale induced-fit conformational change of HPPK and the functional roles of the conserved side-chain residues on the loops. To investigate the loop dynamics in crystal-free environment, we carried out molecular dynamics and locally enhanced sampling simulations of the apo-enzyme and the HPPK.MgATP complex. Our simulations showed that the crystallographic B-factors underestimated the loop dynamics considerably. We found that the open-conformation of loop 3 in the binary complex is accessible to the apo-enzyme and is the favored conformation in solution phase. These results revise our previous view of HPPK-substrate interactions and the associated functional mechanism of conformational change. The lessons learned here offer valuable structural insights into the workings of HPPK and should be useful for structure-based drug design.  相似文献   

4.
Li Y  Blaszczyk J  Wu Y  Shi G  Ji X  Yan H 《Biochemistry》2005,44(24):8590-8599
Deletion mutagenesis, biochemical, and X-ray crystallographic studies have shown that loop 3 of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is required for the assembly of the active center, plays an important role in the stabilization of the ternary complex of HPPK with MgATP and 6-hydroxymethyl-7,8-dihydropterin (HP), and is essential for catalysis. Whether the critical functional importance of loop 3 is due to the interactions between residues R84 and W89 and the two substrates has been addressed by site-directed mutagenesis, biochemical, and X-ray crystallographic studies. Substitution of R84 with alanine causes little changes in the dissociation constants and kinetic constants of the HPPK-catalyzed reaction, indicating that R84 is not important for either substrate binding or catalysis. Substitution of W89 with alanine increases the K(d) for the binding of MgATP by a factor of 3, whereas the K(d) for HP increases by a factor of 6, which is due to the increase in the dissociation rate constant. The W89A mutation decreases the rate constant for the chemical step of the forward reaction by a factor of 15 and the rate constant for the chemical step of the reverse reaction by a factor of 25. The biochemical results of the W89A mutation indicate that W89 contributes somewhat to the binding of HP and more significantly to the chemical step. The crystal structures of W89A show that W89A has different conformations in loops 2 and 3, but the critical catalytic residues are positioned for catalysis. When these results are taken together, they suggest that the critical functional importance of loop 3 is not due to the interactions of the R84 guanidinium group or the W89 indole ring with the substrates.  相似文献   

5.
Blaszczyk J  Li Y  Shi G  Yan H  Ji X 《Biochemistry》2003,42(6):1573-1580
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), the first reaction in the folate biosynthetic pathway. Arginine residues 82 and 92, strictly conserved in 35 HPPK sequences, play dynamic roles in the catalytic cycle of the enzyme. At 0.89-A resolution, two distinct conformations are observed for each of the two residues in the crystal structure of the wild-type HPPK in complex with two HP variants, two Mg(2+) ions, and an ATP analogue. Structural information suggests that R92 first binds to the alpha-phosphate group of ATP and then shifts to interact with the beta-phosphate as R82, which initially does not bind to ATP, moves in and binds to alpha-phosphate when the pyrophosphoryl transfer is about to occur. The dynamic roles of R82 and R92 are further elucidated by five more crystal structures of two mutant proteins, R82A and R92A, with and without bound ligands. Two oxidized forms of HP are observed with an occupancy ratio of 0.50:0.50 in the 0.89-A structure. The oxidation of HP has significant impact on its binding to the protein as well as the conformation of nearby residue W89.  相似文献   

6.
Li Y  Wu Y  Blaszczyk J  Ji X  Yan H 《Biochemistry》2003,42(6):1581-1588
The roles of a pair of conserved positively charged residues R82 and R92 at a catalytic loop of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) have been investigated by site-directed mutagenesis and biochemical analysis. In the structure of HPPK in complex with ATP and a 6-hydroxymethyl-7,8-dihydropterin (HP) analogue, the guanidinium group of R82 forms two hydrogen bonds with the alpha-phosphate and that of R92 two hydrogen bonds with the beta-phosphate. In the structure of HPPK in complex with alpha,beta-methyleneadenosine triphosphate (AMPCPP, an ATP analogue) and HP, the guanidinium group of R82 has no direct interaction with AMPCPP and that of R92 forms two hydrogen bonds with the alpha-phosphate. Substitution of R82 with alanine caused a decrease in the rate constant for the chemical step by a factor of approximately 380, but there were no significant changes in the binding energy or binding kinetics of either substrate. Substitution of R92 with alanine caused a decrease in the rate constant for the chemical step by a factor of approximately 3.5 x 10(4). The mutation caused no significant changes in the binding energy or binding kinetics of MgATP. It did not cause a significant change in the binding energy of HP either but caused a decrease in the association rate constant for the binding of HP by a factor of approximately 4.5 and a decrease in the dissociation rate constant by a factor of approximately 10. The overall structures of the ternary complexes of both mutants were very similar to the corresponding structure of wild-type HPPK as described in the companion paper. The results suggest that R82 does not contribute to the binding of either substrate, and R92 is dispensable for the binding of MgATP but plays a role in facilitating the binding of HP. Both R82 and R92 are important for catalysis, and R92 plays a critical role in the transition state stabilization.  相似文献   

