首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Hemorrhagic shock/resuscitation (HS/R)-induced generation of reactive oxygen species (ROS) plays an important role in posthemorrhage inflammation and tissue injury. We have recently reported that HS/R-activated neutrophils (PMN), through release of ROS, serve an important signaling function in mediating alveolar macrophage priming and lung inflammation. PMN NAD(P)H oxidase has been thought to be an important source of ROS following HS/R. TLR4 sits at the interface of microbial and sterile inflammation by mediating responses to both bacterial endotoxin and multiple endogenous ligands, including high-mobility group box 1 (HMGB1). Recent studies have implicated HMGB1 as an early mediator of inflammation after HS/R and organ ischemia/reperfusion. In the present study, we tested the hypothesis that HS/R activates NAD(P)H oxidase in PMN through HMGB1/TLR4 signaling. We demonstrated that HS/R induced PMN NAD(P)H oxidase activation, in the form of phosphorylation of p47phox subunit of NAD(P)H oxidase, in wild-type mice; this induction was significantly diminished in TLR4-mutant C3H/HeJ mice. HMGB1 levels in lungs, liver, and serum were increased as early as 2 h after HS/R. Neutralizing Ab to HMGB1 prevented HS/R-induced phosphorylation of p47phox in PMN. In addition, in vitro stimulation of PMN with recombinant HMGB1 caused TLR4-dependent activation of NAD(P)H oxidase as well as increased ROS production through both MyD88-IRAK4-p38 MAPK and MyD88-IRAK4-Akt signaling pathways. Thus, PMN NAD(P)H oxidase activation, induced by HS/R and as mediated by HMGB1/TLR4 signaling, is an important mechanism responsible for PMN-mediated inflammation and organ injury after hemorrhage.  相似文献   

2.
Toll-like receptor-4 (TLR4) is the receptor for bacterial lipopolysaccharide, yet it may also respond to a variety of endogenous molecules. Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in newborn infants and is characterized by intestinal mucosal destruction and impaired enterocyte migration due to increased TLR4 signaling on enterocytes. The endogenous ligands for TLR4 that lead to impaired enterocyte migration remain unknown. High mobility group box-1 (HMGB1) is a DNA-binding protein that is released from injured cells during inflammation. We thus hypothesize that extracellular HMGB1 inhibits enterocyte migration via activation of TLR4 and sought to define the pathways involved. We now demonstrate that murine and human NEC are associated with increased intestinal HMGB1 expression, that serum HMGB1 is increased in murine NEC, and that HMGB1 inhibits enterocyte migration in vitro and in vivo in a TLR4-dependent manner. This finding was unique to enterocytes as HMGB1 enhanced migration of inflammatory cells in vitro and in vivo. In seeking to understand the mechanisms involved, TLR4-dependent HMGB1 signaling increased RhoA activation in enterocytes, increased phosphorylation of focal adhesion kinase, and increased phosphorylation of cofilin, resulting in increased stress fibers and focal adhesions. Using single cell force traction microscopy, the net effect of HMGB1 signaling was a TLR4-dependent increase in cell force adhesion, accounting for the impaired enterocyte migration. These findings demonstrate a novel pathway by which TLR4 activation by HMGB1 delays mucosal repair and suggest a novel potential therapeutic target in the amelioration of intestinal inflammatory diseases like NEC.  相似文献   

3.
High mobility group box 1 (HMGB1) is a DNA-binding protein that possesses cytokinelike, proinflammatory properties when released extracellularly in the C23–C45 disulfide form. HMGB1 also plays a key role as a mediator of acute and chronic inflammation in models of sterile injury. Although HMGB1 interacts with multiple pattern recognition receptors (PRRs), many of its effects in injury models occur through an interaction with toll-like receptor 4 (TLR4). HMGB1 interacts directly with the TLR4/myeloid differentiation protein 2 (MD2) complex, although the nature of this interaction remains unclear. We demonstrate that optimal HMGB1-dependent TLR4 activation in vitro requires the coreceptor CD14. TLR4 and MD2 are recruited into CD14-containing lipid rafts of RAW264.7 macrophages after stimulation with HMGB1, and TLR4 interacts closely with the lipid raft protein GM1. Furthermore, we show that HMGB1 stimulates tumor necrosis factor (TNF)-α release in WT but not in TLR4−/−, CD14−/−, TIR domain-containing adapter-inducing interferon-β (TRIF)−/− or myeloid differentiation primary response protein 88 (MyD88)−/− macrophages. HMGB1 induces the release of monocyte chemotactic protein 1 (MCP-1), interferon gamma–induced protein 10 (IP-10) and macrophage inflammatory protein 1α (MIP-1α) in a TLR4- and CD14-dependent manner. Thus, efficient recognition of HMGB1 by the TLR4/MD2 complex requires CD14.  相似文献   

