首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Viruses in aquatic ecosystems comprise those produced by both autochthonous and allochthonous host taxa. However, there is little information on the diversity and abundance of viruses of allochthonous origin, particularly from non-anthropogenic sources, in freshwater and marine ecosystems. We investigated the presence of nucleopolyhedroviruses (NPV) (Baculovirus), which commonly infect terrestrial lepidopteran taxa, across the landscape of Appledore Island, Gulf of Maine. PCR and qPCR primers were developed around a 294-bp fragment of the polyhedrin (polH) gene, which is the major constituent protein of NPV multivirion polyhedral occlusion bodies. polH was successfully amplified from several aquatic habitats, and recovered polH sequences were most similar to known lepidopteran NPV. Using quantitative PCR designed around a cluster of detected sequences, we detected polH in Appledore Island soils, supratidal freshwater ponds, nearshore sediments, near- and offshore plankton, and in floatsam. This diverse set of locations suggests that NPVs are widely dispersed along the terrestrial—marine continuum and that free polyhedra may be washed into ponds and eventually to sea. The putative hosts of detected NPVs were webworms (Hyphantria sp.) which form dense nests in late summer on the dominant Appledore Island vegetation (Prunus virginiana). Our data indicate that viruses of terrestrial origin (i.e., allochthonous viruses) may be dispersed widely in coastal marine habitats. The dispersal of NPV polH and detection within offshore net plankton (>64 μm) demonstrates that terrestrial viruses may interact with larger particles and plankton of coastal marine ecosystem, which further suggests that viral genomic information may be transported between biomes.  相似文献   

2.
Batch culture experiments using viral enrichment were conducted to test the response of a coastal bacterial community to autochthonous (i.e., co-existing) or allochthonous riverine viruses. The effects of viral infections on bacterial dynamics and activity were assessed by epifluorescence microscopy and thymidine incorporation, respectively, whereas the effect of viral infection on bacterial community composition was examined by polymerase chain reaction-single strand conformation polymorphism 16S ribosomal RNA fingerprinting. The percentages of high nucleic acid-containing cells, evaluated by flow cytometry, were significantly correlated (r 2 = 0.91, n = 12, p < 0.0001) to bacterial production, making this value a good predictor of active cell dynamics along the study. While confinement and temperature were the two principal experimental factors affecting bacterial community composition and dynamics, respectively, additions of freshwater viruses had significant effects on coastal bacterial communities. Thus, foreign viruses significantly reduced net bacterial population increase as compared to the enrichment treated with inactivated virus. Moreover, freshwater viruses recurrently and specifically affected bacterial community composition, as compared to addition of autochthonous viruses. In most cases, the combined treatment viruses and freshwater dissolved organic matter helped to maintain or even enhance species richness in coastal bacterial communities in agreement to the ‘killing the winner’ hypothesis. Thus, riverine virus input could potentially influence bacterial community composition of the coastal bay albeit with modest modification of bulk bacterial growth. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Metagenomics has dramatically expanded the known virosphere, but freshwater viral diversity and their ecological interaction with hosts remain poorly understood. Here, we conducted a metagenomic exploration of planktonic dsDNA prokaryotic viruses by sequencing both virion (<0.22 μm) and cellular (0.22–5.0 μm) fractions collected spatiotemporally from a deep freshwater lake (Lake Biwa, Japan). This simultaneously reconstructed 183 complete (i.e., circular) viral genomes and 57 bacterioplankton metagenome-assembled genomes. Analysis of metagenomic read coverage revealed vertical partitioning of the viral community analogous to the vertically stratified bacterioplankton community. The hypolimnetic community was generally stable during stratification, but occasionally shifted abruptly, presumably due to lysogenic induction. Genes involved in assimilatory sulfate reduction were encoded in 20 (10.9%) viral genomes, including those of dominant viruses, and may aid viral propagation in sulfur-limited freshwater systems. Hosts were predicted for 40 (21.9%) viral genomes, encompassing 10 phyla (or classes of Proteobacteria) including ubiquitous freshwater bacterioplankton lineages (e.g., Ca. Fonsibacter and Ca. Nitrosoarchaeum). Comparison with viral genomes derived from published metagenomes revealed viral phylogeographic connectivity in geographically isolated habitats. Notably, analogous to their hosts, actinobacterial viruses were among the most diverse, ubiquitous and abundant viral groups in freshwater systems, with potential high lytic activity in surface waters.  相似文献   