7.
BACKGROUND: Folates are essential for life. Unlike mammals, most microorganisms must synthesize folates de novo. 6-Hydroxymethyl-7, 8-dihydropterin pyrophosphokinase (HPPK) catalyzes pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), the first reaction in the folate pathway, and therefore is an ideal target for developing novel antimicrobial agents. HPPK from Escherichia coli is a 158-residue thermostable protein that provides a convenient model system for mechanistic studies. Crystal structures have been reported for HPPK without bound ligand, containing an HP analog, and complexed with an HP analog, two Mg(2+) ions, and ATP. RESULTS: We present the 1.25 A crystal structure of HPPK in complex with HP, two Mg(2+) ions, and AMPCPP (an ATP analog that inhibits the enzymatic reaction). This structure demonstrates that the enzyme seals the active center where the reaction occurs. The comparison with unligated HPPK reveals dramatic conformational changes of three flexible loops and many sidechains. The coordination of Mg(2+) ions has been defined and the roles of 26 residues have been derived. CONCLUSIONS: HPPK-HP-MgAMPCPP mimics most closely the natural ternary complex of HPPK and provides details of protein-substrate interactions. The coordination of the two Mg(2+) ions helps create the correct geometry for the one-step reaction of pyrophosphoryl transfer, for which we suggest an in-line single displacement mechanism with some associative character in the transition state. The rigidity of the adenine-binding pocket and hydrogen bonds are responsible for adenosine specificity. The nonconserved residues that interact with the substrate might be responsible for the species-dependent properties of an isozyme.  相似文献   

8.
The crystal structure of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) in complex with MgADP has been determined at 1.5-A resolution with a crystallographic R factor of 0.191. The solution structure of HPPK in complex with Mg(2+) and beta,gamma-methyleneadenosine 5'-triphosphate (MgAMPPCP) has been determined using a simulated annealing protocol with 3,523 experimental NMR restraints. The root mean square deviation of the ensemble of 20 refined conformers that represent the solution structure from the mean coordinate set derived from them is 0.74 +/- 0.26 A for all backbone atoms and 0.49 +/- 0.22 A when residues Pro(14), Pro(44)-Gln(50), and Arg(84)-Pro(91) are excluded. Binding of MgADP causes significant changes in the conformation and dynamical property of three loops of HPPK that are involved in catalysis. A dramatic, unusual conformational change is that loop 3 moves away from the active center significantly with some residues moving by >17 A. The binding of MgADP also stabilizes loop 1 and loop 3 but makes loop 2 more mobile. Very similar conformational and dynamical changes are observed in the NMR solution structure of HPPK.MgAMPPCP. The conformational and dynamical changes may play important roles in both substrate binding and product release in the catalytic cycle.  相似文献   