4.
5.
HMGB1: endogenous danger signaling   总被引:12,自引:0,他引:12  
While foreign pathogens and their products have long been known to activate the innate immune system, the recent recognition of a group of endogenous molecules that serve a similar function has provided a framework for understanding the overlap between the inflammatory responses activated by pathogens and injury. These endogenous molecules, termed alarmins, are normal cell constituents that can be released into the extracellular milieu during states of cellular stress or damage and subsequently activate the immune system. One nuclear protein, High mobility group box-1 (HMGB1), has received particular attention as fulfilling the functions of an alarmin by being involved in both infectious and non-infectious inflammatory conditions. Once released, HMGB1 signals through various receptors to activate immune cells involved in the immune process. Although initial studies demonstrated HMGB1 as a late mediator of sepsis, recent findings indicate HMGB1 to have an important role in models of non-infectious inflammation, such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. Furthermore, in contrast to its pro-inflammatory functions, there is evidence that HMGB1 also has restorative effects leading to tissue repair and regeneration. The complex functions of HMGB1 as an archetypical alarmin are outlined here to review our current understanding of a molecule that holds the potential for treatment in many important human conditions.  相似文献   

6.
Toll-like receptors (TLRs), a family of pattern recognition receptors, recognize and respond to conserved components of microbes and play a crucial role in both innate and adaptive immunity. In addition to binding exogenous ligands derived from pathogens, TLRs interact with endogenous molecules released from damaged tissues or dead cells and regulate many sterile inflammation processes. Putative endogenous TLR ligands include proteins and peptides, polysaccharides and proteoglycan, nucleic acids and phospholipids, which are cellular components, particularly extracellular matrix degradation products. Accumulating evidence demonstrates that endogenous ligand-mediated TLR signalling is involved in pathological conditions such as tissue injury, repair and regeneration; autoimmune diseases and tumorigenesis. The ability of TLRs to recognize endogenous stimulators appears to be essential to their function in regulating non-infectious inflammation. In this review, we summarize current knowledge of endogenous TLR ligands and discuss the biological significance of TLR signalling triggered by endogenous ligands in several sterile inflammation conditions.  相似文献   

7.
Extracellular high-mobility group box 1 (HMGB1) (disulfide form), via activation of toll-like receptor 4 (TLR4)-dependent signaling, is a strong driver of pathologic inflammation in both acute and chronic conditions. Identification of selective inhibitors of HMGB1-TLR4 signaling could offer novel therapies that selectively target proximal endogenous activators of inflammation. A cell-based screening strategy led us to identify first generation HIV-protease inhibitors (PI) as potential inhibitors of HMGB1-TLR4 driven cytokine production. Here we report that the first-generation HIV-PI saquinavir (SQV), as well as a newly identified mammalian protease inhibitor STO33438 (334), potently block disulfide HMGB1-induced TLR4 activation, as assayed by the production of TNF-α by human monocyte-derived macrophages (THP-1). We further report on the identification of mammalian cathepsin V, a protease, as a novel target of these inhibitors. Cellular as well as recombinant protein studies show that the mechanism of action involves a direct interaction between cathepsin V with TLR4 and its adaptor protein MyD88. Treatment with SQV, 334 or the known cathepsin inhibitor SID26681509 (SID) significantly improved survival in murine models of sepsis and reduced liver damage following warm liver ischemia/reperfusion (I/R) models, both characterized by strong HMGB1-TLR4 driven pathology. The current study demonstrates a novel role for cathepsin V in TLR4 signaling and implicates cathepsin V as a novel target for first-generation HIV-PI compounds. The identification of cathepsin V as a target to block HMGB1-TLR4-driven inflammation could allow for a rapid transition of the discovery from the bench to the bedside. Disulfide HMGB1 drives pathologic inflammation in many models by activating signaling through TLR4. Cell-based screening identified the mammalian protease cathepsin V as a novel therapeutic target to inhibit TLR4-mediated inflammation induced by extracellular HMGB1 (disulfide form). We identified two protease inhibitors (PIs) that block cathepsin V and thereby inhibit disulfide HMGB1-induced TLR4 activation: saquinavir (SQV), a first-generation PI targeting viral HIV protease and STO33438 (334), targeting mammalian proteases. We discovered that cathepsin V binds TLR4 under basal and HMGB1-stimulated conditions, but dissociates in the presence of SQV over time. Thus cathepsin V is a novel target for first-generation HIV PIs and represents a potential therapeutic target of pathologic inflammation.  相似文献   