4.
Nagasaki K  Takao Y  Shirai Y  Mizumoto H  Tomaru Y 《Uirusu》2005,55(1):127-132
A great amount of virus particles exist in natural waters. Each virion is considered to have its own ecological role, affecting the maintenance and fluctuation of aquatic ecosystems. We have been studying viruses infectious to micro-plankton, especially those infecting phytoplankton. Red tides are caused by drastic increase in abundance of plankton. We succeeded in elucidating that viral infection is one of the most important factors determining the dynamics and termination of algal blooms by means of field survey and molecular experiments. In addition, we demonstrated that the interrelationship between viruses and their hosts are highly complicated, and might be determined by the molecular-structural difference of viral capsids among distinct virus ecotypes. Furthermore, in the process of our investigation on various aquatic algal viruses, their importance as genetic sources has also been suggested. In order to deeply understand the mechanism of aquatic ecosystem, more intensive studies as for aquatic viruses are urgently required.  相似文献   

5.
The role of resource subsidies across ecosystem boundaries has emerged as an important concept in contemporary ecology. For lake ecosystems, this has led to interest in quantifying the contribution of terrestrial allochthonous carbon to aquatic secondary production. An inverse relationship between habitat area and the role of allochthonous subsidies has been documented on marine islands and assumed for lakes, yet there have been no tests of this pattern among benthic (lake bottom) consumers. Here, we used carbon stable isotopes to trace terrestrial allochthonous and benthic autochthonous carbon use by the crayfish Pacifastacus leniusculus over a gradient of lake area, productivity and urbanization. Consistent with findings from terrestrial islands, habitat size dictated the importance of allochthonous subsidies, as P. leniusculus transitioned from using predominantly terrestrial carbon in small lakes to an increased reliance on autochthonous production in larger lakes. However, shoreline urbanization interacted with this pattern, particularly for small lakes where greater urbanization resulted in reduced use of allochthonous resources. As such, we provide, to our knowledge, the first confirmation of the predicted relationship between habitat size and importance of allochthonous subsidies to lake benthic consumers, but found that urbanization can interfere with this pattern.  相似文献   

6.
RNA viruses exist as complex mixtures of genotypes, known as quasispecies, where the evolution potential resides in the whole community of related genotypes. Quasispecies structure and dynamics have been studied in detail for virus infecting animals and plants but remain unexplored for those infecting micro‐organisms in environmental samples. We report the first metagenomic study of RNA viruses in an Antarctic lake (Lake Limnopolar, Livingston Island). Similar to low‐latitude aquatic environments, this lake harbours an RNA virome dominated by positive single‐strand RNA viruses from the order Picornavirales probably infecting micro‐organisms. Antarctic picorna‐like virus 1 (APLV1), one of the most abundant viruses in the lake, does not incorporate any mutation in the consensus sequence from 2006 to 2010 and shows stable quasispecies with low‐complexity indexes. By contrast, APLV2‐APLV3 are detected in the lake water exclusively in summer samples and are major constituents of surrounding cyanobacterial mats. Their quasispecies exhibit low complexity in cyanobacterial mat, but their run‐off‐mediated transfer to the lake results in a remarkable increase of complexity that may reflect the convergence of different viral quasispecies from the catchment area or replication in a more diverse host community. This is the first example of viral quasispecies from natural aquatic ecosystems and points to ecological connectivity as a modulating factor of quasispecies complexity.  相似文献   

7.