9.
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the pyrophosphorylation of 6-hydroxymethyl-7,8-dihydropterin (HMDP) by ATP to form 6-hydroxymethyl-7,8-dihydropterin pyrophosphate, an intermediate in the pathway for folic acid biosynthesis. The enzyme has been identified as a potential target for antimicrobial drugs. Equilibrium binding studies showed that Escherichia coli HPPK-bound ATP or the nonhydrolyzable ATP analogue alpha, beta-methyleneadenosine triphosphate (AMPCPP) with high affinity. The fluorescent ATP analogue 2'(3')-O-(N-methylanthraniloyl) adenosine 5'-triphosphate (MANT-ATP) exhibited a substantial fluorescence enhancement upon binding to HPPK, with an equilibrium dissociation constant comparable with that for ATP (10.4 and 4.5 micrometer, respectively). The apoenzyme did not bind the second substrate HMDP, however, unless AMPCPP was present, suggesting that the enzyme binds ATP first, followed by HMDP. Equilibrium titration of HPPK into HMDP and AMPCPP showed an enhancement of fluorescence from the pterin ring of the substrate, and a dissociation constant of 36 nm was deduced for HMDP binding to the HPPK.AMPCPP binary complex. Stopped flow fluorimetry measurements showed that the rate constants for the binding of MANT-ATP and AMPCPP to HPPK were relatively slow (3.9 x 10(5) and 1.05 x 10(5) m(-1) s(-1), respectively) compared with the on rate for binding of HMDP to the HPPK.AMPCPP binary complex. The significance of these results with respect to the crystal structures of HPPK is discussed.  相似文献   

10.
BACKGROUND: Folate cofactors are essential for life. Mammals derive folates from their diet, whereas most microorganisms must synthesize folates de novo. Enzymes of the folate pathway therefore provide ideal targets for the development of antimicrobial agents. 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), the first reaction in the folate biosynthetic pathway. RESULTS: The crystal structure of HPPK from Escherichia coli has been determined at 1.5 A resolution with a crystallographic R factor of 0.182. The HPPK molecule has a novel three-layered alpha beta alpha fold that creates a valley approximately 26 A long, 10 A wide and 10 A deep. The active center of HPPK is located in the valley and the substrate-binding sites have been identified with the aid of NMR spectroscopy. The HP-binding site is located at one end of the valley, near Asn55, and is sandwiched between two aromatic sidechains. The ATP-binding site is located at the other end of the valley. The adenine base of ATP is positioned near Leu111 and the ribose and the triphosphate extend across and reach the vicinity of HP. CONCLUSIONS: The HPPK structure provides a framework to elucidate structure/function relationships of the enzyme and to analyze mechanisms of pyrophosphoryl transfer. Furthermore, this work may prove useful in the structure-based design of new antimicrobial agents.  相似文献   

11.
Escherichia coli dihydrofolate reductase (DHFR) has several flexible loops surrounding the active site that play a functional role in substrate and cofactor binding and in catalysis. We have used heteronuclear NMR methods to probe the loop conformations in solution in complexes of DHFR formed during the catalytic cycle. To facilitate the NMR analysis, the enzyme was labeled selectively with [(15)N]alanine. The 13 alanine resonances provide a fingerprint of the protein structure and report on the active site loop conformations and binding of substrate, product, and cofactor. Spectra were recorded for binary and ternary complexes of wild-type DHFR bound to the substrate dihydrofolate (DHF), the product tetrahydrofolate (THF), the pseudosubstrate folate, reduced and oxidized NADPH cofactor, and the inactive cofactor analogue 5,6-dihydroNADPH. The data show that DHFR exists in solution in two dominant conformational states, with the active site loops adopting conformations that closely approximate the occluded or closed conformations identified in earlier X-ray crystallographic analyses. A minor population of a third conformer of unknown structure was observed for the apoenzyme and for the disordered binary complex with 5,6-dihydroNADPH. The reactive Michaelis complex, with both DHF and NADPH bound to the enzyme, could not be studied directly but was modeled by the ternary folate:NADP(+) and dihydrofolate:NADP(+) complexes. From the NMR data, we are able to characterize the active site loop conformation and the occupancy of the substrate and cofactor binding sites in all intermediates formed in the extended catalytic cycle. In the dominant kinetic pathway under steady-state conditions, only the holoenzyme (the binary NADPH complex) and the Michaelis complex adopt the closed loop conformation, and all product complexes are occluded. The catalytic cycle thus involves obligatory conformational transitions between the closed and occluded states. Parallel studies on the catalytically impaired G121V mutant DHFR show that formation of the closed state, in which the nicotinamide ring of the cofactor is inserted into the active site, is energetically disfavored. The G121V mutation, at a position distant from the active site, interferes with coupled loop movements and appears to impair catalysis by destabilizing the closed Michaelis complex and introducing an extra step into the kinetic pathway.  相似文献   