8.
Skin cancers are the most commonly diagnosed cancers. Understanding what are the factors contributing to skin tumour development can be instrumental to identify preventive therapies. The myeloid differentiation primary response gene (MyD)88, the downstream adaptor protein of most Toll‐like receptors (TLR), has been shown to be involved in several mouse tumourigenesis models. We show here that TLR4, but not TLR2 or TLR9, is upstream of MyD88 in skin tumourigenesis. TLR4 triggering is not dependent on lipopolysaccharide associated to skin‐colonizing bacteria, but on the high mobility group box‐1 protein (HMGB1), an endogenous ligand of TLR4. HMGB1 is released by necrotic keratinocytes and is required for the recruitment of inflammatory cells and for the initiation of inflammation. The expression of TLR4 on both bone marrow‐derived and radioresistant cells is necessary for carcinogenesis. Consistently, a human tissue microarray analysis showed that melanoma and colon cancer display an over‐expression of TLR4 and its downstream adaptor protein MyD88 within tumours. Together, our results suggest that the initial release of HMGB1 triggers a TLR4‐dependent inflammatory response that leads to tumour development.  相似文献   

9.
β(2)-Glycoprotein I (β(2)GPI) is an abundant plasma protein that binds to the surface of cells and particles expressing negatively charged lipids, but its physiological role remains unknown. Antibodies to β(2)GPI are found in patients with anti-phospholipid syndrome, a systemic autoimmune disease associated with vascular thrombosis and pregnancy morbidity. Although it has been suggested that anti-β(2)GPI antibodies activate endothelial cells and monocytes by signaling through TLR4, it is unclear how anti-β(2)GPI antibodies and/or β(2)GPI interact with TLR4. A number of mammalian proteins (termed "endogenous Toll-like receptor (TLR) ligands") have been reported to bind to TLR4, but, in most cases, subsequent studies have shown that LPS interaction with these proteins is responsible for TLR activation. We hypothesized that, like other endogenous TLR ligands, β(2)GPI interacts specifically with LPS and that this interaction is responsible for apparent TLR4 activation by β(2)GPI. Here, we show that both LPS and TLR4 are required for β(2)GPI to bind to and activate macrophages. Untreated β(2)GPI stimulated TNF-α production in TLR4-sufficient (but not TLR4-deficient) macrophages. In contrast, neither polymyxin B-treated nor delipidated β(2)GPI stimulated TNF-α production. Furthermore, β(2)GPI bound to LPS in a specific and dose-dependent manner. Finally, untreated β(2)GPI bound to the surface of TLR4-sufficient (but not TLR4-deficient) macrophages. Polymyxin B treatment of β(2)GPI abolished macrophage binding. Our findings suggest a potential new biological activity for β(2)GPI as a protein that interacts specifically with LPS and point to the need to evaluate newly discovered endogenous TLR ligands for potential interactions with LPS.  相似文献   

10.
High mobility group box 1 (HMGB1) is a NF released extracellularly as a late mediator of lethality in sepsis and as an early mediator of inflammation following injury. Here we demonstrate that in contrast to the proinflammatory role of HMGB1, preconditioning with HMGB1 results in protection following hepatic ischemia/reperfusion (I/R). Pretreatment of mice with HMGB1 significantly decreased liver damage after I/R. The protection observed in mice pretreated with HMGB1 was associated with a higher expression of IL-1R-associated kinase-M, a negative regulator of TLR4 signaling, compared with controls. We thus explored the possibility that HMGB1 preconditioning was mediated through TLR4 activation. HMGB1 preconditioning failed to provide protection in TLR4 mutant (C3H/HeJ) mice, but successfully reduced damage in TLR4 wild-type (C3H/HeOuj) mice. Our studies demonstrate that in contrast to the role of HMGB1 as an early mediator of inflammation and organ damage in hepatic I/R, HMGB1 preconditioning can be protective.  相似文献   