Background  

Phages, viruses that infect prokaryotes, are the most abundant microbes in the world. A major limitation to studying these viruses is the difficulty of cultivating the appropriate prokaryotic hosts. One way around this limitation is to directly clone and sequence shotgun libraries of uncultured viral communities (i.e., metagenomic analyses). PHACCS, Phage Communities from Contig Spectrum, is an online bioinformatic tool to assess the biodiversity of uncultured viral communities. PHACCS uses the contig spectrum from shotgun DNA sequence assemblies to mathematically model the structure of viral communities and make predictions about diversity.  相似文献   

8.
9.
10.
Organic carbon (C) in lakes originates from two distinct sources—primary production from within the lake itself (autochthonous supply) and importation of organic matter from the terrestrial watershed (allochthonous supply). By manipulating the 13C of dissolved inorganic C, thereby labeling within-lake primary production, we examined the relative importance of autochthonous and allochthonous C in supporting bacterial production. For 35 days, NaH13CO3 was added daily to two small, forested lakes. One of the lakes (Peter) was fertilized so that primary production exceeded total respiration in the epilimnion. The other lake (Tuesday), in contrast, was low in productivity and had high levels of colored dissolved organic C (DOC). To obtain bacterial C isotopes, bacteria were regrown in situ in particle-free lake water in dialysis tubes. The contribution of allochthonous C to bacterial biomass was calculated by applying a two-member mixing model. In the absence of a direct measurement, the isotopic signature of the autochthonous end-member was estimated indirectly by three different approaches. Although there was excess primary production in Peter Lake, bacterial biomass consisted of 43–46% allochthonous C. In Tuesday Lake more than 75% of bacterial growth was supported by allochthonous C. Although bacteria used autochthonous C preferentially over allochthonous C, DOC from the watershed contributed significantly to bacterial production. In combination with results from similar experiments in different lakes, our findings suggest that the contribution of allochthonous C to bacterial production can be predicted from ratios of chromophoric dissolved organic matter (a surrogate for allochthonous supply) and chlorophyll a (a surrogate for autochthonous supply).  相似文献   

11.
The sources of both dissolved organic carbon (DOC) and particulate organic carbon (POC) to an alpine (Sky Pond) and a subalpine lake (The Loch) in Rocky Mountain National Park were explored for four years. The importance of both autochthonous and allochthonous sources of organic matter differ, not only between alpine and subalpine locations, but also seasonally. Overall, autochthonous sources dominate the organic carbon of the alpine lake, while allochthonous sources are a more significant source of organic carbon to the subalpine lake. In the alpine lake, Sky Pond, POC makes up greater than one third of the total organic matter content of the water column, and is related to phytoplankton abundance. Dissolved organic carbon is a product of within-lake activity in Sky Pond except during spring snowmelt and early summer (May–July), when stable carbon isotope ratios suggest a terrestrial source. In the subalpine lake, The Loch, DOC is a much more important constituent of water column organic material than POC, comprising greater than 90% of the spring snowmelt organic matter, and greater than 75% of the organic matter over the rest of the year. Stable carbon isotope ratios and a very strong relation of DOC with soluble Al(tot) indicate DOC concentrations are almost entirely related to flushing of soil water from the surrounding watershed during spring snowmelt. Stable carbon isotope ratios indicate that, for both lakes, phytoplankton is an important source of DOC in the winter, while terrestrial material of plant or microbial origin contributes DOC during snowmelt and summer.  相似文献   

12.
Lipid biomarkers from surface sediments of Lake Taihu (Eastern China) were analyzed in order to determine the origin and spatial distribution of sediment organic matter (OM), which is necessary to understand the regional carbon cycles and design environmental management strategies for lake systems. The results indicated significant heterogeneity in the distribution of autochthonous (algae-, photosynthetic bacteria- and macrophyte-based) and allochthonous (terrestrial plant-based) OM in sediments across the lake. Allochthonous OM inputs, indicated by long-chain n-alkane and long-chain n-alkanol biomarkers, generally declined in abundance from northwestern (Zhushan Bay and Meiliang Bay) to southeastern (East Bays) parts of the lake, suggesting a critical influence of hydrology, and in particular of inflowing rivers, which mainly enter the lake from the west and drain from the east. Autochthonous OM, on the other hand, appeared to reflect variations in overall nutrient status and habit type across the lake. Cyanobacterial OM inputs, identified by short-chain n-alkanes, were most abundant in sediment from the most severely polluted zones in Lake Taihu, namely Zhushan Bay and Meiliang Bay. OM derived from diatoms, indicated by brassicasterol and highly branched isoprenoids (HBIs), was most abundant in sediments from the East Bays, a clear-water zone with relatively low levels of nutrient input. Macrophyte OM input, indicated by the middle-chain n-alkanes and Paq ((n-C23 + n-C25)/(n-C23 + n-C25 + n-C29 + n-C31)), was only identified in sediments from the East Bays. The lowest recorded inputs for both autochthonous and allochthonous OM were in sediments from open areas with significant sediment resuspension, including Gonghu Bay, Central and Western Region. This finding might reflect degradation mineralization of OM in the water column during sediment resuspension.  相似文献   