12.
Shi G  Shaw G  Li Y  Wu Y  Yan H  Ji X 《Bioorganic & medicinal chemistry》2012,20(14):4303-4309
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), a key enzyme in the folate biosynthesis pathway catalyzing the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin, is an attractive target for developing novel antimicrobial agents. Previously, we studied the mechanism of HPPK action, synthesized bisubstrate analog inhibitors by linking 6-hydroxymethylpterin to adenosine through phosphate groups, and developed a new generation of bisubstrate inhibitors by replacing the phosphate bridge with a piperidine-containing linkage. To further improve linker properties, we have synthesized a new compound, characterized its protein binding/inhibiting properties, and determined its structure in complex with HPPK. Surprisingly, this inhibitor exhibits a new binding mode in that the adenine base is flipped when compared to previously reported structures. Furthermore, the side chain of amino acid residue E77 is involved in protein-inhibitor interaction, forming hydrogen bonds with both 2' and 3' hydroxyl groups of the ribose moiety. Residue E77 is conserved among HPPK sequences, but interacts only indirectly with the bound MgATP via water molecules. Never observed before, the E77-ribose interaction is compatible only with the new inhibitor-binding mode. Therefore, this compound represents a new direction for further development.  相似文献   

13.
Keskin O  Ji X  Blaszcyk J  Covell DG 《Proteins》2002,49(2):191-205
6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) belongs to a class of catalytic enzymes involved in phosphoryl transfer and is a new target for the development of novel antimicrobial agents. In the present study, the fundamental consideration is to view the overall structure of HPPK as a network of interacting residues and to extract the most cooperative collective motions that define its global dynamics. A coarse-grained model, harmonically constrained according to HPPK's crystal structure is used. Four crystal structures of HPPK (one apo and three holo forms with different nucleotide and pterin analogs) are studied with the goal of providing insights about the function-dynamic correlation and ligand induced conformational changes. The dynamic differences are examined between HPPK's apo- and holo-forms, because they are involved in the catalytic reaction steps. Our results indicate that the palm-like structure of HPPK is nearly rigid, whereas the two flexible loops: L2 (residues 43-53) and L3 (residues 82-92) exhibit the most concerted motions for ligand recognition and presumably, catalysis. These two flexible loops are involved in the recognition of HPPKs nucleotide and pterin ligands, whereas the rigid palm region is associated with binding of these cognate ligands. Six domains of collective motions are identified, comprised of structurally close but not necessarily sequential residues. Two of these domains correspond to the flexible loops (L2 and L3), whereas the remaining domains correspond to the rigid part of the molecule.  相似文献   

14.
Li Y  Gong Y  Shi G  Blaszczyk J  Ji X  Yan H 《Biochemistry》2002,41(27):8777-8783
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HMDP). Because HPPK is essential for microorganisms but is absent from human and animals, the enzyme is an excellent target for developing antimicrobial agent. Thermodynamic analysis shows that Mg(2+) is important not only for the binding of nucleotides but also for the binding of HMDP. Transient kinetic analysis shows that a step or steps after the chemical transformation are rate-limiting in the reaction catalyzed by HPPK. The pre-steady-state kinetics is composed of a burst phase and a steady-state phase. The rate constant for the burst phase is approximately 50 times larger than that for the steady-state phase. The latter is very similar to the k(cat) value measured by steady-state kinetics. A set of rate constants for the individual steps of the HPPK-catalyzed reaction has been determined by a combination of stopped-flow and quench-flow analyses. These results form a thermodynamic and kinetic framework for dissecting the roles of active site residues in the substrate binding and catalysis by HPPK.  相似文献   

15.
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), a key enzyme in the folate biosynthetic pathway, catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin. The enzyme is essential for microorganisms, is absent from humans, and is not the target for any existing antibiotics. Therefore, HPPK is an attractive target for developing novel antimicrobial agents. Previously, we characterized the reaction trajectory of HPPK-catalyzed pyrophosphoryl transfer and synthesized a series of bisubstrate analog inhibitors of the enzyme by linking 6-hydroxymethylpterin to adenosine through 2, 3, or 4 phosphate groups. Here, we report a new generation of bisubstrate analog inhibitors. To improve protein binding and linker properties of such inhibitors, we have replaced the pterin moiety with 7,7-dimethyl-7,8-dihydropterin and the phosphate bridge with a piperidine linked thioether. We have synthesized the new inhibitors, measured their K(d) and IC(50) values, determined their crystal structures in complex with HPPK, and established their structure-activity relationship. 6-Carboxylic acid ethyl ester-7,7-dimethyl-7,8-dihydropterin, a novel intermediate that we developed recently for easy derivatization at position 6 of 7,7-dimethyl-7,8-dihydropterin, offers a much high yield for the synthesis of bisubstrate analogs than that of previously established procedure.  相似文献   