11.
Atherosclerosis is a chronic inflammatory response characterized by the accumulation of cells of innate and acquired immune systems within the intima of the arterial wall. Macrophages are the predominant participant in innate immune responses in atherosclerosis. Protein receptors expressed by macrophages and endothelial cells recognize components and products of microorganisms and play a vital role in innate immunity. In particular, the members of the toll-like receptor (TLR) family play a critical role in the inflammatory components of atherosclerosis. Both exogenous ligands involved in microbial recognition as well as endogenous ligands involved in sterile inflammation pathways are implicated in the pathology of atherosclerosis. In this review, we discuss our current understanding of the role of TLRs and their coactivators in atherosclerosis, with particular emphasis on studies in atherosclerosis-prone hypercholesterolemic mice.  相似文献   

12.
The role of Toll-like receptors (TLRs) in innate immunity and their ability to recognise microbial products has been well characterised. TLRs are also able to recognise endogenous molecules which are released upon cell damage and necrosis and have been shown to be present in numerous autoimmune diseases. Therefore, the release of endogenous TLR ligands during inflammation and consequently the activation of TLR signalling pathways may be one mechanism initiating and driving autoimmune diseases. An increasing body of circumstantial evidence implicates a role of TLR signalling in systemic lupus erythematosus (SLE), atherosclerosis, asthma, type 1 diabetes, multiple sclerosis, bowl inflammation and rheumatoid arthritis (RA). Although at present their involvement is not comprehensively defined. However, future therapies targeting individual TLRs or their signalling transducers may provide a more specific way of treating inflammatory diseases without global suppression of the immune system.  相似文献   

13.
Dendritic cells (DCs) are specialized APCs that can be activated upon pathogen recognition as well as recognition of endogenous ligands, which are released during inflammation and cell stress. The recognition of exogenous and endogenous ligands depends on TLRs, which are abundantly expressed in synovial tissue from rheumatoid arthritis (RA) patients. Furthermore TLR ligands are found to be present in RA serum and synovial fluid and are significantly increased, compared with serum and synovial fluid from healthy volunteers and patients with systemic sclerosis and systemic lupus erythematosus. Identification of novel endogenous TLR ligands might contribute to the elucidation of the role of TLRs in RA and other autoimmune diseases. In this study, we investigated whether five members of the small heat shock protein (HSP) family were involved in TLR4-mediated DC activation and whether these small HSPs were present in RA synovial tissue. In vitro, monocyte-derived DCs were stimulated with recombinant alphaA crystallin, alphaB crystallin, HSP20, HSPB8, and HSP27. Using flow cytometry and multiplex cytokine assays, we showed that both alphaA crystallin and HSPB8 were able to activate DCs and that this activation was TLR4 dependent. Furthermore, Western blot and immunohistochemistry showed that HSPB8 was abundantly expressed in synovial tissue from patients with RA. With these experiments, we identified sHSP alphaA crystallin and HSPB8 as two new endogenous TLR4 ligands from which HSPB8 is abundantly expressed in RA synovial tissue. These findings suggest a role for HSPB8 during the inflammatory process in autoimmune diseases such as RA.  相似文献   

14.
The nuclear protein high mobility group box protein 1 (HMGB1) promotes inflammation upon extracellular release. HMGB1 induces proinflammatory cytokine production in macrophages via Toll-like receptor (TLR)-4 signaling in a redox-dependent fashion. Independent of its redox state and endogenous cytokine-inducing ability, HMGB1 can form highly immunostimulatory complexes by interaction with certain proinflammatory mediators. Such complexes have the ability to enhance the induced immune response up to 100-fold, compared with induction by the ligand alone. To clarify the mechanisms for these strong synergistic effects, we studied receptor requirements. Interleukin (IL)-6 production was assessed in supernatants from cultured peritoneal macrophages from mice each deficient in one of the HMGB1 receptors (receptor for advanced glycation end products [RAGE], TLR2 or TLR4) or from wild-type controls. The cultures were stimulated with the TLR4 ligand lipopolysaccaride (LPS), the TLR2 ligand Pam3CysSerLys4 (Pam3CSK4), noninflammatory HMGB1 or each TLR ligand in complex with noninflammatory HMGB1. The activity of the HMGB1-TLR ligand complexes relied on engagement of the same receptor as for the noncomplexed TLR ligand, since HMGB1-LPS complexes used TLR4 and HMGB1-Pam3CSK4 complexes used TLR2. Deletion of any of the intracellular adaptor molecules used by TLR2 (myeloid differentiation factor-88 [MyD88], TIR domain–containing adaptor protein [TIRAP]) or TLR4 (MyD88, TIRAP, TIR domain–containing adaptor-inducing interferon-β [TRIF], TRIF-related adaptor molecule [TRAM]) had similar effects on HMGB1 complex activation compared with noncomplexed LPS or Pam3CSK4. This result implies that the enhancing effects of HMGB1-partner molecule complexes are not regulated by the induction of additional signaling cascades. Elucidating HMGB1 receptor usage in processes where HMGB1 acts alone or in complex with other molecules is essential for the understanding of basic HMGB1 biology and for designing HMGB1-targeted therapies.  相似文献   

15.