13.
Flow cytometry (FCM) was used to assess microbial community abundances and patterns in three natural, large and deep peri-alpine hydrosystems, i.e., lakes Annecy (oligotrophic), Bourget, and Geneva (mesotrophic). Picocyanobacteria, small eukaryotic autotrophs, heterotrophic prokaryotes, and viruses were studied in the 0–50 m surface layers to highlight the impact of both physical and chemical parameters as well as possible biotic interactions on the functioning of microbial communities. Some specificities were recorded according to the trophic status of each ecosystem such as the higher number of viruses and heterotrophic bacteria in mesotrophic environments (i.e., Lakes Geneva and Bourget) or the higher abundance of picocyanobacteria in the oligotrophic Lake Annecy. However, both seasonal (temperature) and spatial (depth) variations were comparatively more important than the trophic status in driving the microbial communities’ abundances in these three lakes, as revealed by principal component analysis (PCA). A strong viral termination of the heterotrophic bacterial blooms could be observed in autumn for each lake, in parallel to the mixing of the upper lit layers. As virus to bacteria ratio (VBR) was indeed very high at this period with values varying between 87 and 114, such important relationships between viruses and bacteria were likely. The magnitudes of seasonal variations in VBR, with the highest values ever reported so far, were largely greater than the magnitude of theoretical variations due to the trophic status, suggesting also a strong seasonality in virioplankton production associated to prokaryotic dynamics. FCM analyses allowed discriminating several viral groups. Virus-Like Particles group 1 (VLP1) and group 2 (VLP2) were always observed and significantly correlated to bacteria for the former and chlorophyll a and picocyanobacteria for the latter, suggesting that most of VLP1 and VLP2 could be bacteriophages and cyanophages, respectively. On the basis of these results, new ways of investigation emerge concerning the study of relationships between specific picoplanktonic groups; and overall these results provide new evidence of the necessity to consider further viruses for a better understanding of lake plankton ecology. Handling editor: Luigi Naselli-Flores  相似文献   

14.
Ecosystem engineering, or the modification of physical environments by organisms, can influence trophic interactions and thus food web dynamics. Although existing theory exclusively considers engineers using autochthonous resources, many empirical studies show that they often depend on allochthonous resources. By developing a simple mathematical model involving an ecosystem engineer that modifies the physical environment through its activities, its resource, and physical environment modified by the engineer, we compare the effects of autochthonous and allochthonous resources on the dynamics and stability of community with ecosystem engineers. To represent a variety of real situations, we consider engineers that alter either resource productivity, engineer feeding rate on the resource, or engineer mortality, and incorporate time-lagged responses of the physical environment. Our model shows that the effects of ecosystem engineering on community dynamics depend greatly on resource types. When the engineer consumes autochthonous resources, the community can exhibit oscillatory dynamics if the engineered environment affects engineer’s feeding rate or mortality. These cyclic behaviors are, however, stabilized by a slowly responding physical environment. When allochthonous resources are supplied as donor-controlled, on the other hand, the engineer population is unlikely to oscillate but instead can undergo unbounded growth if the engineered environment affects resource productivity or engineer mortality. This finding suggests that ecosystem engineers utilizing allochthonous resources may be more likely to reach high abundance and cause strong impacts on ecosystems. Our results highlight that community-based, compounding effects of trophic and physical biotic interactions of ecosystem engineers depend crucially on whether the engineers utilize autochthonous or allochthonous resources.  相似文献   