16.
6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7, 8-dihydropterin, the first reaction in the folate biosynthetic pathway. Like other enzymes in the folate pathway, HPPK is an ideal target for development of antimicrobial agents because the enzyme is essential for microorganisms but is absent from humans and animals. Using 3'(2')-o-anthraniloyladenosine 5'-triphosphate as a fluorescent probe, a fluorometric competitive binding assay has been developed for measuring the dissociation constants of various compounds that bind to the ATP site of HPPK. The fluorometric assay has been used to determine the nucleotide specificity and dissect the energetics of the binding of MgATP. The order of affinity of various nucleoside triphosphates for HPPK is MgATP>MgGTP>MgITP>MgXTP approximately MgUTP approximately MgCTP. The affinity of MgATP for HPPK (K(d)=2.6+/-0.06 microM) is 260-fold higher than that of MgGTP and more than 1000-fold higher than those of the other nucleoside triphosphates, indicating that HPPK is highly specific with respect to the base moiety of the nucleotide. The affinity of ATP for HPPK in the presence of Mg(2+) is 15 times that in the absence of Mg(2+), indicating that the metal ion is important for the binding of the nucleotide. Removal of the gamma-phosphate from MgATP reduces its affinity for HPPK by a factor of approximately 21. The affinity of AMP for HPPK is about one third that of ADP and almost the same as that of adenosine. The result suggests that among the three phosphoryl groups of MgATP, the gamma-phosphoryl group is most critical for binding to HPPK and the alpha-phosphoryl group contributes little to the binding of the nucleotide. The affinity of MgATP is 18 times that of MgdATP, indicating that the 2'-hydroxyl group of MgATP is also important for binding. van't Hoff analysis suggests that binding of MgATP is mainly driven by enthalpy at 25 degrees C and the entropy of binding is also in favor of the formation of the HPPK.MgATP complex.  相似文献   

17.
The first structural and biophysical data on the folate biosynthesis pathway enzyme and drug target, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), from the pathogen Staphylococcus aureus is presented. HPPK is the second essential enzyme in the pathway catalysing the pyrophosphoryl transfer from cofactor (ATP) to the substrate (6-hydroxymethyl-7,8-dihydropterin, HMDP). In-silico screening identified 8-mercaptoguanine which was shown to bind with an equilibrium dissociation constant, Kd, of ∼13 µM as measured by isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR). An IC50 of ∼41 µM was determined by means of a luminescent kinase assay. In contrast to the biological substrate, the inhibitor has no requirement for magnesium or the ATP cofactor for competitive binding to the substrate site. The 1.65 Å resolution crystal structure of the inhibited complex showed that it binds in the pterin site and shares many of the key intermolecular interactions of the substrate. Chemical shift and 15N heteronuclear NMR measurements reveal that the fast motion of the pterin-binding loop (L2) is partially dampened in the SaHPPK/HMDP/α,β-methylene adenosine 5′-triphosphate (AMPCPP) ternary complex, but the ATP loop (L3) remains mobile on the µs-ms timescale. In contrast, for the SaHPPK/8-mercaptoguanine/AMPCPP ternary complex, the loop L2 becomes rigid on the fast timescale and the L3 loop also becomes more ordered – an observation that correlates with the large entropic penalty associated with inhibitor binding as revealed by ITC. NMR data, including 15N-1H residual dipolar coupling measurements, indicate that the sulfur atom in the inhibitor is important for stabilizing and restricting important motions of the L2 and L3 catalytic loops in the inhibited ternary complex. This work describes a comprehensive analysis of a new HPPK inhibitor, and may provide a foundation for the development of novel antimicrobials targeting the folate biosynthetic pathway.  相似文献   