Background

Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor that carries a 5-y survival rate of 5%. Attempts at eliciting a clinically relevant anti-GBM immune response in brain tumor patients have met with limited success, which is due to brain immune privilege, tumor immune evasion, and a paucity of dendritic cells (DCs) within the central nervous system. Herein we uncovered a novel pathway for the activation of an effective anti-GBM immune response mediated by high-mobility-group box 1 (HMGB1), an alarmin protein released from dying tumor cells, which acts as an endogenous ligand for Toll-like receptor 2 (TLR2) signaling on bone marrow-derived GBM-infiltrating DCs.

Methods and Findings

Using a combined immunotherapy/conditional cytotoxic approach that utilizes adenoviral vectors (Ad) expressing Fms-like tyrosine kinase 3 ligand (Flt3L) and thymidine kinase (TK) delivered into the tumor mass, we demonstrated that CD4+ and CD8+ T cells were required for tumor regression and immunological memory. Increased numbers of bone marrow-derived, tumor-infiltrating myeloid DCs (mDCs) were observed in response to the therapy. Infiltration of mDCs into the GBM, clonal expansion of antitumor T cells, and induction of an effective anti-GBM immune response were TLR2 dependent. We then proceeded to identify the endogenous ligand responsible for TLR2 signaling on tumor-infiltrating mDCs. We demonstrated that HMGB1 was released from dying tumor cells, in response to Ad-TK (+ gancyclovir [GCV]) treatment. Increased levels of HMGB1 were also detected in the serum of tumor-bearing Ad-Flt3L/Ad-TK (+GCV)-treated mice. Specific activation of TLR2 signaling was induced by supernatants from Ad-TK (+GCV)-treated GBM cells; this activation was blocked by glycyrrhizin (a specific HMGB1 inhibitor) or with antibodies to HMGB1. HMGB1 was also released from melanoma, small cell lung carcinoma, and glioma cells treated with radiation or temozolomide. Administration of either glycyrrhizin or anti-HMGB1 immunoglobulins to tumor-bearing Ad-Flt3L and Ad-TK treated mice, abolished therapeutic efficacy, highlighting the critical role played by HMGB1-mediated TLR2 signaling to elicit tumor regression. Therapeutic efficacy of Ad-Flt3L and Ad-TK (+GCV) treatment was demonstrated in a second glioma model and in an intracranial melanoma model with concomitant increases in the levels of circulating HMGB1.

Conclusions

Our data provide evidence for the molecular and cellular mechanisms that support the rationale for the clinical implementation of antibrain cancer immunotherapies in combination with tumor killing approaches in order to elicit effective antitumor immune responses, and thus, will impact clinical neuro-oncology practice.  相似文献   

16.
Phagocytosis of apoptotic cells by macrophages, known as efferocytosis, is a critical process in the resolution of inflammation. High mobility group box 1 (HMGB1) protein was first described as a nuclear nonhistone DNA-binding protein, but is now known to be secreted by activated cells during inflammatory processes, where it participates in diminishing efferocytosis. Although HMGB1 is known to undergo modification when secreted, the effect of such modifications on the inhibitory actions of HMGB1 during efferocytosis have not been reported. In the present studies, we found that HMGB1 secreted by Toll-like receptor 4 (TLR4) stimulated cells is highly poly(ADP-ribosyl)ated (PARylated). Gene deletion of poly(ADP)-ribose polymerase (PARP)-1 or pharmacological inhibition of PARP-1 decreased the release of HMGB1 from the nucleus to the extracellular milieu after TLR4 engagement. Preincubation of macrophages or apoptotic cells with HMGB1 diminished efferocytosis through mechanisms involving binding of HMGB1 to phosphatidylserine on apoptotic cells and to the receptor for advanced glycation end products (RAGE) on macrophages. Preincubation of either macrophages or apoptotic cells with PARylated HMGB1 inhibited efferocytosis to a greater degree than exposure to unmodified HMGB1, and PARylated HMGB1 demonstrated higher affinity for phosphatidylserine and RAGE than unmodified HMGB1. PARylated HMGB1 had a greater inhibitory effect on Ras-related C3 botulinum toxin substrate 1 (Rac-1) activation in macrophages during the uptake of apoptotic cells than unmodified HMGB1. The present results, showing that PARylation of HMGB1 enhances its ability to inhibit efferocytosis, provide a novel mechanism by which PARP-1 may promote inflammation.  相似文献   