15.
【目的】湖泊沉积物中存储着大量独特的微生物,这些微生物在湖泊生态系统生物地球化学循环中扮演着非常重要的角色。然而,很少有研究报道微生物群落在湖泊沉积物中的垂直分布。本文比较研究青藏高原淡水湖普莫雍错和盐水湖阿翁错沉积物在不同深度下细菌的丰度和群落结构。【方法】利用定量PCR(q PCR)和变性梯度凝胶电泳(DGGE)技术分别测定细菌群落的丰度与群落结构。【结果】定量PCR结果显示,湖泊沉积物中细菌丰度均随深度增加而降低,盐水湖阿翁错和淡水湖普莫雍错的细菌丰度分别从1011数量级降到108数量级,从1012数量级降到1010数量级。在相对应的沉积物层,淡水湖沉积物的细菌丰度比盐水湖高1-2个数量级。变性梯度凝胶电泳(DGGE)指纹图谱的分析表明,淡水湖沉积物细菌群落的DGGE条带数(丰富度)显著高于盐水湖(P=0.014);淡水与盐水湖泊沉积物细菌群落结构明显不同,同时在同一湖泊沉积物中上层(0-6 cm)和下层(7-20 cm)细菌群落结构也呈明显分异。系统发育分析表明,盐水湖阿翁错沉积物特有菌门为Gamma-变形菌、拟杆菌门、蓝细菌和栖热菌门,而淡水湖普莫雍错沉积物中特有菌门为Delta-和Beta-变形菌、酸杆菌和绿弯菌门。【结论】青藏高原淡水与盐水湖泊沉积物细菌丰度与群落结构具有明显的差异;同时,细菌群落结构在沉积物的不同深度也表现出差异。这些结果可为进一步阐明青藏高原湖泊生态系统中微生物对气候环境变化的响应提供科学依据。  相似文献   

16.
In lake ecosystems, changes in eukaryotic and prokaryotic microbes and the concentration and availability of dissolved organic matter (DOM) produced within or supplied to the system by allochthonous sources are components that characterize complex processes in the microbial loop. We address seasonal changes of microbial communities and DOM in the largest Croatian lake, Vrana. This shallow lake is connected to the Adriatic Sea and is impacted by agricultural activity. Microbial community and DOM structure were driven by several environmental stressors, including drought, seawater intrusion and heavy precipitation events. Bacterial composition of different lifestyles (free-living and particle-associated) differed and only a part of the particle-associated bacteria correlated with microbial eukaryotes. Oscillations of cyanobacterial relative abundance along with chlorophyll a revealed a high primary production season characterized by increased levels of autochthonous DOM that promoted bacterial processes of organic matter degradation. From our results, we infer that in coastal freshwater lakes dependent on precipitation-evaporation balance, prolonged dry season coupled with heavy irrigation impact microbial communities at different trophic levels even if salinity increases only slightly and allochthonous DOM inputs decrease. These pressures, if applied more frequently or at higher concentrations, could have the potential to overturn the trophic state of the lake.  相似文献   

17.
The survival and colonisation potential of photoautotrophic microbes (cyanobacteria and microalgae) were investigated in three terrestrial environments within a glacierised catchment on Svalbard: old vegetation-covered soil, recently deglaciated barren soil and subglacial sediments. One-year reciprocal transplant incubations of photoautotrophic microbial communities from the three soil/sediment environments were conducted in order to reveal the autochthonous or allochthonous origin of the present photoautotrophs. The abundance and taxonomic composition of photoautotrophic microbes and their changes over time and between soil/sediment types and physico-chemical characteristics of the soils/sediments were determined. The recovery time of a photoautotrophic community by import of cells was between several months in subglacial and vegetated soils and up to 27 years in proglacial soils. No active growth was recorded in subglacial sediments, whilst positive growth, and so the potential for autochthonous recovery, was found in proglacial and vegetated soils. The most suitable environment for the survival of transplanted microbes was provided in proglacial soil. We show here that the new proglacial substrata can be successfully colonised by photoautotrophic microbes, and that input of allochthonous cells may, in some cases, exceed in situ microbial growth. Whilst the subglacial environment is rather a conduit for photoautotrophic microbes than a place of growth and production, the supply of viable photoautotrophs in it is relatively high and may serve as a significant resource of nutrients for subglacial microbial communities.  相似文献   