18.
The interaction of phosphofructokinase with NH4+, AMP, ATP, citrate, MgATP or fructose 6-phosphate, and in part with their mixtures forming either binary or ternary complexes has been studied by means of ultraviolet difference spectroscopy and circular dichroism spectroscopy in the wavelength range 265-300 nm with the aim of characterizing the conformational corollaries of the ligand effects on phosphofructokinase. The positive as well as the negative effectors change phosphofructokinase conformation in different ways, not easily interpretable in terms of one active and one inactive enzyme conformation. The spectroscopic equivalents of phosphofructokinase conformation changes resulting from catalytic activity are similar to those produced by the reaction products. The ligand concentration-dependent changes of absorption differences in the tryptophyl, tyrosyl and phenylalanyl region parallel each other, i.e. the interactions of the ligands with phosphofructokinase are not confined to specific aromatic side chains, but involve conformation changes of the large domains of the protein. ATP affinity to the enzyme shows temperature-dependent biphasic changes so that ATP binding appears to be either an entropy-driven or enthalpy-driven process. The dissociation constants of the ligands derived from spectroscopic titration of binary complex formation are comparable to those calculated from kinetic experiments. MgATP and fructose 6-phosphate each alone change phosphofructokinase conformation by binary complex formation in keeping with a random order of reaction sequence.  相似文献   

19.
Conformational changes of the cAMP-dependent protein kinase (PKA) catalytic (C) subunit are critical for the catalysis of gamma-phosphate transfer from adenosine 5'-triphosphate (ATP) to target proteins. Time-resolved fluorescence anisotropy (TRFA) was used to investigate the respective roles of Mg(2+), ATP, MgATP, and the inhibitor peptide (IP20) in the conformational changes of a 5,6-carboxyfluorescein succinimidyl ester (CF) labeled C subunit ((CF)C). TRFA decays were fit to a biexponential equation incorporating the fast and slow rotational correlation times phi(F) and phi(S). The (CF)C apoenzyme exhibited the rotational correlation times phi(F)=1.8+/-0.3 ns and phi(S)=20.1+/-0.6 ns which were reduced to phi(F)=1.1+/-0.2 ns and phi(S)=13.3+/-0.9 ns in the presence of MgATP. The reduction in rotational correlation times indicated that the (CF)C subunit adopted a more compact shape upon formation of a (CF)C.MgATP binary complex. Neither Mg(2+) (1-3 mM) nor ATP (0.4 mM) alone induced changes in the (CF)C subunit conformation equivalent to those induced by MgATP. The effect of MgATP was removed in the presence of ethylenediaminetetraacetic acid (EDTA). The addition of IP20 and MgATP to form the (CF)C x MgATP x IP20 ternary complex produced rotational correlation times similar to those of the (CF)C x MgATP binary complex. However, IP20 alone did not elicit an equivalent reduction in rotational correlation times. The results indicate that binding of MgATP to the C subunit may induce conformation changes in the C subunit necessary for the proper stereochemical alignment of substrates in the subsequent phosphorylation.  相似文献   

20.
Enzymatic catalysis has conflicting structural requirements of the enzyme. In order for the enzyme to form a Michaelis complex, the enzyme must be in an open conformation so that the substrate can get into its active center. On the other hand, in order to maximize the stabilization of the transition state of the enzymatic reaction, the enzyme must be in a closed conformation to maximize its interactions with the transition state. The conflicting structural requirements can be resolved by a flexible active center that can sample both open and closed conformational states. For a bisubstrate enzyme, the Michaelis complex consists of two substrates in addition to the enzyme. The enzyme must remain flexible upon the binding of the first substrate so that the second substrate can get into the active center. The active center is fully assembled and stabilized only when both substrates bind to the enzyme. However, the side-chain positions of the catalytic residues in the Michaelis complex are still not optimally aligned for the stabilization of the transition state, which lasts only approximately 10(-13) s. The instantaneous and optimal alignment of catalytic groups for the transition state stabilization requires a dynamic enzyme, not an enzyme which undergoes a large scale of movements but an enzyme which permits at least a small scale of adjustment of catalytic group positions. This review will summarize the structure, catalytic mechanism, and dynamic properties of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase and examine the role of protein conformational dynamics in the catalysis of a bisubstrate enzymatic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号