17.
The glycosylphosphatidylinositols (GPIs) of Plasmodium falciparum have been shown to activate macrophages and produce inflammatory responses. The activation of macrophages by malarial GPIs involves engagement of Toll like receptor 2 (TLR2) resulting in the intracellular signaling and production of cytokines. In the present study, we investigated the requirement of TLR1 and TLR6 for the TLR2 mediated cell signaling and proinflammatory cytokine production by macrophages. The data demonstrate that malarial GPIs, which contain three fatty acid substituents, preferentially engage TLR2–TLR1 dimeric pair than TLR2–TLR6, whereas their derivatives, sn-2 lyso GPIs, that contain two fatty acid substituents recognize TLR2–TLR6 with slightly higher selectivity as compared to TLR2–TLR1 heteromeric pair. These results are analogous to the recognition of triacylated bacterial and diacylated mycoplasmal lipoproteins, respectively, by TLR2–TLR1 and TLR2–TLR6 dimers, suggesting that the lipid portions of the microbial GPI ligands play essential role in determining their TLR recognition specificity.  相似文献   

18.
Plasmacytoid dendritic cells (PDC) are innate immune effector cells that are recruited to sites of chronic inflammation, where they modify the quality and nature of the adaptive immune response. PDCs modulate adaptive immunity in response to signals delivered within the local inflammatory milieu by pathogen- or damage-associated molecular pattern, molecules, and activated immune cells (including NK, T, and myeloid dendritic cells). High mobility group B1 (HMGB1) is a recently identified damage-associated molecular pattern that is released during necrotic cell death and also secreted from activated macrophages, NK cells, and mature myeloid dendritic cells. We have investigated the effect of HMGB1 on the function of PDCs. In this study, we demonstrate that HMGB1 suppresses PDC cytokine secretion and maturation in response to TLR9 agonists including the hypomethylated oligodeoxynucleotide CpG- and DNA-containing viruses. HMGB1-inhibited secretion of several proinflammatory cytokines including IFN-alpha, IL-6, TNF-alpha, inducible protein-10, and IL-12. In addition, HMGB1 prevented the CpG induced up-regulation of costimulatory molecules on the surface of PDC and potently suppressed their ability to drive generation of IFN-gamma-secreting T cells. Our observations suggest that HMGB1 may play a critical role in regulating the immune response during chronic inflammation and tissue damage through modulation of PDC function.  相似文献   

19.
20.
Pulmonary infection with Pseudomonas aeruginosa and neutrophilic lung inflammation significantly contribute to morbidity and mortality in cystic fibrosis (CF). High-mobility group box 1 protein (HMGB1), a ubiquitous DNA binding protein that promotes inflammatory tissue injury, is significantly elevated in CF sputum. However, its mechanistic and potential therapeutic implications in CF were previously unknown. We found that HMGB1 levels were significantly elevated in bronchoalveolar lavage fluids (BALs) of CF patients and cystic fibrosis transmembrane conductance regulator (CFTR )(-/-) mice. Neutralizing anti-HMGB1 monoclonal antibody (mAb) conferred significant protection against P. aeruginosa-induced neutrophil recruitment, lung injury and bacterial infection in both CFTR(-/-) and wild-type mice. Alveolar macrophages isolated from mice treated with anti-HMGB1 mAb had improved phagocytic activity, which was suppressed by direct exposure to HMGB1. In addition, BAL from CF patients significantly impaired macrophage phagocytotic function, and this impairment was attenuated by HMGB1-neutralizing antibodies. The HMGB1-mediated suppression of bacterial phagocytosis was attenuated in macrophages lacking toll-like receptor (TLR)-4, suggesting a critical role for TLR4 in signaling HMGB1-mediated macrophage dysfunction. These studies demonstrate that the elevated levels of HMGB1 in CF airways are critical for neutrophil recruitment and persistent presence of P. aeruginosa in the lung. Thus, HMGB1 may provide a therapeutic target for reducing bacterial infection and lung inflammation in CF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号