18.
1. The seasonal and vertical distribution of the abundance of virus‐like particles (VLPs), together with the abundances of other microbial organisms (bacteria, unpigmented and pigmented nanoflagellates and ciliates), were determined in an oligomesotrophic lake (Pavin, France) and in a eutrophic lake (Aydat, France) between March and December 2000. 2. The abundance of the viral plankton and those of other microbial taxa were significantly higher in the more productive system. The same was for the virus‐to‐bacteria quotient (VBQ), which averaged seven in Lake Pavin and nine in Lake Aydat. 3. The abundance of viruses increased during the period of thermal stratification in both lakes, with the highest values being recorded at the end of summer/early autumn in the epi‐ and the metalimnion. The seasonal pattern of abundance of viruses in both lakes in the surface layer was similar, indicating that the dynamics of viruses may be controlled by environmental factors such as light conditions. 4. There was no correlation between the abundance of viruses and protists. We found correlations between viruses and heterotrophic bacteria in the whole water column in Lake Pavin, but only in the dark bottom waters in Lake Aydat. 5. Overall, the empirical findings in this study lead us to speculate that the weaker correlation between bacteria and viruses in Lake Aydat than in Lake Pavin, as well as the higher VBQ in the former, is a consequence of the increasing relative abundance of non‐bacteriophage VLPs along the trophic gradient of aquatic systems.  相似文献   

19.
Ecosystems are generally linked via fluxes of nutrients and energy across their boundaries. For example, freshwater ecosystems in temperate regions may receive significant inputs of terrestrially derived carbon via autumnal leaf litter. This terrestrial particulate organic carbon (POC) is hypothesized to subsidize animal production in lakes, but direct evidence is still lacking. We divided two small eutrophic lakes each into two sections and added isotopically distinct maize litter to the treatment sections to simulate increased terrestrial POC inputs via leaf litter in autumn. We quantified the reliance of aquatic consumers on terrestrial resources (allochthony) in the year subsequent to POC additions by applying mixing models of stable isotopes. We also estimated lake-wide carbon (C) balances to calculate the C flow to the production of the major aquatic consumer groups: benthic macroinvertebrates, crustacean zooplankton, and fish. The sum of secondary production of crustaceans and benthic macroinvertebrates supported by terrestrial POC was higher in the treatment sections of both lakes. In contrast, total secondary and tertiary production (supported by both autochthonous and allochthonous C) was higher in the reference than in the treatment sections of both lakes. Average aquatic consumer allochthony per lake section was 27–40%, although terrestrial POC contributed less than about 10% to total organic C supply to the lakes. The production of aquatic consumers incorporated less than 5% of the total organic C supply in both lakes, indicating a low ecological efficiency. We suggest that the consumption of terrestrial POC by aquatic consumers facilitates a strong coupling with the terrestrial environment. However, the high autochthonous production and the large pool of autochthonous detritus in these nutrient-rich lakes make terrestrial POC quantitatively unimportant for the C flows within food webs.  相似文献   

20.
Although the structure and dynamics of planktonic viruses in freshwater and seawater environments are relatively well documented, little is known about the occurrence and activity of these viruses in estuaries, especially in the tropics. Viral abundance, life strategies, and morphotype distribution were examined in the Bach Dang Estuary (Vietnam) during the dry season in 2009. The abundance of both viruses and their prokaryotic hosts decreased significantly from upstream to downstream, probably as the result of nutrient dilution and osmotic stress faced by the freshwater communities. The antibiotic mitomycin-C revealed that the fraction of lysogenic cells was substantially higher in the lower seawater part of the estuary (max 27.1%) than in the upper freshwater area where no inducible lysogens were observed. The question of whether there is a massive, continuous induction of marine lysogens caused by the mixing with freshwater is considered. Conversely, the production of lytic viruses declined as salinity increased, indicating a spatial succession of viral life strategies in this tropical estuary. Icosahedral tailless viruses with capsids smaller than 60?nm dominated the viral assemblage throughout the estuary (63.0% to 72.1% of the total viral counts), and their distribution was positively correlated with that of viral lytic production. Interestingly, the gamma-proteobacteria explained a significant portion of the variance in the <60?nm and 60 to 90?nm tailless viruses (92% and 80%, respectively), and in the Myoviridae (73%). Also, 60% of the variance of the tailless larger viruses (>90?nm) was explained by the beta-proteobacteria. Overall, these results support the view that the environment, through selection mechanisms, probably shapes the structure of the prokaryotic community. This might be in turn a source of selection for the virioplankton community via specific affiliation favoring particular morphotypes and life strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号